Association Between Mediterranean Diet and Other Healthy Habits and Sociodemographic Variables with the Values of Vascular and Heart Age in Spanish Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- Aged between 18 and 69 years (working age);
- Currently employed in one of the participating companies and not on medical leave;
- Willing to participate in the study and provide data for epidemiological purposes;
- Availability of all necessary variables to calculate the different risk scales.
2.2. Determinations of Variables
2.2.1. Anthropometric Determinations
2.2.2. Clinical Determinations
2.2.3. Analytical Determinations
2.2.4. Risk Scales
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González, L.D.M.; Romero-Orjuela, S.P.; Rabeya, F.J.; Del Castillo, V.; Echeverri, D. Age and vascular aging: An unexplored frontier. Front. Cardiovasc. Med. 2023, 10, 1278795. [Google Scholar] [CrossRef] [PubMed]
- Petrák, O.; Češka, R. Vascular age. Vnitr. Lek. 2020, 65, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Tabaei, B.P.; Chamany, S.; Perlman, S.; Thorpe, L.; Bartley, K.; Wu, W.Y. Heart Age, Cardiovascular Disease Risk, and Disparities by Sex and Race/Ethnicity Among New York City Adults. Public Health Rep. 2019, 134, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Pucci, G.; Verdecchia, P. Chronological age and vascular age staring at each other on the ring of cardiovascular prevention. Int. J. Cardiol. Hypertens. 2021, 8, 100076. [Google Scholar] [CrossRef]
- Kucharska-Newton, A.M.; Stoner, L.; Meyer, M.L. Determinants of Vascular Age: An Epidemiological Perspective. Clin. Chem. 2019, 65, 108–118. [Google Scholar] [CrossRef]
- Climie, R.E.; Bruno, R.M.; Hametner, B.; Mayer, C.C.; Terentes-Printzios, D. Vascular Age Is Not Only Atherosclerosis, it Is Also Arteriosclerosis. J. Am. Coll. Cardiol. 2020, 76, 229–230. [Google Scholar] [CrossRef]
- Moradi, M.; Fosouli, M.; Khataei, J. Vascular age based on coronary calcium burden and carotid intima media thickness (a comparative study). Am. J. Nucl. Med. Mol. Imaging 2022, 12, 86–90. [Google Scholar]
- Gray, B.J.; Craddock, C.; Couzens, Z.; Dunseath, G.J.; Shankar, A.G.; Luzio, S.D.; Perrett, S. Quantifying cardiovascular disease risk and heart age predictions for men in the prison environment. Public Health 2023, 225, 285–290. [Google Scholar] [CrossRef]
- Bonner, C.; Bell, K.; Jansen, J.; Glasziou, P.; Irwig, L.; Doust, J.; McCaffery, K. Should heart age calculators be used alongside absolute cardiovascular disease risk assessment? BMC Cardiovasc. Disord. 2018, 18, 19. [Google Scholar] [CrossRef]
- Groenewegen, K.A.; den Ruijter, H.M.; Pasterkamp, G.; Polak, J.F.; Bots, M.L.; Peters, S.A. Vascular age to determine cardiovascular disease risk: A systematic review of its concepts, definitions, and clinical applications. Eur. J. Prev. Cardiol. 2016, 23, 264–274. [Google Scholar] [CrossRef]
- Charlton, P.H.; Paliakaitė, B.; Pilt, K.; Bachler, M.; Zanelli, S.; Kulin, D.; Allen, J.; Hallab, M.; Bianchini, E.; Mayer, C.C.; et al. Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: A review from VascAgeNet. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H493–H522. [Google Scholar] [CrossRef]
- Cui, R.; Iso, H.; Yamagishi, K.; Tanigawa, T.; Imano, H.; Ohira, T.; Kitamura, A.; Sato, S.; Naito, Y.; Shimamoto, T. Ankle-arm blood pressure index and cardiovascular risk factors in elderly Japanese men. Hypertens. Res. 2003, 26, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Dyverfeldt, P.; Ebbers, T.; Länne, T. Pulse wave velocity with 4D flow MRI: Systematic differences and age-related regional vascular stiffness. Magn. Reson. Imaging 2014, 32, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Blaha, M.J.; Naazie, I.N.; Cainzos-Achirica, M.; Dardari, Z.A.; DeFilippis, A.P.; McClelland, R.L.; Mirbolouk, M.; Orimoloye, O.A.; Dzaye, O.; Nasir, K.; et al. Derivation of a Coronary Age Calculator Using Traditional Risk Factors and Coronary Artery Calcium: The Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2021, 10, e019351. [Google Scholar] [CrossRef] [PubMed]
- Lindow, T.; Palencia-Lamela, I.; Schlegel, T.T.; Ugander, M. Heart age estimated using explainable advanced electrocardiography. Sci. Rep. 2022, 12, 9840. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, C.S.; Luo, Y.S.; Lee, Y.T.; Lin, C. Electrocardiogram-Based Heart Age Estimation by a Deep Learning Model Provides More Information on the Incidence of Cardiovascular Disorders. Front. Cardiovasc. Med. 2022, 9, 754909. [Google Scholar] [CrossRef]
- Raisi-Estabragh, Z.; Salih, A.; Gkontra, P.; Atehortúa, A.; Radeva, P.; Boscolo Galazzo, I.; Menegaz, G.; Harvey, N.C.; Lekadir, K.; Petersen, S.E. Estimation of biological heart age using cardiovascular magnetic resonance radiomics. Sci. Rep. 2022, 12, 12805. [Google Scholar] [CrossRef]
