Nutrition and Physical Activity in an Interdisciplinary Approach to Migraine: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
3. Results
3.1. Pathophysiological Theories
3.2. Relationship Between DIET and MIG
| Study Design | Authors | Population | Intervention Modalities and Duration | Outcome Measures and Measurement Tools | Results |
|---|---|---|---|---|---|
| RCT | Evcili et al., 2018 [8] | 294,350 MIG patients > 18 years old | 3 months 147 patients: Low glycemic index diet 147 patients: pharmacological prophylaxis | Frequency and severity of attacks (using VAS) | Number of attacks per month: from 7.49 to 3.42 in diet group; from 7.53 to 2.74 in medication group VAS: from 8.46 to 1.23 in diet group; from 8.47 to 1.18 in medication group. |
| Cross-sectional study | Arab et al., 2021 [9] | 262 MIG patients (20–50 years old) | 10 weeks previous year: 168-item FFQ to assess the dietary intakes of participants. | Mediterranean diet score headache severity, duration and frequency MHIS HIT-6 | Headache frequency (β = −1.74, 95% CI: −3.53, 0.03) Headache duration (β = −0.28, 95% CI: −0.59, −0.02) MHIS (β = −29.32, 95% CI: −51.22, −7.42) HIT-6 score (β = −2.86, 95% CI: −5.40, −0.32) |
| Unblinded longitudinal interventional study | Altamura et al., 2020 [50] | 240 MIG patients > 18 years old | T-12 = screening T0 = educational intervention about the HEP T12 = follow-up | Anthropometric Dietary patterns (FFQ) Disability scales (MIDAS, MIDAS A, MIDAS B) HEP score MMDs Add-on to pharmaceutical therapy | BMI (−0.06) MIDAS A (T-12 = 18/T0 = 18/T12 = 15) HEP scores (T-12 = 3.5/T0 = 4.6/T12 = 4.33) Preventive therapies continued at the same dose until T12 in 74.6% of patients |
| RCT | Arab et al., 2022 [62] | 102 women (20–50 years old) | 12-week 51 women: DASH diet 51 women: usual dietary advice | 24-h food record VAS questionnaire Quality of life (HIT-6) Depression, Anxiety, and Stress Scales-21 questionnaire | Dash diet vs. control: Frequency (attacks/months) = −3.00 vs. –1.4 Duration (day/attack) = −0.58 vs. –0.33 Severity = −1.76 vs. –0.59 HIT-6 scores = −3.62 vs. –2.69 Score depression = −4.5 vs. 2.73 Anxiety score = −2.74 vs. –1.46 |
| Randomized Double-Blind, Cross-Over Trial | Di Lorenzo et al., 2019 [66] | 35 episodic MIG patients (18–65 years old) | T0 = 4-week screening (non-VLCD) T1 = 4-week nutritional intervention (VLCKD or VLCnKD) T2 = 4-week progressive return to a non-VLCD T3 = control visit at the end of the 2-week of “T1” T4 = control visit at the end of the 2-week of “T2” | Mean number of MIG days per month Mean number of MIG attacks per month Mean number of doses of acute medication monthly The 50% responder rate BMI | During the VLCKD patients experienced −3.73 MIG days and −3.02 attacks respect to VLCnKD. During the VLCKD phase, 74.28% of patients achieved a ≥50% reduction in monthly MIG days, compared to only 8.57% during the VLCnKD phase. No significant differences were observed between the two dietary interventions in terms of changes in acute anti-MIG medication use or BMI |
| RCT | Bond et al., 2017 [69] | 110 women with MIG (18–50 years old) | 16 weeks 54 women: BWL (EXE and diet) intervention 56 women: ME Follow up (32–36 weeks) | MIG headache days and severity (web-based headache diary APP) Headache disability HIT-6 Anthropometric characteristics | MIG days/months: BWL group –3 (4 weeks) and –3.8 (follow up) vs. ME group –4 (4 weeks) and –4.4 (follow-up) Pain intensity: BWL group –0.8 (4 weeks) and –1.5 (follow up) vs. ME group –1.0 (4 weeks) and –0.7 (follow-up) Attack duration (h): BWL group –1.6 (4 weeks) and –2.7 (follow up) vs. ME group –5 (4 weeks) and –2.2 (follow-up) HIT-6 score: BWL group –5.4 (4 weeks) and –5.7 (follow up) vs. ME group –4.4 (4 weeks) and –5.6 (follow-up) Weight loss (Kg): BWL group –3.8 (4 weeks) and –3.2 (follow up) vs. ME group +09 (4 weeks) and +1.1 (follow-up) |
| RCT | Evans et al., 2019 [70] | 110 women with MIG (18–50 years old) | 16 weeks 54 women: BWL (EXE and diet) intervention 56 women: ME Follow up (16–20 weeks) | MIG headache days and severity (web-based headache diary APP) Total energy intake Percent energy from fat Diet quality (total HEI-2010 scores) Weight loss | RCT |
3.3. Supplements and MIG
3.3.1. Vitamin D3
3.3.2. Omega-3 (or PUFA n-3)
3.3.3. Coenzyme Q10
3.3.4. Magnesium
3.3.5. Riboflavin
3.3.6. Alpha-Lipoic Acid
3.3.7. Folates
3.3.8. Probiotics
| Study Design | Authors | Population | Intervention Modalities and Duration | Outcome Measures and Measurement Tools | Results |
|---|---|---|---|---|---|
| RCT | Ramsden et al., 2021 [34] | 182 MIG patients (mean age 38 years) | 16 weeks H3 diet = EPA + DHA to 1.5 g/day and linoleic acid at 7% of energy H3-L6 diet = EPA + DHA to 1.5 g/day and linoleic acid to ≤1.8% of energy Control = EPA + DHA at <150 mg/day and linoleic acid at 7% of energy. | 17-HDHA in blood Daily Headache frequency (electronic diary) HIT-6 | The H3-L6 and H3 diets increased circulating 17-HDHA Total headache hours per day: −1.3 (H3) and –1.7 (H3–L6) HIT-6 score= −1.5 (H3) and –1.6 (H3–L6) The H3-L6 diet decreased headache days per month more than the H3 diet. The H3-L6 and H3 interventions did not significantly improve quality of life. |
