Effects of Combined Exercise and Calcium/Vitamin D Supplementation on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Quality Assessment
2.4. Certainty of Evidence Assessment
2.5. Statistical Analysis
3. Results
3.1. Literature Screening and Included Studies
3.2. Characteristics of Included Studies
3.3. Risk of Bias Assessment
3.4. Bone Mineral Density Outcomes
3.5. Exercise Type Subgroup Analysis
3.6. Intervention Duration Subgroup Analysis
3.7. Sensitivity Analysis, Meta Regression, and Evidence Certainty
4. Discussion
4.1. Primary Finding
4.2. Comparison with Previous Studies
4.3. Possible Mechanistic Explanations
4.3.1. Dual-Signal Hypothesis: Interaction Between Mechanical Loading and Biochemical Availability
4.3.2. Bidirectional Mechanism of WBV
4.3.3. Time-Dependent Effects and the “Bone Remodeling Transient”
4.4. Clinical Implications
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PMO | Postmenopausal osteoporosis |
| BMD | Bone mineral density |
| OC | Osteocalcin |
| P1NP | Procollagen type I N-terminal propeptide |
| CTX | C-terminal telopeptide of type I collagen |
| CNKI | National Knowledge Infrastructure |
| SinoMed | Chinese Biomedical Literature Database |
| RCTs | Randomized controlled trials |
| RevMan | Review Manager |
| MD | Mean difference |
| SD | Standard deviations |
| SMD | Standardized Mean Difference |
| CI | Confidence interval |
| WBV | Whole-body vibration |
| LS BMD | Lumbar spine bone mineral density |
| FN BMD | Femoral neck bone mineral density |
| GT BMD | Greater trochanter bone mineral density |
| Ward’s BMD | Ward’s triangle bone mineral density |
| TH BMD | Total hip bone mineral density |
| RT | Resistance training |
| 1RM | One-repetition maximum |
References
- Rashki Kemmak, A.; Rezapour, A.; Jahangiri, R.; Nikjoo, S.; Farabi, H.; Soleimanpour, S. Economic burden of osteoporosis in the world: A systematic review. Med. J. Islam. Repub. Iran. 2020, 34, 154. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.L.; Varacallo, M.A. Osteoporosis. In StatPearls [Internet]; Updated 4 August 2023; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441901/ (accessed on 3 November 2025).
- Liu, J.; Li, X.; Zhang, W.; Miao, T.; Wang, X. Effect of combined exercise and nutrition on bone density in postmenopausal women—A systematic review and meta-analysis. Nutr. Metab. 2025, 22, 127. [Google Scholar] [CrossRef] [PubMed]
- Shabir, M.; Khan, M.Y.; Khan, M.Y.; Ali, M.; Syed, R.; Khan, A.A.; Khan, A.; Syed, F.; Idrees, M.; Tariq, M.; et al. Osteoporosis-Associated Mortality in Postmenopausal Women in the United States From 1999 to 2023: A CDC WONDER-Based Study. Cureus 2025, 17, e87721. [Google Scholar] [CrossRef] [PubMed]
- Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jonsson, B.; Kanis, J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, R.E. Osteoporosis Guidelines: Screening, Diagnosis, Treatment. Medscape. Updated 8 January 2024. Available online: https://emedicine.medscape.com/article/330598-guidelines (accessed on 29 October 2025).
- American Medical Association. Bone Health & Osteoporosis: A Comprehensive Look from Causes to Treatment. 2024 SPS Education Program 2. Published 7 June 2024. Available online: https://www.ama-assn.org/system/files/a24-sps-education-program-2-bone-health-and-steoporosis.pdf (accessed on 29 October 2025).
