Diabetes Mellitus Risk Prediction in the Framingham Offspring Study and Large Population Analysis
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Laboratory Measurements
2.3. Statistical Analysis
3. Results
3.1. Diabetes Prediction
3.2. Large Population Analysis
4. Discussion
Study Strengths and Weaknesses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASCVD | Atherosclerotic cardiovascular disease |
BMI | Body mass index |
FOS | Framingham Offspring Study |
GSP | Glycated serum protein |
HbA1c | Glycosylated hemoglobin |
HDL-C | High-density lipoprotein cholesterol |
HOMA-IR | Homeostasis model of insulin resistance |
HOMA-β | Homeostasis model of insulin production |
hs-CRP | High-sensitivity C-reactive protein |
LDL-C | Low-density lipoprotein cholesterol |
References
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Centers for Disease Control and Prevention. Nathinal Diabetes Statistics Report. Available online: https://www.cdc.gov/diabetes/php/data-research (accessed on 12 January 2025).
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S158–S178, Erratum in Diabetes Care 2024, 47, 1238. https://doi.org/10.2337/dc24-er07a. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stern, M.P.; Williams, K.; Haffner, S.M. Identification of persons at high risk for type 2 diabetes mellitus: Do we need the oral glucose tolerance test? Ann. Intern. Med. 2002, 136, 575–581. [Google Scholar] [CrossRef]
- Wilson, P.W.; Meigs, J.B.; Sullivan, L.; Fox, C.S.; Nathan, D.M.; D’Agostino, R.B., Sr. Prediction of incident diabetes mellitus in middle-aged adults: The Framingham Offspring Study. Arch. Intern. Med. 2007, 167, 1068–1074. [Google Scholar] [CrossRef]
- Ikezaki, H.; A Fisher, V.; Lim, E.; Ai, M.; Liu, C.-T.; Cupples, L.A.; Nakajima, K.; Asztalos, B.F.; Furusyo, N.; Schaefer, E.J. Direct versus calculated LDL cholesterol and C-reactive protein in cardiovascular disease risk assessment in the Framingham Offspring Study. Clin. Chem. 2019, 65, 1102–1114. [Google Scholar] [CrossRef]
- Ikezaki, H.; Lim, E.; Cupples, L.A.; Liu, C.T.; Asztalos, B.F.; Schaefer, E.J. Small dense low-density lipoprotein cholesterol is the most atherogenic lipoprotein parameter in the prospective Framingham Offspring Study. J. Am. Heart Assoc. 2021, 10, e019140. [Google Scholar] [CrossRef]
- Schaefer, E.J.; Ikezaki, H.; Diffenderfer, M.R.; Lim, E.; Liu, C.T.; Hoogeveen, R.C.; Guan, W.; Tsai, M.Y.; Ballantyne, C.M. Atherosclerotic cardiovascular disease risk and small dense low-density lipoprotein cholesterol in men, women, African Americans and non-African Americans: The pooling project. Atherosclerosis 2023, 367, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Kolberg, J.A.; Jørgensen, T.; Gerwien, R.W.; Hamren, S.; McKenna, M.P.; Moler, E.; Rowe, M.W.; Urdea, M.S.; Xu, X.M.; Hansen, T.; et al. Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 2009, 32, 1207–1212. [Google Scholar] [CrossRef]