| RCT | Gazerani et al., 2019 [73] | 48 MIG patients (18–65 years of age) | 24 weeks 24 patients: 100 μg/day D3-Vitamin 24 patients: placebo | MIG attack frequency, number of days and severity (self-reported diaries) Mig-related symptoms Quantitative sensory tests HIT-6 25(OH)D and 1.25(OH)2D serum levels | Attack frequency: from 3.00 to 1.29 (D3) Attack severity: from 2.16 to 1.87 (D3) Number of days with MIG: from 6.25 to 3.28 (D3) No significant changes were observed for symptoms, PPT and temporal summation HIT-6 score: from 63.25 to 53 (D3 group) 25(OH)D levels increased significantly for the D3-Vitamin group during the first 12 weeks of treatment |
| RCT | Dahri et al., 2017 [75] | 84 women with MIG (18–50 years) | 12 weeks 42 women: 400 mg/day CoQ10 42 women: placebo (P) (both with usual prophylactic drugs a month before) | MIG frequency/month MIG severity (VAS) MIG duration (hour) HIT-6 MIDAS MSQ | From 8.20 to 3.55 (Q10) and 6.47 to 3.76 (P) From 8.35 to 4.46 (Q10) and 7.11 to 4.97 (P) From 11.98 to 4.79 (Q10) and 10.80 to 6.72 (P) HIT-6 Score −12.51 (Q10) and –8.74 (P) MIDAS Score –16.39 (Q10) and –8.24 (P) MSQ role restrictive +39.78 (Q10) and +16.54 (P) MSQ role preventive +33.46 (Q10) and +11.31 (P) MSQ emotional functioning +35.21 (Q10) and +16.49 (P) The most significant effect of CoQ10 was a reduction in the duration of attacks. |
| RCT | Karimi et al., 2021 [78] | 70 MIG patients (18–65 years) | 2 sequences of 8 weeks G1: 500 mg magnesium oxide and then 400 mg valproate Na G2: 400 mg valproate Na and then 500 mg magnesium oxide (two tablets/day) | VAS HIT-6 Scores MIDAS scale Duration (h) MIG attacks/MONTHS number of MIG days | Both treatments resulted in a significant reduction in the frequency, duration, and intensity of MIG attacks and associated symptoms compared to baseline values, without showing statistically significant differences. |
| RCT | Rahimdel et al., 2015 [79] | 90 MIG patients (15–55 years) | 3 months G1: vitamin B2 treatments of 400 mg/day G2: 500 mg/day of Na valproate | Duration of MIG pain Frequency of MIG episodes Headache severity (VAS) | From about 15.1 ± 7.1 to 4.2 ± 2.6 hr/month (G1) and from 16.2 ± 10.6 to 8.2 ± 4.7 hr/month (G2) From 9.2 ± 6.2 to 2.4 ± 1.6 times/month (G1) and from 6.5 ± 3.1 to 2.1 ± 1 times/month (G2) Score decreased in 71.8% of G1 and 76.2% of G2 Both treatments were similarly effective, but vitamin B2 caused fewer side effects |
| RCT | Kelishadi et al., 2022 [82] | 92 women with MIG (20–50 years) | 12 weeks G1 (300 mg/day ALA) and G2 (placebo) twice per day | Headache severity (VAS) Frequency/month Duration of attacks HDR HIT-6 MHIS | Mean change: −3.59 (G1) and −0.70 (G2) Mean change: −2.55 (G1) and −0.40 (G2) Mean change: −19.49 (G1) and −15.37 (G2) Mean change: −158.79 (G1) and −38.63 (G2) Mean change: −20.09 (G1) and −2.83 (G2) Mean change: −65.32 (G1) and −0.33 (G2) The result on duration was similar in both. |
3.4. Relationship Between PA and MIG
3.5. Overview of Different PA Approaches Explored in MIG
3.6. Sedentariness and Avoidance of PA
3.7. Weight Loss Strategies: Obesity and MIG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MIG | Migraine |
| PA | Physical Activity |
| KD | Ketogenic diet |
| MD | Mediterranean diet |
| NH | Nutritional habits |
| EXE | Exercise |
| CGRP | Calcitonin Gene-Related Peptide |
| CSD | Cortical Spreading Depression |
| MIDAS | Migraine Disability Assessment score |
| MMDs | Monthly Migraine Days |
| BWL | Behavioral Weight Loss |
| ME | Migraine Education |
| FFQ | Food Frequency Questionnaire |
| 17-HDHA | Antinociceptive mediator 17-Hydroxydocosahexaenoic Acid |
| HIT-6 | Headache Impact Test |
| VAS | Visual Analog Scale |
| LCD | Low-Calorie Diet |
| VLCD | Very-Low-Calorie Diet |
| VLCKD | Very-Low-Calorie Ketogenic Diet |
| VLCnKD | Very-Low-Calorie non-Ketogenic Diet |
| MHIS | Migraine Headache Index Score |
| MSQ | Migraine Specific Quality of Life |
References
- Ferrari, M.D.; Goadsby, P.J.; Burstein, R.; Kurth, T.; Ayata, C.; Charles, A.; Ashina, M.; van den Maagdenberg, A.M.J.; Dodick, D.W. Migraine. Nat. Rev. Dis. Primers 2022, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd Edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef] [PubMed]
- Altay, H.; Celenay, S.T. An Investigation of the Relationship between Cutaneous Allodynia and Kinesiophobia, Gastrointestinal System Symptom Severity, Physical Activity and Disability in Individuals with Migraine. Korean J. Pain 2023, 36, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Domitrz, I.; Golicki, D. Health-Related Quality of Life in Migraine: EQ-5D-5L-Based Study in Routine Clinical Practice. J. Clin. Med. 2022, 11, 6925. [Google Scholar] [CrossRef]
- Ashina, M.; Katsarava, Z.; Do, T.P.; Buse, D.C.; Pozo-Rosich, P.; Özge, A.; Krymchantowski, A.V.; Lebedeva, E.R.; Ravishankar, K.; Yu, S.; et al. Migraine: Epidemiology and Systems of Care. Lancet 2021, 397, 1485–1495. [Google Scholar] [CrossRef]
- Tu, Y.-H.; Chang, C.-M.; Yang, C.-C.; Tsai, I.-J.; Chou, Y.-C.; Yang, C.-P. Dietary Patterns and Migraine: Insights and Impact. Nutrients 2025, 17, 669. [Google Scholar] [CrossRef]
- Bakırhan, H.; Yıldıran, H.; Uyar Cankay, T. Associations between Diet Quality, DASH and Mediterranean Dietary Patterns and Migraine Characteristics. Nutr. Neurosci. 2022, 25, 2324–2334. [Google Scholar] [CrossRef]
- Evcili, G. Early and Long Period Follow-up Results of Low-Glycemic Index Diet for Migraine Prophylaxis. Agri 2018, 30, 8–11. [Google Scholar] [CrossRef]
- Arab, A.; Khorvash, F.; Karimi, E.; Hadi, A.; Askari, G. Associations between Adherence to Mediterranean Dietary Pattern and Frequency, Duration, and Severity of Migraine Headache: A Cross-Sectional Study. Nutr. Neurosci. 2023, 26, 1–10. [Google Scholar] [CrossRef]