- Abdel Gader, A.M. The effect of exercise and nutrition on bone health. J. Musculoskelet. Surg. Res. 2018, 2, 142–147. [Google Scholar] [CrossRef]
- Voulgaridou, G.; Papadopoulou, S.K.; Detopoulou, P.; Tsoumana, D.; Giaginis, C.; Kondyli, F.S.; Lymperaki, E.; Pritsa, A. Vitamin D and Calcium in Osteoporosis, and the Role of Bone Turnover Markers: A Narrative Review of Recent Data from RCTs. Diseases 2023, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Laird, E.; Ward, M.; McSorley, E.; Strain, J.J.; Wallace, J. Vitamin D and bone health: Potential mechanisms. Nutrients 2010, 2, 693–724. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.L.; Turner, C.H. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 1995, 57, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Cong, B.; Zhang, H. The effects of combined calcium and vitamin D supplementation on bone mineral density and fracture risk in postmenopausal women with osteoporosis: A systematic review and meta-analysis of randomized controlled trials. BMC Musculoskelet. Disord. 2025, 26, 928. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.H.; Chiu, C.Y.; Chen, W.C.; Yang, Y.R.; Wang, R.Y. Effects of exercise on bone density and physical performance in postmenopausal women: A systematic review and meta-analysis. PM&R 2024, 16, 1358–1383. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; He, Q.; Wang, X. Effects of exercise on bone metabolism in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Front. Endocrinol. 2025, 16, 1597046. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Hans, D.; Genton, L.; Drezner, M.K.; Schott, A.; Pacifici, R.; Avioli, L.; Slosman, D.; Meunier, P. Monitored impact loading of the hip: Initial testing of a home-use device. Calcif. Tissue Int. 2002, 71, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Bolton, K.L.; Egerton, T.; Wark, J.; Wee, E.; Matthews, B.; Kelly, A.; Craven, R.; Kantor, S.; Bennell, K.L. Effects of exercise on bone density and falls risk factors in post-menopausal women with osteopenia: A randomised controlled trial. J. Sci. Med. Sport 2012, 15, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Basat, H.; Esmaeilzadeh, S.; Eskiyurt, N. The effects of strengthening and high-impact exercises on bone metabolism and quality of life in postmenopausal women: A randomized controlled trial. J. Back. Musculoskelet. Rehabil. 2013, 26, 427–435. [Google Scholar] [CrossRef] [PubMed]
- ElDeeb, A.M.; Abdel-Aziem, A.A. Effect of Whole-Body Vibration Exercise on Power Profile and Bone Mineral Density in Postmenopausal Women with Osteoporosis: A Randomized Controlled Trial. J. Manip. Physiol Ther. 2020, 43, 384–393. [Google Scholar] [CrossRef]
- Sen, E.I.; Esmaeilzadeh, S.; Eskiyurt, N. Effects of whole-body vibration and high impact exercises on the bone metabolism and functional mobility in postmenopausal women. J. Bone Min. Metab. 2020, 38, 392–404. [Google Scholar] [CrossRef]
- Iwamoto, J.; Takeda, T.; Ichimura, S. Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis. J. Orthop. Sci. 2001, 6, 128–132. [Google Scholar] [CrossRef]
- Bergström, I.; Landgren, B.; Brinck, J.; Freyschuss, B. Physical training preserves bone mineral density in postmenopausal women with forearm fractures and low bone mineral density. Osteoporos. Int. 2008, 19, 177–183. [Google Scholar] [CrossRef]
- Cai, Y.X.; Li, X.L.; Zhao, J.J.; Mo, Y.J.; Li, Z. Clinical observation of 30 cases of Baduanjin combined with Caltrate D in preventing postmenopausal osteoporosis. Chin. Natl. Folk. Med. 2018, 27, 130–132. [Google Scholar]