- Lyssenko, V.; Jørgensen, T.; Gerwien, R.W.; Hansen, T.; Rowe, M.W.; McKenna, M.P.; Kolberg, J.; Pedersen, O.; Borch-Johnsen, K.; Groop, L. Validation of a multi-marker model for the prediction of incident type 2 diabetes mellitus: Combined results of the Inter99 and Botnia studies. Diab. Vasc. Dis. Res. 2012, 9, 59–67. [Google Scholar]
- Noble, D.; Mathur, R.; Dent, T.; Meads, C.; Greenhalgh, T. Risk models and scores for type 2 diabetes: Systematic review. BMJ 2011, 343, d7163. [Google Scholar] [CrossRef]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS ONE 2018, 13, e0194127. [Google Scholar] [CrossRef]
- Richter, B.; Hemmingsen, B.; Metzendorf, M.I.; Takwoingi, Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst. Rev. 2018, 10, CD012661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Yu, S.; Feng, W.; Mo, H.; Hua, Y.; Zhang, M.; Zhu, Z.; Zhang, X.; Wu, Z.; Zheng, L.; et al. A meta-analysis of diabetes risk prediction models applied to prediabetes screening. Diabetes Obes. Metab. 2024, 26, 1593–1604. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, E.J.; Tsunoda, F.; Diffenderfer, M.; Polisecki, E.; Thai, N.; Asztalos, B. The Measurement of Lipids, Lipoproteins, Apolipoproteins, Fatty Acids, and Sterols, and Next Generation Sequencing for the Diagnosis and Treatment of Lipid Disorders. [Updated 2016 Mar 29]. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar] [PubMed]
- Ai, M.; Otokozawa, S.; Asztalos, B.F.; White, C.C.; Cupples, L.A.; Nakajima, K.; Lamon-Fava, S.; Wilson, P.W.; Matsuzawa, Y.; Schaefer, E.J. Adiponectin: An independent risk factor for coronary heart disease in men in the Framingham offspring Study. Atherosclerosis 2011, 217, 543–548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ai, M.; Otokozawa, S.; Schaefer, E.J.; Asztalos, B.F.; Nakajima, K.; Shrader, P.; Kathiresan, S.; Meigs, J.B.; Williams, G.; Nathan, D.M. Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus. Clin. Chim. Acta 2009, 406, 71–74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rutter, M.K.; Meigs, J.B.; Sullivan, L.M.; D’Agostino, R.B.; Sr Wilson, P.W. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 2004, 110, 380–385. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. The Multiple Logistic Regression Model: Applied Logistic Regression; John Wiley & Sons Inc.: New York, NY, USA, 1989; pp. 25–37. [Google Scholar]
- Yalow, R.S.; Berson, S.A. Immunoassay of endogenous plasma insulin in man. J. Clin. Investig. 1960, 39, 1157–1175. [Google Scholar] [CrossRef]
- Turner, R.C.; Holman, R.R.; Matthews, D.; Hockaday, T.D.; Peto, J. Insulin deficiency and insulin resistance interaction in diabetes: Estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism 1979, 28, 1086–1096. [Google Scholar] [CrossRef]
- Rudenski, A.S.; Hadden, D.R.; Atkinson, A.B.; Kennedy, L.; Matthews, D.R.; Merrett, J.D.; Pockaj, B.; Turner, R.C. Natural history of pancreatic islet B-cell function in type 2 diabetes mellitus studied over six years by homeostasis model assessment. Diabet. Med. 1988, 5, 36–41. [Google Scholar] [CrossRef]