- Iakunchykova, O.; Schirmer, H.; Vangberg, T.; Wang, Y.; Benavente, E.D.; van Es, R.; van de Leur, R.R.; Lindekleiv, H.; Attia, Z.I.; Lopez-Jimenez, F.; et al. Machine-learning-derived heart and brain age are independently associated with cognition. Eur. J. Neurol. 2023, 30, 2611–2619. [Google Scholar] [CrossRef]
- Bonner, C.; Batcup, C.; Cornell, S.; Fajardo, M.A.; Hawkes, A.L.; Trevena, L.; Doust, J. Interventions Using Heart Age for Cardiovascular Disease Risk Communication: Systematic Review of Psychological, Behavioral, and Clinical Effects. JMIR Cardio 2021, 5, e31056. [Google Scholar] [CrossRef]
- Ramírez-Manent, J.I.; Tomás-Gil, P.; Coll-Villalonga, J.L.; Marti-Lliteras, P.; López-González, A.A.; Paublini, H. Relationship between atherogenic dyslipidemia and lipid triad with scales that assess non alcoholic liver disease in 418,343 spanish workers. Acad. J. Health Sci. 2023, 38, 66–73. [Google Scholar] [CrossRef]
- Ramírez-Manent, J.I.; Tomás-Gil, P.; Coll-Villalonga, J.L.; Marti-Lliteras, P.; López-González, A.A.; Paublini, H. Influence of sociodemographic variables and tobacco consumption on the prevalence of atherogenic dyslipidemia and lipid triad in 418.343 spanish workers. Acad. J. Health Sci. 2023, 38, 84–89. [Google Scholar] [CrossRef]
- Mestre Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Vallejos, D.; Sastre Alzamora, T.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of cardiometabolic risk scales in 386,924 spanish workers. Acad. J. Health Sci. 2024, 39, 112–121. [Google Scholar] [CrossRef]
- Marina Arroyo, M.; Ramírez Gallegos, I.; López-González, A.A.; Vicente-Herrero, M.T.; Vallejos, D.; Tárraga López, P.J.; José Ramírez-Manent, I. Equation Córdoba body fat values according to sociodemographic variables and healthy habits in 386,924 Spanish workers. Acad. J. Health Sci. 2024, 39, 31–39. [Google Scholar] [CrossRef]
- Obrador de Hevia, J.; López-González, Á.A.; Ramírez-Manent, J.I.; Paublini Oliveira, H.; Tárraga López, P.J.; Riutord-Sbert, P. Relationship between alcohol consumption and other variables with the values of different cardiovascular risk factors in 139634 Spanish workers. Acad. J. Health Sci. 2024, 39, 132–141. [Google Scholar] [CrossRef]
- Ramos, R.; Solanas, P.; Cordón, F.; Rohlfs, I.; Elosua, R.; Sala, J.; Masiá, R.; Faixedas, M.T.; Marrugat, J. Comparación de la función de Framingham original y la calibrada del REGICOR en la predicción del riesgo coronario poblacional [Comparison of population coronary heart disease risk estimated by the Framingham original and REGICOR calibrated functions]. Med. Clin. 2003, 121, 521–526. (In Spanish) [Google Scholar] [CrossRef]
- Montero Muñoz, N.; López-González, A.A.; Tomás-Gil, P.; Martínez Jover, A.; Paublini, H.; Ramírez Manent, J.I. Relationship between sociodemographic variables and tobacco consumption with vascular age values using the Framinghan model in 336,450 spanish workers. Acad. J. Health Sci. 2023, 38, 61–66. [Google Scholar] [CrossRef]
- Sastre Alzamora, T.; Tomás-Gil, P.; Martí-Lliteras, P.; Pallarés Ferreres, L.; Ramírez-Manent, J.I.; López-González, A.A. Estimation of heart age in 139.634 spanish workers: Influence of sociodemographic variables and healthy habits and determination of cut-off points. Acad. J. Health Sci. 2023, 38, 24–30. [Google Scholar] [CrossRef]
- Lottspeich, C.; Köhler, A.; Czihal, M.; Heinrich, D.A.; Schneider, H.; Handgriff, L.; Reincke, M.; Adolf, C. Atherosclerotic Burden and Arterial Stiffness are Not Increased in Patients with Milder Forms of Primary Aldosteronism Compared to Patients with Essential Hypertension. Horm. Metab. Res. 2021, 53, 178–184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pavanello, S.; Campisi, M.; Fabozzo, A.; Cibin, G.; Tarzia, V.; Toscano, G.; Gerosa, G. The biological age of the heart is consistently younger than chronological age. Sci. Rep. 2020, 10, 10752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vijayakumar, A.; Wang, M.; Kailasam, S. The Senescent Heart—“Age Doth Wither Its Infinite Variety”. Int. J. Mol. Sci. 2024, 25, 3581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bloom, S.I.; Islam, M.T.; Lesniewski, L.A.; Donato, A.J. Mechanisms and consequences of endothelial cell senescence. Nat. Rev. Cardiol. 2023, 20, 38–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kilanowski-Doroh, I.M.; McNally, A.B.; Wong, T.J.; Visniauskas, B.; Blessinger, S.A.; Imulinde Sugi, A.; Lindsey, S.H. Ovariectomy-Induced Arterial Stiffening Differs From Vascular Aging and Is Reversed by GPER Activation. Hypertension 2024, 81, e51–e62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ikezaki, H.; Furusyo, N.; Yokota, Y.; Ai, M.; Asztalos, B.F.; Murata, M.; Hayashi, J.; Schaefer, E.J. Small Dense Low-Density Lipoprotein Cholesterol and Carotid Intimal Medial Thickness Progression. J. Atheroscler. Thromb. 2020, 27, 1108–1122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamczyk, M.R.; Nevado, R.M.; Barettino, A.; Fuster, V.; Andrés, V. Biological Versus Chronological Aging: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Kuo, L.; Sung, S.H.; Niu, D.M.; Yu, W.C. Prognostic Implications of Left Ventricular Hypertrophy and Mechanical Function in Fabry Disease: A Longitudinal Cohort Study. J. Am. Soc. Echocardiogr. 2024, 37, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Ding, X.; Zhang, H.; Liu, D.; Wang, X. Hemodynamic characteristics and early warnings in very old patients. Am. J. Transl. Res. 2021, 13, 13310–13320. [Google Scholar] [PubMed] [PubMed Central]