- Lelleck, V.V.; Schulz, F.; Witt, O.; Kühn, G.; Klein, D.; Gendolla, A.; Evers, S.; Gaul, C.; Thaçi, D.; Sina, C.; et al. A Digital Therapeutic Allowing a Personalized Low-Glycemic Nutrition for the Prophylaxis of Migraine: Real World Data from Two Prospective Studies. Nutrients 2022, 14, 2927. [Google Scholar] [CrossRef]
- Schröder, T.; Kühn, G.; Kordowski, A.; Jahromi, S.R.; Gendolla, A.; Evers, S.; Gaul, C.; Thaçi, D.; König, I.R.; Sina, C. A Digital Health Application Allowing a Personalized Low-Glycemic Nutrition for the Prophylaxis of Migraine: Proof-of-Concept Data from a Retrospective Cohort Study. J. Clin. Med. 2022, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
- Robbins, M.S. Diagnosis and Management of Headache: A Review. JAMA 2021, 325, 1874. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrodt, A.K.; Ashina, H.; Khan, S.; Diener, H.-C.; Mitsikostas, D.D.; Sinclair, A.J.; Pozo-Rosich, P.; Martelletti, P.; Ducros, A.; Lantéri-Minet, M.; et al. Diagnosis and Management of Migraine in Ten Steps. Nat. Rev. Neurol. 2021, 17, 501–514. [Google Scholar] [CrossRef] [PubMed]
- American Headache Society. The American Headache Society Position Statement on Integrating New Migraine Treatments into Clinical Practice. Headache 2019, 59, 1–18. [Google Scholar] [CrossRef]
- Seng, E.K.; Martin, P.R.; Houle, T.T. Lifestyle Factors and Migraine. Lancet Neurol. 2022, 21, 911–921. [Google Scholar] [CrossRef]
- Ashina, M.; Buse, D.C.; Ashina, H.; Pozo-Rosich, P.; Peres, M.F.P.; Lee, M.J.; Terwindt, G.M.; Halker Singh, R.; Tassorelli, C.; Do, T.P.; et al. Migraine: Integrated Approaches to Clinical Management and Emerging Treatments. Lancet 2021, 397, 1505–1518. [Google Scholar] [CrossRef]
- Agbetou, M.; Adoukonou, T. Lifestyle Modifications for Migraine Management. Front. Neurol. 2022, 13, 719467. [Google Scholar] [CrossRef]
- Robblee, J.; Starling, A.J. SEEDS for Success: Lifestyle Management in Migraine. Cleve Clin. J. Med. 2019, 86, 741–749. [Google Scholar] [CrossRef]
- Demarquay, G.; Mawet, J.; Guégan-Massardier, E.; De Gaalon, S.; Donnet, A.; Giraud, P.; Lantéri-Minet, M.; Lucas, C.; Moisset, X.; Roos, C.; et al. Revised Guidelines of the French Headache Society for the Diagnosis and Management of Migraine in Adults. Part 3: Non-Pharmacological Treatment. Rev. Neurol. 2021, 177, 753–759. [Google Scholar] [CrossRef]
- Schytz, H.W.; Amin, F.M.; Jensen, R.H.; Carlsen, L.; Maarbjerg, S.; Lund, N.; Aegidius, K.; Thomsen, L.L.; Bach, F.W.; Beier, D.; et al. Reference Programme: Diagnosis and Treatment of Headache Disorders and Facial Pain. Danish Headache Society, 3rd Edition, 2020. J. Headache Pain 2021, 22, 22. [Google Scholar] [CrossRef]
- Bendtsen, L.; Evers, S.; Linde, M.; Mitsikostas, D.D.; Sandrini, G.; Schoenen, J. EFNS Guideline on the Treatment of Tension-type Headache—Report of an EFNS Task Force. Euro J. Neurol. 2010, 17, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Asoom, L.I.A.; Sunni, A.A.; Rafique, N.; Latif, R.; Saif, S.A.; Almandil, N.B.; Almohazey, D.; AbdulAzeez, S.; Borgio, J.F. Genetics, Pathophysiology, Diagnosis, Treatment, Management, and Prevention of Migraine. Biomed. Pharmacother. 2021, 139, 111557. [Google Scholar] [CrossRef] [PubMed]
- Edvinsson, J.C.; Reducha, P.V.; Sheykhzade, M.; Warfvinge, K.; Haanes, K.A.; Edvinsson, L. Neurokinins and Their Receptors in the Rat Trigeminal System: Differential Localization and Release with Implications for Migraine Pain. Mol. Pain 2021, 17, 17448069211059400. [Google Scholar] [CrossRef]
- Fila, M.; Chojnacki, C.; Chojnacki, J.; Blasiak, J. Nutrients to Improve Mitochondrial Function to Reduce Brain Energy Deficit and Oxidative Stress in Migraine. Nutrients 2021, 13, 4433. [Google Scholar] [CrossRef]
- Musubire, A.K.; Cheema, S.; Ray, J.C.; Hutton, E.J.; Matharu, M. Cytokines in Primary Headache Disorders: A Systematic Review and Meta-Analysis. J. Headache Pain 2023, 24, 36. [Google Scholar] [CrossRef]
- Greco, R.; Demartini, C.; Zanaboni, A.M.; Tumelero, E.; Icco, R.D.; Sances, G.; Allena, M.; Tassorelli, C. Peripheral Changes of Endocannabinoid System Components in Episodic and Chronic Migraine Patients: A Pilot Study. Cephalalgia 2021, 41, 185–196. [Google Scholar] [CrossRef]
- Greco, R.; Demartini, C.; Zanaboni, A.M.; Piomelli, D.; Tassorelli, C. Endocannabinoid System and Migraine Pain: An Update. Front. Neurosci. 2018, 12, 172. [Google Scholar] [CrossRef]
- Nisar, A.; Ahmed, Z.; Yuan, H. Novel Therapeutic Targets for Migraine. Biomedicines 2023, 11, 569. [Google Scholar] [CrossRef]
- Bonifácio De Assis, E.; Dias De Carvalho, C.; Martins, C.; Andrade, S. Beta-Endorphin as a Biomarker in the Treatment of Chronic Pain with Non-Invasive Brain Stimulation: A Systematic Scoping Review. J. Pain Res. 2021, 14, 2191–2200. [Google Scholar] [CrossRef]
- Alqahtani, N.S.; Zaroog, M.S.; Albow, B.M.A. Dietary Inflammatory Potential and Severe Headache or Migraine: A Systematic Review of Observational Studies. Nutr. Neurosci. 2025, 28, 532–540. [Google Scholar] [CrossRef]
- McCain, C.R.; Parrish, M.H.; Melikov, P.; Rosamond, W.D.; Sengupta, S.; Spinale, F.; Trivedi, T.; Wood, S.; Sen, S. Introducing a risk score for predicting ischemic stroke in migraine with or without visual aura. Cephalalgia 2025, 45, 3331024251388094. [Google Scholar] [CrossRef]
- National Headache Foundation. Anti-Inflammatory Diet. Available online: https://headaches.org/resources/anti-inflammatory-diet/ (accessed on 27 May 2025).
