Iodine Intake and Risk of Mortality: Evidence from a Nationally Representative Korean Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Variable Specifications
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Association Between Iodine Exposure and Mortality
3.3. Sensitivity and Lag-Time Analyses
3.4. Stratified Analyses by Age and Sex
4. Discussion
4.1. Principal Findings
4.2. Comparison with Previous Studies
4.3. Biological and Dietary Explanations
4.4. Strengths and Methodological Considerations
4.5. Study Limitations and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| UIC | Urinary Iodine Concentration |
| UL | tolerable Upper intake Level |
| HR | Hazard Ratio |
| CI | Confidence Interval |
| IOM | Institute of Medicine |
| WHO | World Health Organization |
| NHANES | National Health and Nutrition Examination Survey |
| KNHANES | Korea National Health and Nutrition Examination Survey |
| TSH | Thyroid-Stimulating Hormone |
| EAR | Estimated Average Requirement |
| CVD | Cardiovascular Disease |
| BMI | Body Mass Index |
| eGFR | estimated Glomerular Filtration Rate |
| IQR | Interquartile Range |
References
- Cao, X.Y.; Jiang, X.M.; Dou, Z.H.; Rakeman, M.A.; Zhang, M.L.; O’Donnell, K.; Ma, T.; Amette, K.; DeLong, N.; DeLong, G.R. Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N. Engl. J. Med. 1994, 331, 1739–1744. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Boelaert, K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Leung, A.M.; Braverman, L.E.; Pearce, E.N. History of U.S. iodine fortification and supplementation. Nutrients 2012, 4, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Eastman, C.J. The changing epidemiology of iodine deficiency. Nat. Rev. Endocrinol. 2012, 8, 434–440. [Google Scholar] [CrossRef]
- Andersson, M.; Karumbunathan, V.; Zimmermann, M.B. Global iodine status in 2011 and trends over the past decade. J. Nutr. 2012, 142, 744–750. [Google Scholar] [CrossRef]
- Park, S.J.; Chen, L.; Wallace, T.C.; Lee, H.J. The association between iodine intake and thyroid disease in iodine-replete regions: The Korean Genome and Epidemiology Study. Nutr. Res. Pract. 2025, 19, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.M.; Braverman, L.E. Consequences of excess iodine. Nat. Rev. Endocrinol. 2014, 10, 136–142. [Google Scholar] [CrossRef]
- Teng, W.; Shan, Z.; Teng, X.; Guan, H.; Li, Y.; Teng, D.; Jin, Y.; Yu, X.; Fan, C.; Chong, W.; et al. Effect of iodine intake on thyroid diseases in China. N. Engl. J. Med. 2006, 354, 2783–2793. [Google Scholar] [CrossRef]
- Gencer, B.; Collet, T.H.; Virgini, V.; Bauer, D.C.; Gussekloo, J.; Cappola, A.R.; Nanchen, D.; den Elzen, W.P.; Balmer, P.; Luben, R.N.; et al. Subclinical thyroid dysfunction and the risk of heart failure events: An individual participant data analysis from 6 prospective cohorts. Circulation 2012, 126, 1040–1049. [Google Scholar] [CrossRef]
- Journy, N.M.Y.; Bernier, M.O.; Doody, M.M.; Alexander, B.H.; Linet, M.S.; Kitahara, C.M. Hyperthyroidism, Hypothyroidism, and Cause-Specific Mortality in a Large Cohort of Women. Thyroid 2017, 27, 1001–1010. [Google Scholar] [CrossRef]
- Rodondi, N.; den Elzen, W.P.; Bauer, D.C.; Cappola, A.R.; Razvi, S.; Walsh, J.P.; Asvold, B.O.; Iervasi, G.; Imaizumi, M.; Collet, T.H.; et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 2010, 304, 1365–1374. [Google Scholar] [CrossRef]