- Campbell, D.J.; Francis, V.C.M.; Young, G.R.; Woodford, N.W.F. Association of Coronary Microvascular Rarefaction and Myocardial Fibrosis With Coronary Artery Disease. J. Am. Heart Assoc. 2024, 13, e037332. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Söderberg, S.; Nilsson, P.M.; Nordendahl, M. Vascular ageing in relation to chronological and self-perceived age in the general Swedish population. Scand. Cardiovasc. J. 2024, 58, 2430078. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Wang, G.; Huang, Z.; Zhu, C.; Liu, Y. Estimated pulse wave velocity and risk of new-onset heart failure. ESC Heart Fail. 2024, 11, 2120–2128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rhee, T.M.; Kim, H.L.; Lim, W.H.; Seo, J.B.; Kim, S.H.; Zo, J.H.; Kim, M.-A. Age-specific association between invasively measured central blood pressure and left ventricular mass index. Clin. Exp. Hypertens. 2021, 43, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Redfield, M.M.; Jacobsen, S.J.; Borlaug, B.A.; Rodeheffer, R.J.; Kass, D.A. Age- and gender-related ventricular-vascular stiffening: A community-based study. Circulation 2005, 112, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Nakayama, M.; Nevo, E.; Fetics, B.J.; Maughan, W.L.; Kass, D.A. Coupled systolic-ventricular and vascular stiffening with age: Implications for pressure regulation and cardiac reserve in the elderly. J. Am. Coll. Cardiol. 1998, 32, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Sonaglioni, A.; Baravelli, M.; Lombardo, M.; Sommese, C.; Anzà, C.; Kirk, J.A.; Padeletti, L. Ventricular-arterial coupling in centenarians without cardiovascular diseases. Aging Clin. Exp. Res. 2018, 30, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, N.; Buta, B.; Xue, Q.L.; Mohess, D.T.; Bushan, A.; Tran, H.; Batchelor, W.; R deFilippi, C.; Walston, J.D.; Bandeen-Roche, K.; et al. Interventions for Frailty Among Older Adults With Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 482–503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ji, H.; Kwan, A.C.; Chen, M.T.; Ouyang, D.; Ebinger, J.E.; Bell, S.P.; Niiranen, T.J.; Bello, N.A.; Cheng, S. Sex Differences in Myocardial and Vascular Aging. Circ. Res. 2022, 130, 566–577. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aittokallio, J.; Saaresranta, T.; Riskumäki, M.; Hautajärvi, T.; Vahlberg, T.; Polo, O.; Heinonen, O.; Raitakari, O.; Kalleinen, N. Effect of menopause and age on vascular impairment. Maturitas 2023, 169, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhang, S.; Weng, X.; Huang, J.; Zhao, H.; Dai, X.; Bai, X.; Bao, X.; Zhao, C.; Zeng, M.; et al. Estrogen deficiency accelerates postmenopausal atherosclerosis by inducing endothelial cell ferroptosis through inhibiting NRF2/GPX4 pathway. FASEB J. 2023, 37, e22992. [Google Scholar] [CrossRef] [PubMed]
- Armeni, E.; Lambrinoudaki, I. Menopause, androgens, and cardiovascular ageing: A narrative review. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221129946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amini, L.; Chekini, R.; Nateghi, M.R.; Haghani, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. The Effect of Combined Vitamin C and Vitamin E Supplementation on Oxidative Stress Markers in Women with Endometriosis: A Randomized, Triple-Blind Placebo-Controlled Clinical Trial. Pain. Res. Manag. 2021, 2021, 5529741. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’Neill, S.M.; Travers, C.M.; Otahal, P.; Khoo, S.K.; Sharman, J.E. Menopause and accelerated aortic stiffness. Maturitas 2024, 180, 107900. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.R.; Pillai, A.J.; Nair, N. Cardiovascular Changes in Menopause. Curr. Cardiol. Rev. 2021, 17, e230421187681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Yang, F.; Ma, J.; Hu, Y.; Li, M.; Wang, C.; Chang, X.; Yang, L. The Impact of Testosterone on Alzheimer’s Disease Are Mediated by Lipid Metabolism and Obesity: A Mendelian Randomization Study. J. Prev. Alzheimers Dis. 2024, 11, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Yerly, A.; van der Vorst, E.P.C.; Baumgartner, I.; Bernhard, S.M.; Schindewolf, M.; Döring, Y. Sex-specific and hormone-related differences in vascular remodelling in atherosclerosis. Eur. J. Clin. Investig. 2023, 53, e13885. [Google Scholar] [CrossRef] [PubMed]