- Rudenski, A.S.; Matthews, D.R.; Levy, J.C.; Turner, R.C. Understanding “insulin resistance”: Both glucose resistance and insulin resistance are required to model human diabetes. Metabolism 1991, 40, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.C.; Matthews, D.R.; Hermans, M.P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998, 21, 2191–2192. [Google Scholar] [CrossRef]
- Sacks, D.B.; Arnold, M.; Bakris, G.L.; Bruns, D.E.; Horvath, A.R.; Lernmark, Å.; Metzger, B.E.; Nathan, D.M.; Kirkman, M.S. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Diabetes Care 2023, 46, e151–e199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taylor, R. Understanding the cause of type 2 diabetes. Lancet Diabetes Endocrinol. 2024, 12, 664–673, Epub 2024 Jul 19. Erratum in Lancet Diabetes Endocrinol. 2024, 12, e18. https://doi.org/10.1016/S2213-8587(24)00244-4. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, Y.; Hosomichi, K.; Yabe, D. Monogenic diabetes. Diabetol. Int. 2024, 15, 679–687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ikezaki, H.; Ai, M.; Schaefer, E.J.; Otokozawa, S.; Asztalos, B.F.; Nakajima, K.; Zhou, Y.; Liu, C.T.; Jacques, P.F.; Cupples, L.A.; et al. Ethnic Differences in Glucose Homeostasis Markers between the Kyushu-Okinawa Population Study and the Framingham Offspring Study. Sci. Rep. 2016, 6, 36725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Parameter † | Non-Converters (n = 2250) | Converters (n = 166) | % Difference |
---|---|---|---|
Demographics | |||
Age, years | 57.9 (9.6) | 59.6 (8.6) c | +2.9% |
Sex, % female | 55.7% | 43.4% b | –22.1% |
Body mass index, kg/m2 | 27.3 (4.8) | 31.6 (5.5) a | +15.8% |
Waist, cm | 95.9 (12.9) | 107.4 (12.1) a | +12.0% |
Clinical Treatment | |||
Parental diabetes, % | 22.3% | 37.6% a | +68.6% |
Hypertensive, % | 35.9% | 55.4% a | +54.3% |
Cholesterol treatment, % | 10.0% | 22.0% b | +120.2% |
Uric acid treatment, % | 1.29% | 1.81% c | +40.3% |
Metabolism | |||
Fasting glucose, mg/dL | 95.8 (9.1) | 110·9 (8.9) a | +15.8% |
Glycated albumin, % ‡ | 14.1 (1.8) | 14.5 (1.8) a | +2.8% |
Log glycated albumin | 2.64 (0.10) | 2.68 a (0.11) a | |
Insulin, microU/mL ‡ | 10.1 (5.4) | 15.4 (9.1) a | +52.5% |
Log insulin | 2.36 (0.40) | 2.72 (0.42) a | |
Adiponectin, ug/mL ‡ | 12.0 (8.8) | 8.2 (4.5) a | –31.7% |
Log adiponectin | 2.49 (0.51) | 2.11 (0.42) a | |
Inflammation | |||
hs-CRP, mg/L ‡ | 1.88 (1.71) | 3.38 (2.82) b | +79.8% |
Log C-reactive protein | 0.67 (1.14) | 1.23 (1.11) a | |
Lipids | |||
Triglycerides, mg/dL ‡ | 110 (77) | 155 (97) a | +40.9% |
Log triglycerides | 4.70 (0.49) | 5.02 (0.48) a | |
HDL cholesterol, mg/dL | 52.7 (15.8) | 43.4 (11.5) a | –17.6% |
Parameter | Beta Value | Error | Odds Ratio | p Value | C Statistic (Sum) |
---|---|---|---|---|---|
Fasting Glucose—Model 1 | |||||
Fasting glucose, mg/dL | 0.1644 | 0.010 | 1.179 | <0.001 | 0.876 *** |
Biochemical Model—Model 2 | |||||
Fasting glucose, mg/dL | 0.1520 | 0.011 | 1.164 | <0.0001 | 0.898 *** |
Log adiponectin | –1.0750 | 0.215 | 0.3413 | <0.0001 | *** |
Fasting triglycerides, mg/dL | 0.0042 | 0.001 | 1.004 | 0.0003 | ** |
Log glycated albumin, % | 2.8820 | 0.859 | 17.85 | 0.0008 | ** |
Full Model—Model 3 | |||||
Fasting glucose, mg/dL | 0.1578 | 0.014 | 1.171 | < 0.0001 | 0.924 *** |