- Zhang, C.B.; Zhao, J.; Deng, Q.; Li, Z.F.; Peng, R.D. Discussion on the prevention of postmenopausal osteoporosis by integrated traditional Chinese and Western medicine based on the “treating disease before onset” theory. West. J. Tradit. Chin. Med. 2017, 30, 69–72. [Google Scholar]
- Gong, X.H.; Yan, F.Z.; Zhang, H.X. Effect of mountain climbing on bone mass in postmenopausal osteoporosis patients. Mod. J. Integr. Tradit. Chin. West. Med. 2006, 19, 2611–2612. [Google Scholar]
- Chen, J.; Wang, H.X. Efficacy analysis of calcium combined with exercise therapy in treating osteoporosis in middle-aged and elderly women. China Pract. Med. 2015, 10, 205–206. [Google Scholar] [CrossRef]
- Qin, J.Z.; Rong, X.X.; Zhu, G.X.; Jiang, Y. Effects of square dancing on bone mineral density and bone turnover markers in postmenopausal osteoporosis patients. Chin. J. Osteoporos. 2017, 23, 43–46,50. [Google Scholar] [CrossRef]
- Liu, H.Q.; Qin, J.J.; Liu, H.J. Effect of comprehensive exercise therapy on bone mineral density in postmenopausal osteoporosis. Zhong Yi Zheng Gu 2007, 19, 82. [Google Scholar]
- Mohebbi, R.; Shojaa, M.; Kohl, M.; von Stengel, S.; Jakob, F.; Kerschan-Schindl, K.; Lange, U.; Peters, S.; Thomasius, F.; Uder, M.; et al. Exercise training and bone mineral density in postmenopausal women: An updated systematic review and meta-analysis of intervention studies with emphasis on potential moderators. Osteoporos. Int. 2023, 34, 1145–1178. [Google Scholar] [CrossRef]
- Ma, M.; Su, W.; Liu, D. Effects of different exercise interventions on bone mineral density in elderly postmenopausal women: A network meta-analysis. Front. Physiol. 2025, 16, 1633913. [Google Scholar] [CrossRef]
- Weber-Rajek, M.; Mieszkowski, J.; Niespodziński, B.; Ciechanowska, K. Whole-body vibration exercise in postmenopausal osteoporosis. Przegląd Menopauzalny 2015, 14, 41–47. [Google Scholar] [CrossRef]
- Hou, J.; Mao, H.; Xie, P.; Cui, Y.; Rong, M. The effect of different traditional Chinese exercises on bone mineral density in menopausal women: A systematic review and network meta-analysis. Front. Public Health 2024, 12, 1430608. [Google Scholar] [CrossRef]
- Zou, L.; Wang, C.; Chen, K.; Shu, Y.; Chen, X.; Luo, L.; Zhao, X. The Effect of Taichi Practice on Attenuating Bone Mineral Density Loss: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2017, 14, 1000. [Google Scholar] [CrossRef]
- Hong, A.R.; Kim, S.W. Effects of Resistance Exercise on Bone Health. Endocrinol. Metab. 2018, 33, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Su, W.; Sun, Y.; Wang, J.; Lu, B.; Yun, H. Optimal resistance training parameters for improving bone mineral density in postmenopausal women: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2025, 20, 523. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.P.; Espada, M.C.; Massini, D.A.; Robalo, R.A.M.; Almeida, T.A.F.; Hernández-Beltrán, V.; Gamonales, J.M.; Castro, E.A.; Filho, D.M.P. Effects of Exercise and Sports Intervention and the Involvement Level on the Mineral Health of Different Bone Sites in the Leg, Hip, and Spine: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 6537. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.U.A.; Kijas, A.W.; Lauko, J.; Rowan, A.E. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front. Cell Dev. Biol. 2022, 9, 770143. [Google Scholar] [CrossRef]
- Lewis, K.J. Osteocyte calcium signaling—A potential translator of mechanical load to mechanobiology. Bone 2021, 153, 116136. [Google Scholar] [CrossRef]
- Li, X.; Kordsmeier, J.; Xiong, J. New Advances in Osteocyte Mechanotransduction. Curr. Osteoporos. Rep. 2021, 19, 101–106. [Google Scholar] [CrossRef]