- Succurro, E.; Miceli, S.; Fiorentino, T.V.; Sciacqua, A.; Perticone, M.; Andreozzi, F.; Sesti, G. Sex-specific differences in left ventricular mass and myocardial energetic efficiency in non-diabetic, pre-diabetic and newly diagnosed type 2 diabetic subjects. Cardiovasc. Diabetol. 2021, 20, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, Y.; Vergnes, L.; Wang, Y.C.; Pan, C.; Chella Krishnan, K.; Moore, T.M.; Rosa-Garrido, M.; Kimball, T.H.; Zhou, Z.; Charugundla, S.; et al. Sex differences in heart mitochondria regulate diastolic dysfunction. Nat. Commun. 2022, 13, 3850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shir, D.; Graff-Radford, J.; Fought, A.J.; Lesnick, T.G.; Przybelski, S.A.; Vassilaki, M.; Lowe, V.J.; Knopman, D.S.; Machulda, M.M.; Petersen, R.C.; et al. Complex relationships of socioeconomic status with vascular and Alzheimer’s pathways on cognition. Neuroimage Clin. 2024, 43, 103634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McMaughan, D.J.; Oloruntoba, O.; Smith, M.L. Socioeconomic Status and Access to Healthcare: Interrelated Drivers for Healthy Aging. Front. Public Health 2020, 8, 231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.B.; Chen, C.; Pan, X.F.; Guo, J.; Li, Y.; Franco, O.H.; Liu, G.; Pan, A. Associations of healthy lifestyle and socioeconomic status with mortality and incident cardiovascular disease: Two prospective cohort studies. BMJ 2021, 373, n604. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell-Wiley, T.M.; Baumer, Y.; Baah, F.O.; Baez, A.S.; Farmer, N.; Mahlobo, C.T.; Pita, M.A.; Potharaju, K.A.; Tamura, K.; Wallen, G.R. Social Determinants of Cardiovascular Disease. Circ. Res. 2022, 130, 782–799. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- González, Á.A.L.; Sbert, P.R.; Fe, B.R.; Fe, N.R.; Bote, S.A.; Manent, J.I.R. Relationship between healthy habits and sociodemographic variables and risk of diabetes type 2. Afr. Health Sci. 2022, 22, 133–139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allen, L.; Williams, J.; Townsend, N.; Mikkelsen, B.; Roberts, N.; Foster, C.; Wickramasinghe, K. Socioeconomic status and non-communicable disease behavioural risk factors in low-income and lower-middle-income countries: A systematic review. Lancet Glob. Health 2017, 5, e277–e289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sumimoto, Y.; Yanagita, M.; Miyamatsu, N.; Okuda, N.; Nishi, N.; Nakamura, Y.; Nakamura, K.; Miyagawa, N.; Miyachi, M.; Kadota, A.; et al. Association between socioeconomic status and physical inactivity in a general Japanese population: NIPPON DATA2010. PLoS ONE 2021, 16, e0254706. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguiló Juanola, M.C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; Tárraga López, P.J.; López-González, A.A. Influence of tobacco consumption on the values of different overweight and obesity scales in 418,343 spanish people. Acad. J. Health Sci. 2023, 38, 111–117. [Google Scholar] [CrossRef]
- Darvish, S.; Mahoney, S.A.; Venkatasubramanian, R.; Rossman, M.J.; Clayton, Z.S.; Murray, K.O. Socioeconomic status as a potential mediator of arterial aging in marginalized ethnic and racial groups: Current understandings and future directions. J. Appl. Physiol. 2024, 137, 194–222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jae, S.Y.; Heffernan, K.S.; Kim, H.J.; Kunutsor, S.K.; Fernhall, B.; Kurl, S.; Laukkanen, J.A. Impact of estimated pulse wave velocity and socioeconomic status on the risk of stroke in men: A prospective cohort study. J. Hypertens. 2022, 40, 1165–1169. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Kwon, S.; Joh, H.S.; Lim, W.H.; Seo, J.B.; Kim, S.H.; Zo, J.-H.; Kim, M.-A. The association between arterial stiffness and socioeconomic status: A cross-sectional study using estimated pulse wave velocity. Clin. Hypertens. 2024, 30, 26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukhopadhyay, A.; Blecker, S.; Li, X.; Kronish, I.M.; Chunara, R.; Zheng, Y.; Lawrence, S.; Dodson, J.A.; Kozloff, S.; Adhikari, S. Neighborhood-Level Socioeconomic Status and Prescription Fill Patterns Among Patients With Heart Failure. JAMA Netw. Open 2023, 6, e2347519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carrouel, F.; du Sartz de Vigneulles, B.; Clément, C.; Lvovschi, V.E.; Verot, E.; Tantardini, V.; Lamure, M.; Bourgeois, D.; Lan, R.; Dussart, C. Promoting Health Literacy in the Workplace Among Civil Servants: Cross-Sectional Study. JMIR Public Health Surveill. 2024, 10, e58942. [Google Scholar] [CrossRef]
- Carrouel, F.; du Sartz de Vigneulles, B.; Clément, C.; Lvovschi, V.E.; Verot, E.; Tantardini, V.; Lamure, M.; Bourgeois, D.; Dussart, C.; Lan, R. Authors’ Reply: Promoting Oral Health Literacy Among UAE Public Sector Employees. JMIR Public Health Surveill. 2024, 10, e67634. [Google Scholar] [CrossRef]