Body mass index, kg/m2 | 0.0943 | 0.022 | 1.099 | < 0.0001 | *** |
Log adiponectin, % | –0.9768 | 0.258 | 0.377 | 0.0002 | ** |
Log glycated albumin | 3.7174 | 1.063 | 41.16 | 0.0005 | ** |
Parental diabetes, y/n | 0.6662 | 0.238 | 1.947 | 0.0051 | * |
Fasting triglycerides, mg/dL | 0.0032 | 0.001 | 1.003 | 0.0227 | * |
Cholesterol treatment, y/n | 0.5706 | 0.285 | 1.769 | 0.0454 | * |
Parameter | No Diabetes n = 75,271 (56.3%) | Prediabetes n = 48,455 (36.2%) | Diabetes n = 10,038 (7.5%) | % Difference, vs. Non-Diabetic Subjects | |||
---|---|---|---|---|---|---|---|
N | Median (IQR) | N | Median (IQR) | N | Median (IQR) | ||
Demographics | |||||||
Age, years | 75,271 | 52.0 (22.0) | 48,455 | 59.0 (17.0) | 10,038 | 60.0 (17.0) * | +15.4% |
Females | 48,476 | 52.0 (22.0) | 22,977 | 59.0 (17.0) | 4175 | 60.0 (18.0) * | +15.4% |
Males | 26,795 | 52.0 (23.0) | 25,478 | 58.0 (18.0) | 5863 | 60.0 (17.0) * | +15.4% |
Sex | |||||||
Females | 48,476 | 64.4% | 22,977 | 47.4% | 4175 | 41.6% * | –35.4% |
Males | 26,795 | 35.6% | 25,478 | 52.6% | 5863 | 58.4% * | +64.0% |
BMI, kg/m2 | 12,794 | 27.0 (7.0) | 11,758 | 30.0 (8.0) | 801 | 32.0 (9.0) * | +18.5% |
Females | 8575 | 26.0 (8.0) | 5605 | 30.0 (10.0) | 331 | 34.0 (10.0) * | +30.8% |
Males | 4219 | 28.0 (7.0) | 6153 | 30.0 (6.0) | 470 | 31.0 (7.0) * | +10.7% |
Glucose, mg/dL | 75,271 | 90.0 (10.0) | 48,455 | 106.0 (10.0) | 10,038 | 154.0 (57.0) * | +71.1% |
Females | 48,476 | 90.0 (9.0) | 22,977 | 105.0 (9.0) | 4175 | 153.0 (56.0) * | +70.0% |
Males | 26,795 | 92.0 (9.0) | 25,478 | 106.0 (10.0) | 5863 | 155.0 (57.0) * | +68.5% |
Adiponectin, μg/mL | 75,271 | 12.6 (9.3) | 48,455 | 10.1 (7.6) | 10,038 | 8.3 (6.3) * | –34.1% |
Females | 48,476 | 14.6 (9.6) | 22,977 | 12.1 (8.6) | 4175 | 9.7 (7.4) * | –33.6% |
Males | 26,795 | 9.4 (6.4) | 25,478 | 8.6 (5.9) | 5863 | 7.5 (5.4) * | –20.2% |
Glycated serum protein, μmol/L | 75,269 | 199 (53) | 48,454 | 205 (59) | 10,038 | 299 (62) * | +50.3% |
Females | 48,476 | 198 (55) | 22,976 | 200 (60) | 4175 | 285 (98) * | +43.9% |
Males | 26,793 | 202 (52) | 25,478 | 210 (58) | 5863 | 308 (63) * | +52.5% |
Diabetes risk (calculated, biochemical) | 75,271 | 0.4 (0.6) | 48,455 | 5.5 (12.1) | 10,038 | 100.0 * | +150% |
Females | 48,476 | 0.3 (0.5) | 22,977 | 4.2 (8.9) | 4175 | 100.0 * | +233% |
Males | 26,795 | 0.6 (1.0) | 25,478 | 7.0 (14.7) | 5863 | 100.0 * | +67% |
Triglycerides, mg/dL | 75,271 | 93 (67.0) | 48,455 | 116 (80.0) | 10,038 | 150 (114) * | +61.3% |
Females | 48,476 | 89 (60.0) | 22,977 | 115 (77.0) | 4175 | 151 (107) * | +69.7% |
Males | 26,795 | 103 (75.0) | 25,478 | 116 (83.0) | 5863 | 149 (118) * | +44.7% |
Parameter | No Diabetes n = 75,271 (56.3%) | Prediabetes n = 48,455 (36.2%) | Diabetes n = 10,038 (7.5%) | % Difference, vs. Non-Diabetic Subjects | |||
---|---|---|---|---|---|---|---|
N | Median (IQR) | N | Median (IQR) | N | Median (IQR) | ||
HbA1c, % | 72,980 | 5.5 (0.5) | 45,176 | 5.7 (0.5) | 9599 | 7.2 (1.9) * | +30.9% |
Females | 47,206 | 5.4 (0.5) | 21,540 | 5.7 (0·5) | 3989 | 7.2 (1.8) * | +33.3% |