- Inoue, K.; Leung, A.M.; Sugiyama, T.; Tsujimoto, T.; Makita, N.; Nangaku, M.; Ritz, B.R. Urinary Iodine Concentration and Mortality Among U.S. Adults. Thyroid 2018, 28, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Araque, C.; Valdés, S.; Badía-Guillén, R.; Lago-Sampedro, A.; Colomo, N.; Garcia-Fuentes, E.; Gutierrez-Repiso, C.; Goday, A.; Calle-Pascual, A.; Castaño, L.; et al. Iodine Deficiency and Mortality in Spanish Adults: Di@bet.es Study. Thyroid 2021, 31, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kwon, Y.S.; Kim, J.Y.; Hong, K.H.; Park, Y.K. Association between Iodine Nutrition Status and Thyroid Disease-Related Hormone in Korean Adults: Korean National Health and Nutrition Examination Survey VI (2013–2015). Nutrients 2019, 11, 2757. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Oh, H.K.; Park, S.Y.; Jang, H.W.; Shin, M.H.; Kim, S.W.; Kim, T.H.; Chung, J.H. Urinary iodine concentration and thyroid hormones: Korea National Health and Nutrition Examination Survey 2013–2015. Eur. J. Nutr. 2019, 58, 233–240. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Andersson, M. Assessment of iodine nutrition in populations: Past, present, and future. Nutr. Rev. 2012, 70, 553–570. [Google Scholar] [CrossRef]
- Yun, S.; Oh, K. The Korea National Health and Nutrition Examination Survey data linked Cause of Death data. Epidemiol. Health 2022, 44, e2022021. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Laboratory Procedure Manual: Iodine in Urine by ICP-MS (NHANES 2013–2014). Available online: https://wwwn.cdc.gov/Nchs/Nhanes (accessed on 5 December 2025).
- Matsushita, K.; Mahmoodi, B.K.; Woodward, M.; Emberson, J.R.; Jafar, T.H.; Jee, S.H.; Polkinghorne, K.R.; Shankar, A.; Smith, D.H.; Tonelli, M.; et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012, 307, 1941–1951. [Google Scholar] [CrossRef]
- Remer, T.; Neubert, A.; Maser-Gluth, C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am. J. Clin. Nutr. 2002, 75, 561–569. [Google Scholar] [CrossRef]
- 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S27–S49. [CrossRef]
- Rhee, E.J.; Kim, H.C.; Kim, J.H.; Lee, E.Y.; Kim, B.J.; Kim, E.M.; Song, Y.; Lim, J.H.; Kim, H.J.; Choi, S.; et al. 2018 Guidelines for the Management of Dyslipidemia in Korea. J. Lipid Atheroscler. 2019, 8, 78–131. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Lee, E.M.; Ahn, S.Y.; Kim, K.I.; Kim, H.C.; Kim, J.H.; Lee, H.Y.; Lee, J.H.; Park, J.M.; Cho, E.J.; et al. The 2022 focused update of the 2018 Korean Hypertension Society Guidelines for the management of hypertension. Clin. Hypertens. 2023, 29, 11. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S.; May, S. Applied Survival Analysis: Regression Modeling of Time-to-Event Data, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hoang, T.; Lee, E.K.; Lee, J.; Hwangbo, Y.; Kim, J. Seaweed and Iodine Intakes and SLC5A5 rs77277498 in Relation to Thyroid Cancer. Endocrinol. Metab. 2022, 37, 513–523. [Google Scholar] [CrossRef]
- Kim, W.G.; Kim, W.B.; Woo, G.; Kim, H.; Cho, Y.; Kim, T.Y.; Kim, S.W.; Shin, M.H.; Park, J.W.; Park, H.L.; et al. Thyroid Stimulating Hormone Reference Range and Prevalence of Thyroid Dysfunction in the Korean Population: Korea National Health and Nutrition Examination Survey 2013 to 2015. Endocrinol. Metab. 2017, 32, 106–114. [Google Scholar] [CrossRef]
- Jonklaas, J. TSH Reference Intervals: Their Importance and Complexity. Thyroid 2024, 34, 957–959. [Google Scholar] [CrossRef]
- Matos, J.; Cardoso, C.; Serralheiro, M.; Bandarra, N.; Afonso, C. Seaweed bioactives potential as nutraceuticals and functional ingredients: A review. J. Food Compos. Anal. 2024, 133, 106453. [Google Scholar] [CrossRef]
- Nanri, A.; Mizoue, T.; Shimazu, T.; Ishihara, J.; Takachi, R.; Noda, M.; Iso, H.; Sasazuki, S.; Sawada, N.; Tsugane, S. Dietary patterns and all-cause, cancer, and cardiovascular disease mortality in Japanese men and women: The Japan public health center-based prospective study. PLoS ONE 2017, 12, e0174848. [Google Scholar] [CrossRef]
- Kishida, R.; Yamagishi, K.; Muraki, I.; Sata, M.; Tamakoshi, A.; Iso, H. Frequency of Seaweed Intake and Its Association with Cardiovascular Disease Mortality: The JACC Study. J. Atheroscler. Thromb. 2020, 27, 1340–1347. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare; The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2020; Ministry of Health and Welfare: Sejong, Republic of Korea, 2020.