- El Assar, M.; Álvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodríguez-Mañas, L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int. J. Mol. Sci. 2022, 23, 8713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliveira, G.F.; Marin, T.C.; Forjaz, C.L.M.; Brito, L.C. Exercise Training and Endothelial Function in Hypertension: Effects of Aerobic and Resistance Training. Arq. Bras. Cardiol. 2021, 116, 948–949, (In English; In Portuguese). [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, N.; Xia, J.; Wang, C.; Zhou, J.; Huang, J.; Hu, M.; Liao, J. Aerobic Exercise Prevents Arterial Stiffness and Attenuates Hyperexcitation of Sympathetic Nerves in Perivascular Adipose Tissue of Mice after Transverse Aortic Constriction. Int. J. Mol. Sci. 2022, 23, 11189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karabulut, M.; Bitting, M.; Bejar, J. Postexercise Arterial Compliance and Hemodynamic Responses to Various Durations and Intensities of Aerobic Exercise. J. Strength Cond. Res. 2023, 37, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Kozakova, M.; Palombo, C. Vascular Ageing and Aerobic Exercise. Int. J. Environ. Res. Public Health 2021, 18, 10666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shannon, O.M.; Clifford, T.; Seals, D.R.; Craighead, D.H.; Rossman, M.J. Nitric oxide, aging and aerobic exercise: Sedentary individuals to Master’s athletes. Nitric Oxide 2022, 125–126, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Poblete-Aro, C.; Russell-Guzmán, J.; Parra, P.; Soto-Muñoz, M.; Villegas-González, B.; Cofré-Bolados, C.; Herrera-Valenzuela, T. Efecto del ejercicio físico sobre marcadores de estrés oxidativo en pacientes con diabetes mellitus tipo 2. Rev. Med. Chil. 2018, 146, 362–372. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Soriano-Maldonado, A.; Morillas-de-Laguno, P.; Sabio, J.M.; Gavilán-Carrera, B.; Rosales-Castillo, A.; Montalbán-Méndez, C.; Sáez-Urán, L.M.; Callejas-Rubio, J.L.; Vargas-Hitos, J.A. Effects of 12-week Aerobic Exercise on Arterial Stiffness, Inflammation, and Cardiorespiratory Fitness in Women with Systemic LUPUS Erythematosus: Non-Randomized Controlled Trial. J. Clin. Med. 2018, 7, 477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Wang, J.; Deng, S.; She, Q.; Wu, L. The effects of aerobic endurance exercise on pulse wave velocity and intima media thickness in adults: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2016, 26, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.D.; Lane, A.; Pettee Gabriel, K.; Sternfeld, B.; Jacobs, D.R., Jr.; Smith, P.; Gibbs, B.B. Associations between occupational physical activity and left ventricular structure and function over 25 years in CARDIA. Eur. J. Prev. Cardiol. 2024, 31, 425–433. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, X.; Chen, X.; Qiu, X.; Luo, W.; Luo, X.; Liu, H.; Geng, Q.; Ma, H.; Xue, L.; Guo, L. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity on Peak Oxygen Uptake and Myocardial Fibrosis in Patients With Myocardial Infarction: Protocol for a Randomized Controlled Trial. Front. Cardiovasc. Med. 2022, 9, 860071. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crozier, J.; Roig, M.; Eng, J.J.; MacKay-Lyons, M.; Fung, J.; Ploughman, M.; Bailey, D.M.; Sweet, S.N.; Giacomantonio, N.; Thiel, A.; et al. High-Intensity Interval Training After Stroke: An Opportunity to Promote Functional Recovery, Cardiovascular Health, and Neuroplasticity. Neurorehabil. Neural Repair. 2018, 32, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gómez-Sánchez, L.; Gómez-Sánchez, M.; García-Ortiz, L.; Agudo-Conde, C.; Lugones-Sánchez, C.; Gonzalez-Sánchez, S.; Rodríguez-Sánchez, E.; Gómez-Marcos, M.A. The Relationship between the Mediterranean Diet and Vascular Stiffness, Metabolic Syndrome, and Its Components in People over 65 Years of Age. Nutrients 2024, 16, 3464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papandreou, P.; Gioxari, A.; Daskalou, E.; Grammatikopoulou, M.G.; Skouroliakou, M.; Bogdanos, D.P. Mediterranean Diet and Physical Activity Nudges versus Usual Care in Women with Rheumatoid Arthritis: Results from the MADEIRA Randomized Controlled Trial. Nutrients 2023, 15, 676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calcaterra, V.; Verduci, E.; Milanta, C.; Agostinelli, M.; Bona, F.; Croce, S.; Valsecchi, C.; Avanzini, M.A.; Zuccotti, G. The Benefits of the Mediterranean Diet on Inflamm-Aging in Childhood Obesity. Nutrients 2024, 16, 1286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castañón-Apilánez, M.; García-Cabo, C.; Martin-Martin, C.; Prieto, B.; Cernuda-Morollón, E.; Rodríguez-González, P.; Pineda-Cevallos, D.; Benavente, L.; Calleja, S.; López-Cancio, E. Mediterranean Diet Prior to Ischemic Stroke and Potential Circulating Mediators of Favorable Outcomes. Nutrients 2024, 16, 3218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. 