Males | 25,774 | 5·5 (0·4) | 23,636 | 5.7 (0·6) | 5610 | 7.2 (1.9) * | +30.9% |
Insulin, microU/mL | 73,624 | 8.0 (8.0) | 45,176 | 13.0 (12.0) | 9940 | 17.0 (18.0) * | +112.5% |
Females | 47,420 | 8.0 (7.0) | 21,477 | 13.0 (12.0) | 4130 | 18.0 (18.0) * | +125.0% |
Males | 26,204 | 9.0 (8.0) | 23,699 | 13.0 (12.0) | 5810 | 17.0 (19.0) * | +88.9% |
HOMA-IR | 73,460 | 1.8 (1.8) | 45,069 | 3.5 (3.3) | 9781 | 7.3 (8.1) * | +305.6% |
Females | 47,331 | 1.7 (1.6) | 21,421 | 3.6 (3.3) | 4042 | 7.6 (8.0) * | +347.1% |
Males | 26,129 | 2.0 (2.0) | 23,648 | 3.5 (3.3) | 5739 | 7.2 (8.2) * | +260.0% |
HOMA-β | 73,572 | 111 (102) | 45,176 | 108 (95) | 9940 | 64 (81) * | –42.3% |
Females | 47,390 | 109 (98) | 21,477 | 110 (96) | 4130 | 68 (83) * | –37.6% |
Males | 26,182 | 115 (111) | 23,699 | 107 (96) | 5810 | 62 (80) * | –46.1% |
C-peptide, ng/mL | 10,322 | 2.1 (1.3) | 4897 | 3.2 (1.8) | 1394 | 3.8 (2.4) * | +81.0% |
Females | 6597 | 2.0 (1.1) | 2310 | 3.2 (1.8) | 531 | 3.8 (2.5) * | +90.0% |
Males | 3725 | 2.3 (1.5) | 2587 | 3.2 (1.8) | 863 | 3.8 (2.3) * | +65.2% |
hs-CRP, mg/L | 72,717 | 1.1 (2.4) | 45,569 | 1.6 (3.1) | 9765 | 2.5 (4.4) * | +127.3% |
Females | 46,937 | 1.2 (2.7) | 21,723 | 2.2 (4.1) | 4052 | 3.6 (6.0) * | +200.0% |
Males | 25,780 | 1.0 (1.9) | 23,846 | 1.2 (2.3) | 5713 | 1.9 (3.3) * | +90.0% |
LDL-C, mg/dL | 73,824 | 117 (51.0) | 46,550 | 117 (54.0) | 9966 | 107 (57.0) * | –8.5% |
Females | 47,539 | 117 (49.0) | 22,127 | 121 (53.0) | 4144 | 114 (59.0) * | –2.6% |
Males | 26,285 | 117 (54.0) | 24,423 | 113 (55.0) | 5822 | 102 (55.0) * | –12.8% |
HDL-C, mg/dL | 74,272 | 58 (24.0) | 46,978 | 51 (22.0) | 10,017 | 43 (17.0) * | –25.9% |
Females | 47,793 | 64 (25.0) | 22,306 | 57 (22.0) | 4161 | 49 (19.0) * | –23.4% |
Males | 26,479 | 49 (19.0) | 24,672 | 46 (18.0) | 5856 | 40 (15.0) * | –18.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, M.; Otokozawa, S.; Liu, C.-T.; Asztalos, B.F.; Maddalena, J.; Diffenderfer, M.R.; Russo, G.; Thongtang, N.; Dansinger, M.L. Diabetes Mellitus Risk Prediction in the Framingham Offspring Study and Large Population Analysis. Nutrients 2025, 17, 1117. https://doi.org/10.3390/nu17071117
Ai M, Otokozawa S, Liu C-T, Asztalos BF, Maddalena J, Diffenderfer MR, Russo G, Thongtang N, Dansinger ML. Diabetes Mellitus Risk Prediction in the Framingham Offspring Study and Large Population Analysis. Nutrients. 2025; 17(7):1117. https://doi.org/10.3390/nu17071117
Chicago/Turabian StyleAi, Masumi, Seiko Otokozawa, Ching-Ti Liu, Bela F. Asztalos, Julia Maddalena, Margaret R. Diffenderfer, Giuseppina Russo, Nuntakorn Thongtang, and Michael L. Dansinger. 2025. "Diabetes Mellitus Risk Prediction in the Framingham Offspring Study and Large Population Analysis" Nutrients 17, no. 7: 1117. https://doi.org/10.3390/nu17071117
APA StyleAi, M., Otokozawa, S., Liu, C.-T., Asztalos, B. F., Maddalena, J., Diffenderfer, M. R., Russo, G., Thongtang, N., & Dansinger, M. L. (2025). Diabetes Mellitus Risk Prediction in the Framingham Offspring Study and Large Population Analysis. Nutrients, 17(7), 1117. https://doi.org/10.3390/nu17071117