- Maeda, K.; Kobayashi, Y.; Koide, M.; Uehara, S.; Okamoto, M.; Ishihara, A.; Kayama, T.; Saito, M.; Marumo, K. The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int. J. Mol. Sci. 2019, 20, 5525. [Google Scholar] [CrossRef]
- Houschyar, K.S.; Tapking, C.; Borrelli, M.R.; Popp, D.; Duscher, D.; Maan, Z.N.; Chelliah, M.P.; Li, J.; Harati, K.; Wallner, C.; et al. Wnt Pathway in Bone Repair and Regeneration—What Do We Know So Far. Front. Cell Dev. Biol. 2019, 6, 170. [Google Scholar] [CrossRef]
- Chen, X.; Yang, K.; Sun, P.; Zhao, R.; Liu, B.; Lu, P. Exercise improves bone formation by upregulating the Wnt3a/β-catenin signalling pathway in type 2 diabetic mice. Diabetol. Metab. Syndr. 2021, 13, 116. [Google Scholar] [CrossRef]
- Jawed, I.; Quratul Ain, H.; Abdul Razaq, F.; Qadir, M.U.; Jabeen, S.; Alam, F.; Javaid, M.; Mobin, M.; Kumar, D.; Rai, R.; et al. Vitamin D and physical activity as co-modifiers of muscle health and function—A narrative exploration. Ann. Med. Surg. 2025, 87, 5046–5055. [Google Scholar] [CrossRef]
- Kędzia, G.; Woźniak, M.; Samborski, W.; Grygiel-Górniak, B. Impact of Dietary Protein on Osteoporosis Development. Nutrients 2023, 15, 4581. [Google Scholar] [CrossRef]
- Lu, X.; Duan, H. Advances in vibration therapy for the treatment of osteoporosis. Front. Endocrinol. 2025, 16, 1611677. [Google Scholar] [CrossRef] [PubMed]
- Aloia, J.F.; Arunabh-Talwar, S.; Pollack, S.; Yeh, J.K. The remodeling transient and the calcium economy. Osteoporos. Int. 2008, 19, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Massini, D.A.; Nedog, F.H.; de Oliveira, T.P.; Almeida, T.A.F.; Santana, C.A.A.; Neiva, C.M.; Macedo, A.G.; Castro, E.A.; Espada, M.C.; Santos, F.J.; et al. The Effect of Resistance Training on Bone Mineral Density in Older Adults: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 1129. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. The bone remodeling transient: Interpreting interventions involving bone-related nutrients. Nutr. Rev. 2001, 59, 327–334. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Sambrook, P.N.; Eisman, J.A. Sources of variability in bone mineral density measurements: Implications for study design and analysis of bone loss. J. Bone Miner. Res. 1997, 12, 124–135. [Google Scholar] [CrossRef]
- Watts, N.B.; Bilezikian, J.P.; Camacho, P.M.; Greenspan, S.L.; Harris, S.T.; Hodgson, S.F.; Kleerekoper, M.; Luckey, M.M.; McClung, M.R.; Pollack, R.P.; et al. American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr. Pract. 2010, 16, 1–37. [Google Scholar] [CrossRef]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2020 Update. Endocr. Pract. 2020, 26, 1–46. [Google Scholar] [CrossRef]
- Kitagawa, T.; Hiraya, K.; Denda, T.; Yamamoto, S. A comparison of different exercise intensities for improving bone mineral density in postmenopausal women with osteoporosis: A systematic review and meta-analysis. Bone Rep. 2022, 17, 101631. [Google Scholar] [CrossRef]
- Liu, X.; Seah, J.W.T.; Pang, B.W.J.; Tsao, M.A.; Gu, F.; Ng, W.C.; Tay, J.Y.R.; Ng, T.P.; Wee, S.L. A single-arm feasibility study of community-delivered Baduanjin (Qigong practice of the eight Brocades) training for frail older adults. Pilot Feasibility Stud. 2020, 6, 105. [Google Scholar] [CrossRef]
- Li, Q.; Liang, L.; Gao, C.; Zong, B. Therapeutic effects of whole-body vibration on postmenopausal women with osteoporosis, a systematic review and meta-analysis. Braz. J. Med. Biol. Res. 2024, 57, e13996. [Google Scholar] [CrossRef]