- Ramsden, C.E.; Zamora, D.; Faurot, K.R.; MacIntosh, B.; Horowitz, M.; Keyes, G.S.; Yuan, Z.-X.; Miller, V.; Lynch, C.; Honvoh, G.; et al. Dietary Alteration of N-3 and n-6 Fatty Acids for Headache Reduction in Adults with Migraine: Randomized Controlled Trial. BMJ 2021, 374, n1448. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.-T.; Zeng, B.-Y.; Chen, J.-J.; Kuo, C.-H.; Zeng, B.-S.; Kuo, J.S.; Cheng, Y.-S.; Sun, C.-K.; Wu, Y.-C.; Tu, Y.-K.; et al. High Dosage Omega-3 Fatty Acids Outperform Existing Pharmacological Options for Migraine Prophylaxis: A Network Meta-Analysis. Adv. Nutr. 2024, 15, 100163. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-B.; Yang, C.-C.; Tsai, I.-J.; Yang, H.-W.; Hsu, Y.-C.; Chang, C.-M.; Yang, C.-P. Neuroimmunological Effects of Omega-3 Fatty Acids on Migraine: A Review. Front. Neurol. 2024, 15, 1366372. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P. Migraine and Diet. Nutrients 2020, 12, 1658. [Google Scholar] [CrossRef]
- Santos, L. The Impact of Nutrition and Lifestyle Modification on Health. Eur. J. Intern. Med. 2022, 97, 18–25. [Google Scholar] [CrossRef]
- Nguyen, K.V.; Schytz, H.W. The Evidence for Diet as a Treatment in Migraine—A Review. Nutrients 2024, 16, 3415. [Google Scholar] [CrossRef]
- Pietrzak, D.; Kasperek, K.; Rękawek, P.; Piątkowska-Chmiel, I. The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022, 14, 1952. [Google Scholar] [CrossRef]
- Razeghi Jahromi, S.; Ghorbani, Z.; Martelletti, P.; Lampl, C.; Togha, M. School of Advanced Studies of the European Headache Federation (EHF-SAS). Association of Diet and Headache. J. Headache Pain 2019, 20, 106. [Google Scholar]
- Caminha, M.C.; Moreira, A.B.; Matheus, F.C.; Rieger, D.K.; Moreira, J.D.; Dalmarco, E.M.; Demarchi, I.G.; Lin, K. Efficacy and Tolerability of the Ketogenic Diet and Its Variations for Preventing Migraine in Adolescents and Adults: A Systematic Review. Nutr. Rev. 2022, 80, 1634–1647. [Google Scholar]
- Neri, L.D.C.L.; Ferraris, C.; Catalano, G.; Guglielmetti, M.; Pasca, L.; Pezzotti, E.; Carpani, A.; Tagliabue, A. Ketosis and Migraine: A Systematic Review of the Literature and Meta-Analysis. Front. Nutr. 2023, 10, 1204700. [Google Scholar] [CrossRef] [PubMed]
- Behrouz, V.; Hakimi, E.; Mir, E. Impact of Dietary Patterns on Migraine Management: Mechanisms of Action and Recent Literature Insights. Brain Behav. 2025, 15, e70652. [Google Scholar] [CrossRef] [PubMed]
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol. 2020, 11, 604179. [Google Scholar] [CrossRef]
- Guo, R.; Chen, L.-H.; Xing, C.; Liu, T. Pain Regulation by Gut Microbiota: Molecular Mechanisms and Therapeutic Potential. Br. J. Anaesth. 2019, 123, 637–654. [Google Scholar] [CrossRef]
- American Migraine Foundation. Migraine and Diet. Available online: https://americanmigrainefoundation.org/resource-library/migraine-and-diet/ (accessed on 27 May 2025).
- Gazerani, P. Diet and Migraine: What Is Proven? Curr. Opin. Neurol. 2023, 36, 615–621. [Google Scholar] [CrossRef]
- The Nutrition Source 2012. Healthy Eating Plate. Available online: https://nutritionsource.hsph.harvard.edu/healthy-eating-plate/ (accessed on 27 May 2025).
- Altamura, C.; Cecchi, G.; Bravo, M.; Brunelli, N.; Laudisio, A.; Di Caprio, P.; Botti, G.; Paolucci, M.; Khazrai, Y.M.; Vernieri, F. The Healthy Eating Plate Advice for Migraine Prevention: An Interventional Study. Nutrients 2020, 12, 1579. [Google Scholar] [CrossRef]
- Hajjarzadeh, S.; Mahdavi, R.; Shalilahmadi, D.; Nikniaz, Z. The Association of Dietary Patterns with Migraine Attack Frequency in Migrainous Women. Nutr. Neurosci. 2020, 23, 724–730. [Google Scholar] [CrossRef]
- Nas, A.; Mirza, N.; Hägele, F.; Kahlhöfer, J.; Keller, J.; Rising, R.; Kufer, T.A.; Bosy-Westphal, A. Impact of Breakfast Skipping Compared with Dinner Skipping on Regulation of Energy Balance and Metabolic Risk. Am. J. Clin. Nutr. 2017, 105, 1351–1361. [Google Scholar] [CrossRef]
- Khorsha, F.; Mirzababaei, A.; Togha, M.; Mirzaei, K. Association of Drinking Water and Migraine Headache Severity. J. Clin. Neurosci. 2020, 77, 81–84. [Google Scholar] [CrossRef]
- Hindiyeh, N.A.; Zhang, N.; Farrar, M.; Banerjee, P.; Lombard, L.; Aurora, S.K. The Role of Diet and Nutrition in Migraine Triggers and Treatment: A Systematic Literature Review. Headache 2020, 60, 1300–1316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yin, J.; Li, J.; Sun, H.; Liu, Y.; Yang, J. Association between Dietary Caffeine Intake and Severe Headache or Migraine in US Adults. Sci. Rep. 2023, 13, 10220. [Google Scholar] [CrossRef] [PubMed]
- Mostofsky, E.; Mittleman, M.A.; Buettner, C.; Li, W.; Bertisch, S.M. Prospective Cohort Study of Caffeinated Beverage Intake as a Potential Trigger of Headaches among Migraineurs. Am. J. Med. 2019, 132, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Mostofsky, E.; Bertisch, S.M.; Vgontzas, A.; Buettner, C.; Li, W.; Rueschman, M.; Mittleman, M.A. Prospective Cohort Study of Daily Alcoholic Beverage Intake as a Potential Trigger of Headaches among Adults with Episodic Migraine. Ann. Med. 2020, 52, 386–392. [Google Scholar] [CrossRef]
- Martami, F.; Togha, M.; Qorbani, M.; Shahamati, D.; Salami, Z.; Shab-Bidar, S. Association of Dietary Patterns with Migraine: A Matched Case-Control Study. Curr. J. Neurol. 2023, 22, 87–95. [Google Scholar] [CrossRef]
- Anti Inflammation Diet and Migraine. National Headache Foundation. Available online: https://headaches.org/heads-up-episode-102-anti-inflammation-diet-and-migraine/ (accessed on 27 May 2025).