2019, 175, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sánchez, L.; Rodríguez-Sánchez, E.; Ramos, R.; Marti-Lluch, R.; Gómez-Sánchez, M.; Lugones-Sánchez, C.; Tamayo-Morales, O.; Llamas-Ramos, I.; Rigo, F.; García-Ortiz, L.; et al. The Association of Dietary Intake with Arterial Stiffness and Vascular Ageing in a Population with Intermediate Cardiovascular Risk-A MARK Study. Nutrients 2022, 14, 244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bacharaki, D.; Petrakis, I.; Kyriazis, P.; Markaki, A.; Pleros, C.; Tsirpanlis, G.; Theodoridis, M.; Balafa, O.; Georgoulidou, A.; Drosataki, E.; et al. Adherence to the Mediterranean Diet Is Associated with a More Favorable Left Ventricular Geometry in Patients with End-Stage Kidney Disease. J. Clin. Med. 2022, 11, 5746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castelnuovo, G.; Perez-Diaz-Del-Campo, N.; Rosso, C.; Guariglia, M.; Armandi, A.; Nicolosi, A.; Caviglia, G.P.; Bugianesi, E. Impact of Chronotype and Mediterranean Diet on the Risk of Liver Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients 2023, 15, 3257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baliou, S.; Ioannou, P.; Apetroaei, M.M.; Vakonaki, E.; Fragkiadaki, P.; Kirithras, E.; Tzatzarakis, M.N.; Arsene, A.L.; Docea, A.O.; Tsatsakis, A. The Impact of the Mediterranean Diet on Telomere Biology: Implications for Disease Management-A Narrative Review. Nutrients 2024, 16, 2525. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Solà, J. The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients 2020, 12, 572. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van der Heide, F.C.T.; Eussen, S.J.P.M.; Houben, A.J.H.M.; Henry, R.M.A.; Kroon, A.A.; van der Kallen, C.J.H.; Dagnelie, P.C.; van Dongen, M.C.J.M.; Berendschot, T.T.J.M.; Schouten, J.S.A.G.; et al. Alcohol consumption and microvascular dysfunction: A J-shaped association: The Maastricht Study. Cardiovasc. Diabetol. 2023, 22, 67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Del Giorno, R.; Maddalena, A.; Bassetti, S.; Gabutti, L. Association between Alcohol Intake and Arterial Stiffness in Healthy Adults: A Systematic Review. Nutrients 2022, 14, 1207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chudzińska, M.; Wołowiec, Ł.; Banach, J.; Rogowicz, D.; Grześk, G. Alcohol and Cardiovascular Diseases—Do the Consumption Pattern and Dose Make the Difference? J. Cardiovasc. Dev. Dis. 2022, 9, 317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kamal, H.; Tan, G.C.; Ibrahim, S.F.; Shaikh, M.F.; Mohamed, I.N.; Mohamed, R.M.P.; Hamid, A.A.; Ugusman, A.; Kumar, J. Alcohol Use Disorder, Neurodegeneration, Alzheimer’s and Parkinson’s Disease: Interplay Between Oxidative Stress, Neuroimmune Response and Excitotoxicity. Front. Cell Neurosci. 2020, 14, 282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Georgescu, O.S.; Martin, L.; Târtea, G.C.; Rotaru-Zavaleanu, A.D.; Dinescu, S.N.; Vasile, R.C.; Gresita, A.; Gheorman, V.; Aldea, M.; Dinescu, V.C. Alcohol Consumption and Cardiovascular Disease: A Narrative Review of Evolving Perspectives and Long-Term Implications. Life 2024, 14, 1134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kloosterman, M.; Oldgren, J.; Conen, D.; Wong, J.A.; Connolly, S.J.; Avezum, A.; Yusuf, S.; Ezekowitz, M.D.; Wallentin, L.; Ntep-Gweth, M.; et al. Characteristics and outcomes of atrial fibrillation in patients without traditional risk factors: An RE-LY AF registry analysis. Europace 2020, 22, 870–877. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Domínguez, F.; Adler, E.; García-Pavía, P. Alcoholic cardiomyopathy: An update. Eur. Heart J. 2024, 45, 2294–2305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heidarzadeh-Esfahani, N.; Hajahmadi, S.; Pasdar, Y.; Darbandi, M.; Najafi, F.; Moradinazar, M.; Bonyani, M.; Feyz-BashiPoor, R.; Soltani, S. Diet-related inflammation is positively associated with atherogenic indices. Sci. Rep. 2024, 14, 13190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Men | |||||||||||
Total Cholesterol (mg/dL) | Points | HDL-c (mg/dL) | Points | Glucose (mg/dL) | Points | Smokers | Points | BMI (Kg/m2) | Points | SBP/DBP mm Hg | Points |
<130 130–145 146–160 161–175 176–190 191–199 200–239 >240 | −5 −4 −3 −2 −1 0 1 2 | <35 35–39 40–45 46–50 51–55 56–60 61–65 >65 | 2 1 0 −1 −2 −3 −4 −5 | <70 70–80 81–90 91–99 100–109 110–125 >125 * | −5 −3 −2 0 2 3 5 | Yes Non | 5 0 | <20 20–22.5 22.6–24.9 25–29.9 30–34.9 ≥35 | −2 −1 0 1 2 3 | <120/<80 120–139/80–89 140–159/90–99 ≥160/≥100 * | −3 0 2 3 |
Women | |||||||||||
Total Cholesterol (mg/dL) | Points | HDL-c (mg/dL) | Points | Glucose (mg/dL) | Points | Smokers | Points | BMI (Kg/m2) | Points | SBP/DBP mm Hg | Points |
<130 130–145 146–160 161–175 176–190 191–199 200–239 >240 | −5 −4 −3 −2 −1 0 1 2 | <40 40–49 50–55 56–60 61–65 66–70 71–75 >75 | 2 1 0 −1 −2 −3 −4 −5 | <70 70–80 81–90 91–99 100–109 110–125 >125 * | −5 −3 −2 0 2 3 5 | Yes Non | 5 0 | <20 20–22.5 22.6–24.9 25–29.9 30–34.9 ≥35 | −2 −1 0 1 2 3 | <120/<80 120–139/80–89 140–159/90–99 ≥160/≥100 * | −3 0 2 3 |
Men n = 83,282 | Women n = 56,352 | ||
---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | |
Age (years) | 41.4 (10.7) | 40.1 (10.4) | <0.001 |
Height (cm) | 173.8 (7.1) | 161.2 (6.5) | <0.001 |
Weight (kg) | 83.2 (14.6) | 66.3 (13.9) | <0.001 |
BMI (kg/m²) | 27.5 (9.2) | 25.5 (8.9) | <0.001 |
Systolic blood pressure (mmHg) | 126.2 (15.9) | 115.6 (15.7) | <0.001 |
Diastolic blood pressure (mmHg) | 76.6 (10.9) | 71.1 (10.7) | <0.001 |