- Lee, H.S.; Min, H. Iodine Intake and Tolerable Upper Intake Level of Iodine for Koreans. Korean J. Nutr. 2011, 44, 82–91. [Google Scholar] [CrossRef]

| Total (n = 5497) | Below EAR (n = 1654) | Low Normal (n = 1444) | High Normal (n = 1625) | Above UL (n = 774) | p- Value a | |
|---|---|---|---|---|---|---|
| Iodine levels | ||||||
| Estimated iodine intake b (µg/day) | 240.2 (129.4–552.6) | 98.6 (74.3–123.4) | 206.8 (177.5–246.7) | 484.8 (371.4–677.9) | 2034.7 (1417.7–3362.7) | <0.001 |
| UIC levels (µg/L) | 275.1 (151.5–622.2) | 131.6 (87.6–187.7) | 235.3 (161.3–329.9) | 547.3 (354.0–855.7) | 2070.0 (1235.3–3676.1) | <0.001 |
| Frequency of seaweed intake (%) | ||||||
| Seaweed soup ≥1/week | 564 (13.5) | 136 (10.6) | 156 (14.0) | 177 (14.8) | 95 (16.9) | 0.006 |
| Sea lettuce salad ≥1/week | 252 (6.2) | 50 (3.7) | 80 (7.6) | 82 (7.0) | 40 (7.2) | 0.001 |
| Total sodium intake (102 mg/day) | 34.8 ± 17.8 | 33.0 ± 16.6 | 35.3 ± 17.7 | 36.1 ± 18.6 | 35.1 ± 18.3 | 0.004 |
| Age, n (%) | 41.3 ± 14.1 | 38.6 ± 14.6 | 40.9 ± 13.1 | 42.8 ± 13.6 | 45.1 ± 14.4 | <0.001 |
| Men, n (%) | 2814 (59.0) | 746 (53.4) | 801 (63.0) | 867 (60.8) | 400 (60.2) | <0.001 |
| Income levels, n (%) | <0.001 | |||||
| Low | 1805 (29.4) | 605 (33.3) | 451 (27.9) | 515 (28.4) | 234 (25.7) | |
| Middle | 1809 (34.5) | 542 (34.1) | 509 (36.9) | 527 (34.1) | 231 (31.2) | |
| High | 1859 (35.9) | 502 (32.4) | 481 (35.0) | 575 (37.3) | 301 (43.0) | |
| Education level, n (%) | 0.024 | |||||
| Middle school | 1177 (16.7) | 374 (17.2) | 284 (15.1) | 328 (15.9) | 191 (20.1) | |
| High school | 1493 (28.3) | 434 (26.4) | 384 (27.7) | 465 (30.1) | 210 (30.0) | |
| University | 2464 (54.9) | 758 (56.2) | 679 (57.1) | 713 (53.8) | 314 (49.7) | |
| Alcohol consumption, n (%) | 0.001 | |||||
| <1/month | 1713 (31.8) | 569 (36.7) | 397 (27.9) | 495 (30.2) | 252 (31.7) | |
| 1~4/month | 1951 (41.8) | 570 (39.9) | 547 (43.4) | 579 (42.1) | 255 (42.3) | |
| ≥1/month | 1210 (26.3) | 328 (23.3) | 347 (28.5) | 375 (27.6) | 160 (25.8) | |
| Smoking status, n (%) | 0.004 | |||||
| Current smoker | 1263 (27.5) | 411 (28.2) | 358 (29.2) | 347 (26.1) | 147 (25.2) | |
| Ex-smoker | 1088 (21.0) | 260 (17.5) | 280 (20.2) | 365 (24.1) | 183 (24.3) | |