- Zhang, Z.; Chen, X.; Fang, H.; Ye, J.; Tang, X.; Huang, R. Association between the Composite Dietary Antioxidant Index and Severe Headache or Migraine: Results from the National Health and Nutrition Examination Survey. Front. Neurol. 2024, 15, 1407243. [Google Scholar] [CrossRef]
- Altamura, C.; Botti, G.; Paolucci, M.; Brunelli, N.; Cecchi, G.; Khazrai, M.; Vernieri, F. Promoting Healthy Eating Can Help Preventing Migraine: A Real-Life Preliminary Study. Neurol. Sci. 2018, 39, 155–156. [Google Scholar] [CrossRef]
- Arab, A.; Khorvash, F.; Kazemi, M.; Heidari, Z.; Askari, G. Effects of the Dietary Approaches to Stop Hypertension (DASH) Diet on Clinical, Quality of Life and Mental Health Outcomes in Women with Migraine: A Randomised Controlled Trial. Br. J. Nutr. 2022, 128, 1535–1544. [Google Scholar] [CrossRef]
- Obayashi, Y.; Nagamura, Y. Does Monosodium Glutamate Really Cause Headache?: A Systematic Review of Human Studies. J. Headache Pain 2016, 17, 54. [Google Scholar] [CrossRef]
- Brown, R.B. Sodium Chloride, Migraine and Salt Withdrawal: Controversy and Insights. Med. Sci. 2021, 9, 67. [Google Scholar] [CrossRef]
- Barbanti, P.; Fofi, L.; Aurilia, C.; Egeo, G.; Caprio, M. Ketogenic Diet in Migraine: Rationale, Findings and Perspectives. Neurol. Sci. 2017, 38, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Pinto, A.; Ienca, R.; Coppola, G.; Sirianni, G.; Di Lorenzo, G.; Parisi, V.; Serrao, M.; Spagnoli, A.; Vestri, A.; et al. A Randomized Double-Blind, Cross-Over Trial of Very Low-Calorie Diet in Overweight Migraine Patients: A Possible Role for Ketones? Nutrients 2019, 11, 1742. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Coppola, G.; Bracaglia, M.; Di Lenola, D.; Evangelista, M.; Sirianni, G.; Rossi, P.; Di Lorenzo, G.; Serrao, M.; Parisi, V.; et al. Cortical Functional Correlates of Responsiveness to Short-Lasting Preventive Intervention with Ketogenic Diet in Migraine: A Multimodal Evoked Potentials Study. J. Headache Pain 2016, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Caprio, M.; Moriconi, E.; Camajani, E.; Feraco, A.; Marzolla, V.; Vitiello, L.; Proietti, S.; Armani, A.; Gorini, S.; Mammi, C.; et al. Very-Low-Calorie Ketogenic Diet vs Hypocaloric Balanced Diet in the Prevention of High-Frequency Episodic Migraine: The EMIKETO Randomized, Controlled Trial. J. Transl. Med. 2023, 21, 692. [Google Scholar] [CrossRef]
- Bond, D.; Thomas, G.; O’Leary, K.; Lipton, R.B.; Peterlin, B.L.; Roth, J.; Rathier, L.; Wing, R.R. Objectively measured physical activity in obese women with and without migraine. Cephalalgia 2015, 35, 886–893. [Google Scholar] [CrossRef]
- Evans, W.E.; Raynor, H.A.; Howie, W.; Lipton, R.B.; Thomas, G.J.; Wing, R.R.; Pavlovic, J.; Farris, S.G.; Bond, D.S. Associations between Lifestyle Intervention-related Changes in Dietary Targets and Migraine Headaches among Women in the Women’s Health and Migraine (WHAM) Randomized Controlled Trial. Obes. Sci. Pract. 2020, 6, 119–125. [Google Scholar] [CrossRef]
- Talandashti, M.K.; Shahinfar, H.; Delgarm, P.; Jazayeri, S. Effects of Selected Dietary Supplements on Migraine Prophylaxis: A Systematic Review and Dose–Response Meta-Analysis of Randomized Controlled Trials. Neurol. Sci. 2025, 46, 651–670. [Google Scholar] [CrossRef]
- Ghorbani, Z.; Togha, M.; Rafiee, P.; Ahmadi, Z.S.; Rasekh Magham, R.; Haghighi, S.; Razeghi Jahromi, S.; Mahmoudi, M. Vitamin D in Migraine Headache: A Comprehensive Review on Literature. Neurol. Sci. 2019, 40, 2459–2477. [Google Scholar] [CrossRef]
- Gazerani, P.; Fuglsang, R.; Pedersen, J.G.; Sørensen, J.; Kjeldsen, J.L.; Yassin, H.; Nedergaard, B.S. A Randomized, Double-Blinded, Placebo-Controlled, Parallel Trial of Vitamin D3 Supplementation in Adult Patients with Migraine. Curr. Med. Res. Opin. 2019, 35, 715–723. [Google Scholar] [CrossRef]
- Soveyd, N.; Abdolahi, M.; Djalali, M.; Hatami, M.; Tafakhori, A.; Sarraf, P.; Honarvar, N.M. The Combined Effects of ω -3 Fatty Acids and Nano-Curcumin Supplementation on Intercellular Adhesion Molecule-1 (ICAM-1) Gene Expression and Serum Levels in Migraine Patients. CNS Neurol. Disord. Drug Targets 2018, 16, 1120–1126. [Google Scholar] [CrossRef]
- Dahri, M.; Hashemilar, M.; Asghari-Jafarabadi, M.; Tarighat-Esfanjani, A. Efficacy of Coenzyme Q10 for the Prevention of Migraine in Women: A Randomized, Double-Blind, Placebo-Controlled Study. Eur. J. Integr. Med. 2017, 16, 8–14. [Google Scholar] [CrossRef]
- Domitrz, I.; Cegielska, J. Magnesium as an Important Factor in the Pathogenesis and Treatment of Migraine—From Theory to Practice. Nutrients 2022, 14, 1089. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.; Veronese, N.; Sabico, S.; Al-Daghri, N.; Barbagallo, M. Magnesium and Migraine. Nutrients 2025, 17, 725. [Google Scholar] [CrossRef] [PubMed]
- Karimi, N.; Razian, A.; Heidari, M. The Efficacy of Magnesium Oxide and Sodium Valproate in Prevention of Migraine Headache: A Randomized, Controlled, Double-Blind, Crossover Study. Acta Neurol. Belg. 2021, 121, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Rahimdel, A.; Zeinali, A.; Yazdian-anari, P. Effectiveness of Vitamin B2 versus Sodium Valproate in Migraine Prophylaxis: A Randomized Clinical Trial. Electron. Physician 2015, 7, 1344–1348. [Google Scholar]
- Li, H.; Krall, J.R.; Frankenfeld, C.; Slavin, M. Nutritional Intake of Riboflavin (Vitamin B2) and Migraine: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey (NHANES) 2001–2004. Nutr. Neurosci. 2023, 26, 1068–1077. [Google Scholar] [CrossRef]
- Rezaei Kelishadi, M.; Alavi Naeini, A.; Askari, G.; Khorvash, F.; Heidari, Z. The Efficacy of Alpha-lipoic Acid in Improving Oxidative, Inflammatory, and Mood Status in Women with Episodic Migraine in a Randomised, Double-blind, Placebo-controlled Clinical Trial. Int. J. Clin. Pract. 2021, 75, e14455. [Google Scholar] [CrossRef]