Total cholesterol (mg/dL) | 199.6 (38.6) | 194.6 (36.9) | <0.001 |
HDL-cholesterol (mg/dL) | 50.0 (7.7) | 54.7 (9.2) | <0.001 |
LDL-cholesterol (mg/dL) | 122.6 (37.4) | 121.5 (37.1) | <0.001 |
Triglycerides (mg/dL) | 133.8 (95.6) | 90.8 (49.7) | <0.001 |
Glucose (mg/dL) | 93.0 (25.4) | 86.8 (18.1) | <0.001 |
% | % | p-value | |
<30 years | 15.1 | 18.0 | <0.001 |
30–39 years | 29.6 | 31.0 | |
40–49 years | 30.2 | 30.3 | |
50–59 years | 20.9 | 17.7 | |
60–69 years | 4.2 | 3.0 | |
Social class I | 7.5 | 13.6 | <0.001 |
Social class II | 23.8 | 32.1 | |
Social class III | 68.7 | 54.1 | |
Elementary school | 66.4 | 48.1 | <0.001 |
High school | 26.9 | 40.0 | |
University | 6.7 | 11.9 | |
Non-smokers | 66.8 | 67.9 | <0.001 |
Smokers | 33.2 | 32.1 | |
Non-physical activity | 62.4 | 51.4 | <0.001 |
Yes physical activity | 37.6 | 48.6 | |
Non-Mediterranean diet | 65.8 | 52.8 | <0.001 |
Yes Mediterranean diet | 34.2 | 47.2 | |
Non-alcohol consumption | 67.3 | 84.4 | <0.001 |
Yes alcohol consumption | 32.7 | 15.6 |
ALLY HA | ALLY VA | |||
---|---|---|---|---|
Men | n | Mean (SD) | n | Mean (SD) |
<30 years | 12,558 | 1.3 (4.9) | 0 | no |
30–39 years | 24,648 | 4.2 (6.7) | 24,648 | 2.2 (6.8) |
40–49 years | 25,178 | 7.9 (8.1) | 25,178 | 6.9 (10.2) |
50–59 years | 17,370 | 11.7 (7.9) | 17,370 | 12.6 (11.2) |
60–69 years | 3528 | 11.8 (7.4) | 3528 | 14.3 (10.1) |
Social class I | 6236 | 4.9 (7.5) | 5294 | 4.8 (9.4) |
Social class II | 19,856 | 6.3 (8.1) | 17,914 | 6.2 (10.2) |
Social class III | 57,192 | 7.1 (8.1) | 47,516 | 7.6 (10.4) |
Elementary school | 55,306 | 7.3 (8.5) | 45,816 | 7.9 (11.4) |
High school | 22,408 | 6.7 (7.9) | 20,050 | 6.8 (9.9) |
University | 5568 | 5.2 (7.6) | 4858 | 5.0 (9.5) |
Non-smokers | 55,618 | 4.2 (7.3) | 48,220 | 3.4 (8.4) |
Smokers | 27,664 | 11.8 (7.2) | 22,504 | 14.8 (9.9) |
Non-physical activity | 51,984 | 8.9 (7.9) | 47,646 | 9.2 (10.7) |
Yes physical activity | 31,298 | 3.2 (7.0) | 23,078 | 2.6 (8.0) |
Non-Mediterranean diet | 54,792 | 8.7 (8.0) | 50,012 | 8.8 (10.6) |
Yes Mediterranean diet | 28,490 | 3.0 (7.0) | 20,712 | 2.7 (8.1) |
Non-alcohol consumption | 56,022 | 5.8 (7.8) | 45,012 | 5.6 (9.3) |
Yes alcohol consumption | 27,260 | 8.8 (8.2) | 25,712 | 9.6 (11.5) |
Women | Mean (SD) | Mean (SD) | ||
<30 years | 10,110 | −2.0 (5.0) | 0 | no |
30–39 years | 17,460 | −1.8 (7.7) | 17,460 | −2.0 (6.8) |
40–49 years | 17,094 | 2.8 (10.2) | 17,094 | 1.3 (11.8) |
50–59 years | 9984 | 8.4 (10.6) | 9984 | 9.7 (14.4) |
60–69 years | 1704 | 8.6 (9.9) | 1704 | 11.1 (13.1) |
Social class I | 7632 | −2.0 (7.7) | 5512 | −2.1 (9.0) |
Social class II | 18,112 | 0.5 (9.3) | 15,162 | 0.8 (11.1) |
Social class III | 30,608 | 3.3 (9.9) | 25,568 | 4.0 (12.6) |
Elementary school | 27,086 | 3.4 (10.0) | 22,908 | 4.2 (12.4) |
High school | 22,574 | 0.7 (9.4) | 18,478 | 1.0 (11.5) |
University | 6692 | −2.1 (7.7) | 4856 | −2.3 (9.0) |
Non-smokers | 38,252 | −0.6 (9.2) | 31,908 | −0.1 (11.1) |
Smokers | 18,100 | 6.5 (8.9) | 14,334 | 7.3 (12.1) |
Non-physical activity | 28,962 | 5.5 (9.8) | 25,836 | 6.4 (12.8) |
Yes physical activity | 27,390 | −2.3 (7.7) | 20,406 | −3.1 (8.0) |
Non-Mediterranean diet | 29,764 | 5.1 (9.9) | 26,396 | 6.1 (12.8) |
Yes Mediterranean diet | 26,588 | −2.2 (7.8) | 19,846 | −2.9 (8.2) |
Non-alcohol consumption | 47,536 | 0.1 (8.9) | 37,846 | 0.0 (10.0) |
Yes alcohol consumption | 8816 | 10.0 (9.5) | 8396 | 12.4 (14.2) |
ALLY HA High | ALLY VA High | |||
---|---|---|---|---|
Men | n | % | n | % |
<30 years | 12,558 | 1.8 | 0 | no |
30–39 years | 24,648 | 10.1 | 24,648 | 3.2 |
40–49 years | 25,178 | 28.2 | 25,178 | 14.9 |
50–59 years | 17,370 | 47.8 | 17,370 | 33.3 |
60–69 years | 3528 | 51.1 | 3528 | 41.0 |
Social class I | 6236 | 15.4 | 5294 | 11.2 |
Social class II | 19,856 | 22.2 | 17,914 | 14.9 |
Social class III | 57,192 | 25.4 | 47,516 | 17.9 |
Elementary school | 55,306 | 27.9 | 45,816 | 20.5 |
High school | 22,408 | 23.1 | 20,050 | 15.5 |
University | 5568 | 16.5 | 4858 | 11.8 |
Non-smokers | 55,618 | 13.1 | 48,220 | 7.6 |
Smokers | 27,664 | 45.7 | 22,504 | 36.1 |
Non-physical activity | 51,984 | 32.3 | 47,646 | 21.9 |
Yes physical activity | 31,298 | 10.0 | 23,078 | 5.7 |
Non-Mediterranean diet | 54,792 | 31.4 | 50,012 | 21.0 |
Yes Mediterranean diet | 28,490 | 9.5 | 20,712 | 6.0 |
Non-alcohol consumption | 56,022 | 19.6 | 45,012 | 11.9 |
Yes alcohol consumption | 27,260 | 32.9 | 25,712 | 25.0 |
Women | n | % | n | % |
<30 years | 10,110 | 0.8 | 0 | no |
30–39 years | 17,460 | 5.0 | 17,460 | 2.0 |
40–49 years | 17,094 | 18.5 | 17,094 | 10.2 |
50–59 years | 9984 | 41.1 | 9984 | 30.1 |
60–69 years | 1704 | 42.8 | 1704 | 39.4 |
Social class I | 7632 | 5.5 | 5512 | 4.4 |
Social class II | 18,112 | 12.4 | 15,162 | 9.2 |
Social class III | 30,608 | 20.5 | 25,568 | 14.9 |
Elementary school | 27,086 | 21.0 | 22,908 | 16.1 |
High school | 22,574 | 12.8 | 18,478 | 10.1 |
University | 6692 | 5.4 | 4856 | 4.4 |
Non-smokers | 38,252 | 10.8 | 31,908 | 9.2 |
Smokers | 18,100 | 26.6 | 14,334 | 19.6 |