| Never-smoker | 2949 (51.3) | 934 (54.1) | 749 (50.4) | 850 (49.7) | 416 (50.4) | |
| BMI (kg/m2) | 23.8 ± 3.6 | 23.4 ± 3.7 | 23.9 ± 3.4 | 24.1 ± 3.5 | 24.1 ± 3.6 | <0.001 |
| eGFR (mL/min/1.73 m2) | 100.0 ± 15.2 | 101.0 ± 14.8 | 100.6 ± 14.8 | 99.1 ± 15.8 | 98.3 ± 15.8 | <0.001 |
| Comorbidity, n (%) | ||||||
| Diabetes | 638 (9.6) | 167 (7.7) | 174 (10.3) | 192 (9.9) | 105 (11.8) | 0.016 |
| Dyslipidemia | 1936 (33.6) | 507 (29.3) | 508 (33.1) | 637 (38.3) | 284 (34.6) | <0.001 |
| Hypertension | 1300 (20.1) | 350 (17.1) | 326 (19.3) | 399 (21.5) | 225 (25.4) | <0.001 |
| CVD | 147 (1.8) | 44 (1.9) | 35 (1.6) | 43 (1.8) | 25 (1.8) | 0.955 |
| Cancer | 160 (2.2) | 36 (1.4) | 30 (1.6) | 56 (2.8) | 38 (3.8) | <0.001 |
| Events/Participants (%) | Unadjusted HR (95% CI) | Model 1 a HR (95% CI) | Model 2 b HR (95% CI) | |
|---|---|---|---|---|
| All-cause mortality | ||||
| Below EAR | 41/1654 | 0.91 (0.54, 1.52) | 0.94 (0.53, 1.68) | 1.13 (0.47, 2.72) |
| Low normal | 38/1444 | reference | reference | reference |
| High normal | 40/1625 | 1.16 (0.68, 1.99) | 1.15 (0.61, 2.17) | 1.43 (0.58, 3.51) |
| Above UL | 20/774 | 0.94 (0.49, 1.80) | 0.67 (0.31, 1.45) | 1.09 (0.36, 3.27) |
| p for trends | 0.567 | 0.752 | 0.746 | |
| CVD-specific mortality | ||||
| Below EAR | 4/1654 | 0.46 (0.13, 1.63) | 0.36 (0.10, 1.35) | 0.60 (0.08, 4.59) |
| Low normal | 8/1444 | reference | reference | reference |
| High normal | 3/1625 | 0.50 (0.12, 2.08) | 0.42 (0.08, 2.14) | 0.86 (0.09, 7.85) |
| Above UL | 5/774 | 0.75 (0.21, 2.72) | 0.32 (0.05, 1.95) | 1.12 (0.08, 15.09) |
| p for trends | 0.783 | 0.776 | 0.671 | |
| Cancer-specific mortality | ||||
| Below EAR | 20/1654 | 1.16 (0.51, 2.61) | 1.15 (0.44, 2.99) | 1.87 (0.61, 5.68) |
| Low normal | 16/1444 | reference | reference | reference |
| High normal | 25/1625 | 1.74 (0.79, 3.85) | 1.87 (0.71, 4.91) | 2.08 (0.65, 6.72) |
| Above UL | 11/774 | 1.31 (0.52, 3.30) | 1.02 (0.33, 3.13) | 1.72 (0.36, 8.27) |
| p for trends | 0.346 | 0.602 | 0.822 |
| Events/Participants (%) | Unadjusted HR (95% CI) | Model 1 a HR (95% CI) | Model 2 b HR (95% CI) | |
|---|---|---|---|---|
| All-cause mortality | ||||
| Very low | 3/164 | 0.55 (0.16, 1.91) | 0.29 (0.06, 1.30) | - |