- Kelishadi, M.R.; Naeini, A.A.; Khorvash, F.; Askari, G.; Heidari, Z. The Beneficial Effect of Alpha-Lipoic Acid Supplementation as a Potential Adjunct Treatment in Episodic Migraines. Sci. Rep. 2022, 12, 271. [Google Scholar] [CrossRef]
- Huang, L.; Chen, P.; Ouyang, Q.-R.; Xu, L.; Li, L.; Ming, Y. Association between Serum Folate Levels and Migraine or Severe Headaches: A Nationwide Cross-Sectional Study. Medicine 2024, 103, e40458. [Google Scholar]
- Arzani, M.; Jahromi, S.R.; Ghorbani, Z.; Vahabizad, F.; Martelletti, P.; Ghaemi, A.; Sacco, S.; Togha, M.; on behalf of the School of Advanced Studies of the European Headache Federation (EHF-SAS). Gut-Brain Axis and Migraine Headache: A Comprehensive Review. J. Headache Pain 2020, 21, 15. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- La Touche, R.; De Oliveira, A.B.; Paris-Alemany, A.; Reina-Varona, Á. Incorporating Therapeutic Education and Exercise in Migraine Management: A Biobehavioral Approach. J. Clin. Med. 2024, 13, 6273. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.B.D.; Mercante, J.P.P.; Peres, M.F.P.; Molina, M.D.C.B.; Lotufo, P.A.; Benseñor, I.M.; Goulart, A.C. Physical Inactivity and Headache Disorders: Cross-Sectional Analysis in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cephalalgia 2021, 41, 1467–1485. [Google Scholar] [CrossRef] [PubMed]
- Denche-Zamorano, Á.; Paredes-Mateos, V.; Pastor-Cisneros, R.; Carlos-Vivas, J.; Contreras-Barraza, N.; Iturra-Gonzalez, J.A.; Mendoza-Muñoz, M. Physical Activity Level, Depression, Anxiety, and Self-Perceived Health in Spanish Adults with Migraine: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 13882. [Google Scholar] [CrossRef] [PubMed]
- Hagen, K.; Åsberg, A.N.; Stovner, L.; Linde, M.; Zwart, J.-A.; Winsvold, B.S.; Heuch, I. Lifestyle Factors and Risk of Migraine and Tension-Type Headache. Follow-up Data from the Nord-Trøndelag Health Surveys 1995–1997 and 2006–2008. Cephalalgia 2018, 38, 1919–1926. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Peres, M.F.P.; Mercante, J.P.P.; Molina, M.D.C.B.; Lotufo, P.A.; Benseñor, I.M.; Goulart, A.C. Physical Activity Pattern and Migraine According to Aura Symptoms in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) Cohort: A Cross-sectional Study. Headache 2022, 62, 977–988. [Google Scholar] [CrossRef]
- Master, H.; Annis, J.; Huang, S.; Beckman, J.A.; Ratsimbazafy, F.; Marginean, K.; Carroll, R.; Natarajan, K.; Harrell, F.E.; Roden, D.M.; et al. Association of Step Counts over Time with the Risk of Chronic Disease in the All of Us Research Program. Nat. Med. 2022, 28, 2301–2308. [Google Scholar] [CrossRef]
- Hagen, K.; Wisløff, U.; Ellingsen, Ø.; Stovner, L.J.; Linde, M. Headache and Peak Oxygen Uptake: The HUNT3 Study. Cephalalgia 2016, 36, 437–444. [Google Scholar] [CrossRef]
- Leale, I.; Di Stefano, V.; Torrente, A.; Alonge, P.; Monastero, R.; Roccella, M.; Brighina, F.; Giustino, V.; Battaglia, G. Telecoaching and Migraine: Digital Approach to Physical Activity in Migraine Management. A Scoping Review. J. Clin. Med. 2025, 14, 861. [Google Scholar] [CrossRef]
- Farris, S.G.; Thomas, J.G.; Abrantes, A.M.; Godley, F.A.; Roth, J.L.; Lipton, R.B.; Pavlovic, J.; Bond, D.S. Intentional Avoidance of Physical Activity in Women with Migraine. Cephalalgia Rep. 2018, 1, 2515816318788284. [Google Scholar] [CrossRef]
- Farris, S.G.; Thomas, J.G.; Abrantes, A.M.; Lipton, R.B.; Burr, E.K.; Godley, F.A.; Roth, J.L.; Pavlovic, J.M.; Bond, D.S. Anxiety Sensitivity and Intentional Avoidance of Physical Activity in Women with Probable Migraine. Cephalalgia 2019, 39, 1465–1469. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Woldeamanuel, Y.W.; Oliveira, A.B.D. What Is the Efficacy of Aerobic Exercise versus Strength Training in the Treatment of Migraine? A Systematic Review and Network Meta-Analysis of Clinical Trials. J. Headache Pain 2022, 23, 134. [Google Scholar] [CrossRef] [PubMed]
- Ashina, M. Targeting Enkephalins and Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Migraine. Brain 2022, 145, 2619–2620. [Google Scholar] [CrossRef]
- Hanssen, H.; Minghetti, A.; Magon, S.; Rossmeissl, A.; Papadopoulou, A.; Klenk, C.; Schmidt-Trucksäss, A.; Faude, O.; Zahner, L.; Sprenger, T.; et al. Superior Effects of High-Intensity Interval Training vs. Moderate Continuous Training on Arterial Stiffness in Episodic Migraine: A Randomized Controlled Trial. Front. Physiol. 2017, 8, 1086. [Google Scholar] [CrossRef]
- Chow, L.S.; Gerszten, R.E.; Taylor, J.M.; Pedersen, B.K.; Van Praag, H.; Trappe, S.; Febbraio, M.A.; Galis, Z.S.; Gao, Y.; Haus, J.M.; et al. Exerkines in Health, Resilience and Disease. Nat. Rev. Endocrinol. 2022, 18, 273–289. [Google Scholar] [CrossRef]
- Krøll, L.S.; Hammarlund, C.S.; Linde, M.; Gard, G.; Jensen, R.H. The Effects of Aerobic Exercise for Persons with Migraine and Co-Existing Tension-Type Headache and Neck Pain. A Randomized, Controlled, Clinical Trial. Cephalalgia 2018, 38, 1805–1816. [Google Scholar] [CrossRef]
- La Touche, R.; Fierro-Marrero, J.; Sánchez-Ruíz, I.; Rodríguez De Rivera-Romero, B.; Cabrera-López, C.D.; Lerma-Lara, S.; Requejo-Salinas, N.; De Asís-Fernández, F.; Elizagaray-García, I.; Fernández-Carnero, J.; et al. Prescription of Therapeutic Exercise in Migraine, an Evidence-Based Clinical Practice Guideline. J. Headache Pain 2023, 24, 68. [Google Scholar] [CrossRef]
- Reina-Varona, Á.; Madroñero-Miguel, B.; Gaul, C.; Hall, T.; Oliveira, A.B.; Bond, D.S.; Fernández-de Las Peñas, C.; Florencio, L.L.; Carvalho, G.F.; Luedtke, K.; et al. Therapeutic Exercise Parameters, Considerations, and Recommendations for Migraine Treatment: An International Delphi Study. Phys. Ther. 2023, 103, pzad080. [Google Scholar] [CrossRef]
- Reina-Varona, Á.; Madroñero-Miguel, B.; Fierro-Marrero, J.; Paris-Alemany, A.; La Touche, R. Efficacy of Various Exercise Interventions for Migraine Treatment: A Systematic Review and Network Meta-analysis. Headache 2024, 64, 873–900. [Google Scholar] [CrossRef]