Non-physical activity | 28,962 | 26.3 | 25,836 | 20.0 |
Yes physical activity | 27,390 | 4.8 | 20,406 | 2.8 |
Non-Mediterranean diet | 29,764 | 25.6 | 26,396 | 19.5 |
Yes Mediterranean diet | 26,588 | 5.0 | 19,846 | 3.1 |
Non-alcohol consumption | 47,536 | 10.4 | 37,846 | 7.0 |
Yes alcohol consumption | 8816 | 45.5 | 8396 | 37.1 |
ALLY HA High | ALLY VA High | |
---|---|---|
OR (95% CI) | OR (95% CI) | |
Women | 1 * | 1 * |
Men | 1.42 (1.37–1.47) | 1.06 (1.04–1.08) |
<30 years | 1 * | no |
30–39 years | 1.33 (1.24–1.42) | 1 * |
40–49 years | 4.28 (4.00–4.56) | 1.81 (1.69–1.94) |
50–59 years | 17.67 (16.35–19.00) | 7.00 (6.50–7.51) |
60–69 years | 114.91 (100.45–131.43) | 34.48 (31.41–37.56) |
Social class I | 1 * | 1 * |
Social class II | 1.74 (1.65–1.83) | 1.77 (1.67–1.88) |
Social class III | 2.74 (2.23–3.25) | 2.70 (2.38–3.03) |
University | 1 * | 1 * |
High school | 1.35 (1.29–1.41) | 1.48 (1.40–1.57) |
Elementary school | 1.41 (1.36–1.17) | 1.98 (1.80–2.16) |
Non-smokers | 1 * | 1 * |
Smokers | 2.88 (2.60–3.17) | 2.95 (2.70–3.21) |
Yes physical activity | 1 * | 1 * |
Non-physical activity | 2.33 (2.16–2.51) | 3.38 (3.06–3.71) |
Yes Mediterranean diet | 1 * | 1 * |
Non-Mediterranean diet | 2.02 (1.87–2.18) | 2.40 (2.05–2.76) |
Non-alcohol consumption | 1 * | 1 * |
Yes alcohol consumption | 2.06 (1.98–2.15) | 3.20 (3.05–3.36) |
ALLY HA High | ALLY VA High | ||||
---|---|---|---|---|---|
Men | n | % PRE-% POST | Difference (%) | % PRE-% POST | Difference (%) |
Social class I | 1900 | 15.2–17.4 | 14.3 | 11.2–12.7 | 13.6 |
Social class II | 5769 | 22.1–26.3 | 18.9 | 15.0–17.7 | 17.8 |
Social class III | 16,560 | 24.9–30.0 | 20.3 | 17.6–21.2 | 20.6 |
Elementary school | 16,022 | 24.6–29.7 | 20.6 | 17.3–20.9 | 20.8 |
High school | 6501 | 22.5–26.7 | 18.6 | 15.4–18.1 | 17.6 |
University | 1706 | 15.3–17.6 | 15.2 | 11.4–12.9 | 13.5 |
Non-smokers | 16,244 | 12.8–14.3 | 11.4 | 7.4–8.2 | 10.6 |
Smokers | 7985 | 45.1–58.0 | 28.6 | 36.1–47.0 | 30.2 |
Non-physical activity | 15,045 | 31.8–36.5 | 14.8 | 21.7–28.2 | 29.8 |
Yes physical activity | 9184 | 9.8–12.4 | 26.3 | 5.6–6.4 | 14.4 |
Non-Mediterranean diet | 15,866 | 30.9–35.7 | 15.6 | 20.8–26.8 | 28.8 |
Yes Mediterranean diet | 8363 | 9.3–11.6 | 24.8 | 5.8–6.7 | 15.5 |
Non-alcohol consumption | 16,258 | 19.0–16.6 | 14.5 | 11.7–13.4 | 14.9 |
Yes alcohol consumption | 7971 | 32.5–44.3 | 36.4 | 24.6–32.6 | 32.5 |
ALLY HA High | ALLY VA High | ||||
---|---|---|---|---|---|
Women | n | % PRE-% POST | Difference (%) | % PRE-% POST | Difference (%) |
Social class I | 2128 | 6.1–6.7 | 10.0 | 4.9–5.5 | 11.2 |
Social class II | 5290 | 11.4–13.0 | 13.8 | 8.8–10.2 | 15.8 |
Social class III | 8784 | 20.3–24.1 | 18.6 | 16.0–19.2 | 20.2 |
Elementary school | 7836 | 20.6–24.5 | 19.0 | 15.7–19.0 | 21.0 |
High school | 6518 | 12.1–13.8 | 14.3 | 10.1–11.6 | 14.9 |
University | 1848 | 6.0–6.6 | 9.5 | 4.4–4.9 | 11.0 |
Non-smokers | 10,992 | 10.8–11.7 | 8.6 | 9.2–10.0 | 8.9 |
Smokers | 5210 | 25.5–30.7 | 20.4 | 19.2–24.4 | 27.2 |
Non-physical activity | 8327 | 25.7–31.6 | 22.9 | 19.8–25.1 | 26.6 |
Yes physical activity | 7875 | 4.7–5.1 | 7.7 | 3.0–3.3 | 10.3 |
Non-Mediterranean diet | 8632 | 24.9–30.3 | 21.8 | 19.1–24.0 | 25.8 |
Yes Mediterranean diet | 7570 | 4.8–5.2 | 8.6 | 3.2–3.6 | 11.7 |
Non-alcohol consumption | 13,707 | 10.3–11.4 | 10.2 | 7.0–7.8 | 10.4 |
Yes alcohol consumption | 2495 | 44.4–57.1 | 28.5 | 36.8–28.3 | 29.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero Muñoz, N.; Tárraga López, P.J.; López-González, Á.A.; Paublini, H.; Martorell Sánchez, C.; Marínez-Almoyna Rifá, E.; Ramírez-Manent, J.I. Association Between Mediterranean Diet and Other Healthy Habits and Sociodemographic Variables with the Values of Vascular and Heart Age in Spanish Workers. Nutrients 2025, 17, 903. https://doi.org/10.3390/nu17050903
Montero Muñoz N, Tárraga López PJ, López-González ÁA, Paublini H, Martorell Sánchez C, Marínez-Almoyna Rifá E, Ramírez-Manent JI. Association Between Mediterranean Diet and Other Healthy Habits and Sociodemographic Variables with the Values of Vascular and Heart Age in Spanish Workers. Nutrients. 2025; 17(5):903. https://doi.org/10.3390/nu17050903
Chicago/Turabian StyleMontero Muñoz, Natalia, Pedro Juan Tárraga López, Ángel Arturo López-González, Hernán Paublini, Cristina Martorell Sánchez, Emilio Marínez-Almoyna Rifá, and José Ignacio Ramírez-Manent. 2025. "Association Between Mediterranean Diet and Other Healthy Habits and Sociodemographic Variables with the Values of Vascular and Heart Age in Spanish Workers" Nutrients 17, no. 5: 903. https://doi.org/10.3390/nu17050903
APA StyleMontero Muñoz, N., Tárraga López, P. J., López-González, Á. A., Paublini, H., Martorell Sánchez, C., Marínez-Almoyna Rifá, E., & Ramírez-Manent, J. I. (2025). Association Between Mediterranean Diet and Other Healthy Habits and Sociodemographic Variables with the Values of Vascular and Heart Age in Spanish Workers. Nutrients, 17(5), 903. https://doi.org/10.3390/nu17050903