- Tapp, L.R.; Signorile, J.F. Efficacy of WBV as a modality for inducing changes in body composition, aerobic fitness, and muscular strength: A pilot study. Clin. Interv. Aging 2014, 9, 63–72. [Google Scholar] [CrossRef]
- Chen, X.; Fu, Y.; Zhu, Z. Association between dietary protein intake and bone mineral density based on NHANES 2011–2018. Sci. Rep. 2025, 15, 8638. [Google Scholar] [CrossRef]








| Study | Country | Sample Size (T/C) | Duration | Menopausal Status (yrs) | Age (T/C) | Intervention | Frequency | Control | Supplementation |
|---|---|---|---|---|---|---|---|---|---|
| Hans 2002 [16] | USA, France | 99/26 | 24 mo | ≥5 | 67.6 ± 5.2/66.3 ± 4.9 | Heel-drop weight-bearing exercise | 120 reps/day, 3–5 min | Ca + Vit D | Ca 1000 mg/d + Vit D 10 µg/d |
| Bolton 2012 [17] | Australia | 19/18 | 52 wk | 16.8 ± 6.6/18.1 ± 8.3 | 66.2 ± 4.9/66.8 ± 4.8 | Combined resistance + impact training | 3×/wk (center + home) | Ca + Vit D | Ca 1000 mg/d + Vit D3 1000 IU/d |
| Basat 2013 [18] | Turkey | 11/12/12 | 6 mo | 7.6 ± 4.4/6.6 ± 4.5/7.9 ± 4.1 | 55.9 ± 4.9/55.6 ± 2.9/56.2 ± 4.0 | Strength and high-impact groups | 3×/wk, 60 min | Ca + Vit D | Ca 1200 mg/d + Vit D 800 IU/d |
| ElDeeb 2020 [19] | Egypt | 22/21 | 24 wk | 12.9 ± 4.5/13.3 ± 4.2 | 55.1 ± 4.2/57.3 ± 4.4 | WBV | 2×/wk, progressive 6 mo | Ca + Vit D | Ca 1200 mg/d + Vit D 800 IU/d |
| Sen 2020 [20] | Turkey | 15/16/18 | 6 mo | 8.2 ± 4.3/6.6 ± 4.5/7.9 ± 4.1 | 56.3 ± 4.8/55.6 ± 2.9/56.2 ± 4.0 | WBV/high-impact exercise | 3×/wk | Ca + Vit D | Ca 1500 mg/d + Vit D 880 IU/d |
| Iwamoto 2001 [21] | Japan | 8/20 | 24 mo | 16.3 ± 5.9/14.8 ± 6.4 | 65.3 ± 4.7/64.9 ± 5.7 | Walking + calisthenics | ≥5×/wk, 1 yr | Ca | Ca lactate 2.0 g/d + 1α(OH)Vit D3 1 µg/d |
| Bergström 2008 [22] | Sweden | 48/44 | 12 mo | 10 ± 5 | 58.9 ± 4.3/59.6 ± 3.6 | Brisk walking + resistance | 3–5×/wk | Ca + Vit D | NA |
| Cai 2018 [23] | China | 30/30 | 12 mo | ≥2 | 52.1 ± 4.2/51.4 ± 4.9 | Baduanjin | 2×/day, 1 yr | Caltrate D | Ca 0.6 g/d |
| Zhang 2017 [24] | China | 36/36 | 12 mo | 5.9 ± 0.8/5.8 ± 0.6 | 53.5 ± 1.4/53.7 ± 1.1 | Baduanjin | 2×/day, ≥1 yr | Caltrate D | Ca 0.6 g/d |
| Gong 2006 [25] | China | 22/22 | 12 mo | 11 ± 4.8 | 61.3 ± 6.9/62.1 ± 7.0 | Mountain hiking | 5–7×/wk | Ca | Ca 600 mg/d |
| Chen 2015 [26] | China | 50/50 | 6 mo | NA | 58.7 ± 7.5/58.4 ± 6.5 | Aerobic exercise | ≥30 min/day | Ca + Vit D | ~529 mg Ca/d + 9 µg Vit D3/d |
| Qin 2017 [27] | China | 25/25 | 6 mo | NA | NA | Square dancing | 5×/wk | Caltrate D | Ca 600 mg/d |
| Liu 2007 [28] | China | 36/32 | 6 mo | 6.8 ± 1.2 | 56.3 ± 2.1 | Combined stretching + jogging | 3–5×/wk | Caltrate D | Ca 600 mg/d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Huang, W.; Yan, R.; Du, X. Effects of Combined Exercise and Calcium/Vitamin D Supplementation on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 3866. https://doi.org/10.3390/nu17243866
Bai J, Huang W, Yan R, Du X. Effects of Combined Exercise and Calcium/Vitamin D Supplementation on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients. 2025; 17(24):3866. https://doi.org/10.3390/nu17243866
Chicago/Turabian StyleBai, Jie, Wenrui Huang, Ruixiang Yan, and Xuelian Du. 2025. "Effects of Combined Exercise and Calcium/Vitamin D Supplementation on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-Analysis" Nutrients 17, no. 24: 3866. https://doi.org/10.3390/nu17243866
APA StyleBai, J., Huang, W., Yan, R., & Du, X. (2025). Effects of Combined Exercise and Calcium/Vitamin D Supplementation on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients, 17(24), 3866. https://doi.org/10.3390/nu17243866