- Wanjau, M.N.; Möller, H.; Haigh, F.; Milat, A.; Hayek, R.; Lucas, P.; Veerman, J.L. Physical Activity and Depression and Anxiety Disorders: A Systematic Review of Reviews and Assessment of Causality. AJPM Focus. 2023, 2, 100074. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.G.; Bond, D.S.; Bentley, J.P.; Smitherman, T.A. Objectively Measured Physical Activity in Migraine as a Function of Headache Activity. Headache 2020, 60, 1930–1938. [Google Scholar] [CrossRef] [PubMed]
- Benatto, M.T.; Bevilaqua-Grossi, D.; Carvalho, G.F.; Bragatto, M.M.; Pinheiro, C.F.; Straceri Lodovichi, S.; Dach, F.; Fernández-de-las-Peñas, C.; Florencio, L.L. Kinesiophobia Is Associated with Migraine. Pain Med. 2019, 20, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Martami, F.; Jayedi, A.; Shab-Bidar, S. Primary Headache Disorders and Body Mass Index Categories: A Systematic Review and Dose–Response Meta-analysis. Headache 2022, 62, 801–810. [Google Scholar] [CrossRef]
- Rivera-Mancilla, E.; Al-Hassany, L.; Villalón, C.M.; MaassenVanDenBrink, A. Metabolic Aspects of Migraine: Association With Obesity and Diabetes Mellitus. Front. Neurol. 2021, 12, 686398. [Google Scholar] [CrossRef]
- Marics, B.; Peitl, B.; Varga, A.; Pázmándi, K.; Bácsi, A.; Németh, J.; Szilvássy, Z.; Jancsó, G.; Dux, M. Diet-Induced Obesity Alters Dural CGRP Release and Potentiates TRPA1-Mediated Trigeminovascular Responses. Cephalalgia 2017, 37, 581–591. [Google Scholar] [CrossRef]
- Cervoni, C.; Bond, D.S.; Seng, E.K. Behavioral Weight Loss Treatments for Individuals with Migraine and Obesity. Curr. Pain Headache Rep. 2016, 20, 13. [Google Scholar] [CrossRef]
- Bond, D.S.; Thomas, J.G.; Lipton, R.B.; Roth, J.; Pavlovic, J.M.; Rathier, L.; O’Leary, K.C.; Evans, E.W.; Wing, R.R. Behavioral Weight Loss Intervention for Migraine: A Randomized Controlled Trial. Obesity 2018, 26, 81–87. [Google Scholar] [CrossRef]
- Di Vincenzo, A.; Beghetto, M.; Vettor, R.; Tana, C.; Rossato, M.; Bond, D.S.; Pagano, C. Effects of Surgical and Non-Surgical Weight Loss on Migraine Headache: A Systematic Review and Meta-Analysis. Obes. Surg. 2020, 30, 2173–2185. [Google Scholar] [CrossRef]
- Hatami, M.; Soveid, N.; Lesani, A.; Djafarian, K.; Shab-Bidar, S. Migraine and Obesity: Is There a Relationship? A Systematic Review and Meta-Analysis of Observational Studies. CNS Neurol. Disord. Drug Targets 2021, 20, 863–870. [Google Scholar] [CrossRef]
- Zhuang, C.; Mao, J.; Ye, H.; He, J.; Hu, Y.; Hu, H.; Zheng, Y. Association between Severe Headache or Migraine and Lipid Accumulation Product and Visceral Adiposity Index in Adults: A Cross-Sectional Study from NHANES. Lipids Health Dis. 2024, 23, 307. [Google Scholar] [CrossRef]
- Jin, J.; Zheng, Y.; Gao, T.; Lin, X.; Li, S.; Huang, C. Associations between the Waist-to-Height Ratio Index and Migraine: A Cross-Section Study of the NHANES 1999–2004. PLoS ONE 2024, 19, e0312321. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, S.R.; Martami, F.; Morad Soltani, K.; Togha, M. Migraine and Obesity: What Is the Real Direction of Their Association? Expert. Rev. Neurother. 2023, 23, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Meal Planning Toolkit. Available online: https://americanmigrainefoundation.org/wp-content/uploads/2024/09/2203_AMF_Meal_Planning_Toolkit_V4_Digital.pdf (accessed on 22 January 2025).
- Cavallo, M.; Morgana, G.; Dozzani, I.; Gatti, A.; Vandoni, M.; Pippi, R.; Pucci, G.; Vaudo, G.; Fanelli, C.G. Unraveling Barriers to a Healthy Lifestyle: Understanding Barriers to Diet and Physical Activity in Patients with Chronic Non-Communicable Diseases. Nutrients 2023, 15, 3473. [Google Scholar] [CrossRef] [PubMed]
- Reina-Varona, Á.; Madroñero-Miguel, B.; Paris-Alemany, A.; La Touche, R. Perceived Fear and Exercise Difficulty in Patients with Migraine and Their Association with Psychosocial Factors: A Cross-Sectional Study. PeerJ 2025, 13, e19342. [Google Scholar] [CrossRef]
- Vandoni, M.; Codella, R.; Pippi, R.; Carnevale Pellino, V.; Lovecchio, N.; Marin, L.; Silvestri, D.; Gatti, A.; Magenes, V.C.; Regalbuto, C.; et al. Combatting Sedentary Behaviors by Delivering Remote Physical Exercise in Children and Adolescents with Obesity in the COVID-19 Era: A Narrative Review. Nutrients 2021, 13, 4459. [Google Scholar] [CrossRef]
- Martin, P.R.; Reece, J.; MacKenzie, S.; Bandarian-Balooch, S.; Brunelli, A.; Goadsby, P.J. Integrating headache trigger management strategies into cognitive-behavioral therapy: A randomized controlled trial. Health Psychol. 2021, 40, 674–685. [Google Scholar] [CrossRef]
- Burnet, K.; Kelsch, E.; Zieff, G.; Moore, J.B.; Stoner, L. How Fitting Is F.I.T.T.?: A Perspective on a Transition from the Sole Use of Frequency, Intensity, Time, and Type in Exercise Prescription. Physiol. Behav. 2019, 199, 33–34. [Google Scholar] [CrossRef]
- Jantzen, F.T.; Chaudhry, B.A.; Younis, S.; Nørgaard, I.; Cullum, C.K.; Do, T.P.; Beier, D.; Amin, F.M. Average Steps per Day as Marker of Treatment Response with Anti-CGRP mAbs in Adults with Chronic Migraine: A Pilot Study. Sci. Rep. 2024, 14, 18068. [Google Scholar] [CrossRef]


| Study Design | Authors | Population | Intervention Modalities and Duration | Outcome Measures and Measurement Tools | Results |
|---|---|---|---|---|---|
| Prospective multicenter cohort study | Oliveira AB et al. (2021) [87] | 15,105 civil servants (35 and 74 years) | Workplace-based interviews and clinic visits for biochemical sampling and assessments. | Pain frequency, duration, quality, location, intensity, triggering factors, and accompanying symptoms. Commuting (CPA) and leisure-time (LTPA) physical activity. Questionnaires were used. | Regression models for the LTPA domain showed increased odds ratio (95% CI) for MIG (OR: 1.37 [1.16–1.61], p < 0.001 in the “inactive” level. MIG subtypes were also associated with “somewhat active” (OR: 1.27 [1.02–1.56], p < 0.05) |
| Cross-sectional study | Denche-Zamorano et al. (2022) [88] | 17,139 of which 1972 MIG urs (18 and 70 years) | Interviewers between October 2016 and October 2017. | Physical activity level (PAL). Self-perceived health (SPH). Questionnaires were used. | MIG prevalence was lowest among individuals with a very active physical activity level (7.5%), and only 49.8% of those with MIG reported a positive perception of their health. |
| Population-based historical cohort study | Hagen et al. (2018) [89] | 15,276 participants without headache | Survey in the HUNT population of 1995–1997 and 2006–2008. | Relationship between baseline lifestyle factors and risk of headaches 11 years later. | Hard physical EXE for 1 to 2 h per week reduces MIG risk (OR 0.71, 95% CI 0.54–0.94), while smokers have a higher risk (RR 1.30, 95% CI 1.11–1.52). |
| RCT | Hanssen et al. (2017) [99] | 48 people with MIG | three groups: high intensity aerobic interval training group (HIT); moderate continuous aerobic training group (MCT); control group (CON). Twice a week, 12 weeks. | Effect of exercise training on pulse wave reflection. Arterial Stiffness, using an oscillometric device; Migraine Days; VO2 max | Stiffness :moderate effects in HIT [pre: 22.0 (9.7), post: 14.9 (13.0), SMD = 0.62]; MIG Days: very large effects in HIT [pre: 3.8 (3.0), post: 1.4 (1.2), SMD = 1.05]. VO2 max: moderate effects in favor of HIT [(ml/min/kg) pre: 36.8 (5.2), post: 41.3 (8.3), SMD = −0.65] |
| RCT | Krøll et al. (2018) [101] | 70 with MIG, tension-type headache, neck pain. | Diagnosed by a neurologist plus physical examination by an experienced physiotherapist. Two groups: EXE group and control group. From January 2013 to July 2015. | Headache characteristics with a diary. Level of physical activity (IPAQ), Well-being (WHO-5), MIG impact (Impact M-TTH-NP), through questionnaires. VO2 max, using Åstrand’s submaximal bicycle test. | Significant reduction was found in the EXE group for MIG frequency (31%; p = 0.19), pain intensity (p = 0.005), and duration (p = 0.045). The EXE group significantly improved their physical fitness (p = 0.014) and well-being (p < 0.001). |
| Authors and Study Design | Type of EXE | Intensity of EXE | Duration of EXE | Frequency/Week of EXE | Results |
|---|---|---|---|---|---|
| Woldeamanuel & Oliveira [97], systematic review | Strength/resistance training | From 45–60% to 75–80% of 1 RM | From 2–3 sets of 12–15 repetitions to 3 sets of 8–10 repetitions | Thrice/week, 45–60 min per session, 8–12 weeks. | Monthly MIG days = −3.55 [− 6.15, − 0.95]). |
| La Touche et al. [102], Clinical practice guidelines | AEREXE, grade of recommendation B | without a specific EXE prescription parameters | Reduces the frequency, intensity, and duration of pain to enhance overall quality of life. | ||
| continuous AEREXE, grade of recommendation B | 40–59% HRR, from 12 to 16 on the Borg perceived exertion scale | Thrice/week, 8 weeks | Reduces headache frequency, may lessen pain intensity, and positively impacts attack duration, disability, and quality of life | ||
| Yoga, grade of recommendation B | From light to vigorous | N.A. | Thrice/week, 6 weeks | Reduces the frequency and severity of headaches, while also providing remote relief for pain intensity and the duration of attacks. | |
| continuous AEREXE, grade of recommendation C | 60–84% | Reduces the frequency | |||
| continuous AEREXE, grade of recommendation C | 20–39% HRR | Reduces the frequency | |||
| Relaxation EXEs, grade of recommendation C | Once a week, 6 weeks Thrice/week, 12 weeks | Remotely improve headache frequency Remotely improves pain intensity | |||
| High-intensity interval training, grade of recommendation C | May enhance pain frequency and potentially reduce pain intensity, duration, and disability. | ||||
| Yoga, grade of recommendation B | From light to vigorous | N.A. | Thrice/week, 6 weeks | Reduces the frequency and severity of headaches, while also providing remote relief for pain intensity and the duration of attacks. | |
| High-intensity AEREXE | From 55–60% to 80–90% VO2 max | 45–60 min | 2–3 times a week, 8–12 weeks. | Monthly MIG days = −3.13 [−5.28, −0.97]). | |
| moderate-intensity AEREXE | 45–70% VO2 max | 45–60 min | Thrice/week, 8–12 weeks. | Monthly MIG days = −2.18 [−3.25, −1.11]). | |
| Reina-Varona et al. (2023) [103], systematic review | Continuous AEREXE | moderate-intensity (40–59% of HRR) | From 30′ to 60′ (at least eight weeks) | three days a week | - |
| Relaxation and breathing EXEs | N.A. | 5′ to 20′ | every day | Reduce MIG frequency | |
| Reina-Varona Á et al. (2024) [104], systematic review and network meta-analysis | Yoga, very-low-quality evidence | N.A. | N.A. | N.A. | Frequency:(SMD −1.30; 95% CI −2.09, −0.51). Intensity: (SMD −1.40; 95% CI −2.41, −0.39). |
| AEREXE, very-low-quality evidence | high-intensity | N.A. | N.A. | Frequency: (SMD −1.30; 95% CI −2.21, −0.39). Duration: (SMD −1.64; 95% CI −2.43, −0.85) | |
| Continuous AEREXE, very-low-quality evidence | moderate-intensity | N.A. | N.A. | Frequency:(SMD −1.01; 95% CI −1.63, −0.39) Duration: (SMD −0.96; 95% CI −1.50, −0.41). | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pippi, R.; Prete, D.; Alabiso, M.; Sarchielli, P. Nutrition and Physical Activity in an Interdisciplinary Approach to Migraine: A Narrative Review. Nutrients 2025, 17, 3869. https://doi.org/10.3390/nu17243869
Pippi R, Prete D, Alabiso M, Sarchielli P. Nutrition and Physical Activity in an Interdisciplinary Approach to Migraine: A Narrative Review. Nutrients. 2025; 17(24):3869. https://doi.org/10.3390/nu17243869
Chicago/Turabian StylePippi, Roberto, Deborah Prete, Marco Alabiso, and Paola Sarchielli. 2025. "Nutrition and Physical Activity in an Interdisciplinary Approach to Migraine: A Narrative Review" Nutrients 17, no. 24: 3869. https://doi.org/10.3390/nu17243869
APA StylePippi, R., Prete, D., Alabiso, M., & Sarchielli, P. (2025). Nutrition and Physical Activity in an Interdisciplinary Approach to Migraine: A Narrative Review. Nutrients, 17(24), 3869. https://doi.org/10.3390/nu17243869