| Low | 19/542 | 1.34 (0.73, 2.49) | 0.92 (0.46, 1.85) | 0.41 (0.13, 1.28) |
| Normal | 58/2182 | reference | reference | reference |
| High | 10/486 | 0.91 (0.44, 1.88) | 1.21 (0.56, 2.61) | 0.35 (0.08, 1.45) |
| Very high | 49/2123 | 0.89 (0.56, 1.40) | 0.83 (0.48, 1.45) | 0.69 (0.34, 1.40) |
| p for trends | 0.482 | 0.991 | 0.757 | |
| CVD-specific mortality | ||||
| Very low | 0/164 | - | - | - |
| Low | 0/542 | - | - | - |
| Normal | 10/2182 | reference | reference | reference |
| High | 1/486 | 0.31 (0.04, 2.56) | - | - |
| Very high | 9/2123 | 0.76 (0.26, 2.18) | 0.50 (0.14, 1.83) | 0.84 (0.14, 5.13) |
| p for trends | 0.583 | 0.774 | 0.506 | |
| Cancer-specific mortality | ||||
| Very low | 0/164 | - | - | - |
| Low | 9/542 | 1.12 (0.45, 2.81) | 0.42 (0.14, 1.25) | 0.09 (0.01, 0.82)† |
| Normal | 29/2182 | reference | reference | reference |
| High | 5/486 | 1.12 (0.37, 3.34) | 1.68 (0.54, 5.23) | - |
| Very high | 29/2123 | 1.07 (0.56, 2.05) | 1.12 (0.51, 2.45) | 0.76 (0.29, 1.97) |
| p for trends | 0.539 | 0.230 | 0.391 |
| Events/Participants (%) | Unadjusted HR (95% CI) | Model 1 a HR (95% CI) | Model 2 b HR (95% CI) | |
|---|---|---|---|---|
| All-cause mortality | ||||
| Below EAR | 37/1529 | 0.88 (0.51, 1.52) | 0.89 (0.48, 1.65) | 1.17 (0.46, 3.01) |
| Low normal | 34/1316 | reference | reference | reference |
| High normal | 37/1439 | 1.29 (0.74, 2.25) | 1.23 (0.63, 2.41) | 1.88 (0.74, 4.79) |
| Above UL | 15/650 | 0.80 (0.39, 1.63) | 0.58 (0.25, 1.34) | 0.93 (0.27, 3.26) |
| p for trends | 0.510 | 0.817 | 0.699 | |
| CVD-specific mortality | ||||
| Below EAR | 3/1529 | 0.37 (0.09, 1.57) | 0.23 (0.04, 1.14) | 0.57 (0.04, 8.68) |
| Low normal | 7/1316 | reference | reference | reference |
| High normal | 3/1439 | 0.61 (0.14, 2.69) | 0.43 (0.07, 2.50) | 1.13 (0.08, 15.84) |
| Above UL | 4/650 | 0.79 (0.19, 3.35) | 0.34 (0.05, 2.42) | 1.76 (0.23, 13.68) |
| p for trends | 0.484 | 0.788 | 0.577 | |
| Cancer-specific mortality | ||||
| Below EAR | 18/1529 | 1.00 (0.43, 2.32) | 0.93 (0.35, 2.50) | 1.41 (0.43, 4.63) |
| Low normal | 16/1316 | reference | reference | reference |
| High normal | 22/1439 | 1.64 (0.72, 3.70) | 1.70 (0.63, 4.55) | 1.66 (0.50, 5.44) |
| Above UL | 8/650 | 0.95 (0.35, 2.61) | 0.63 (0.19, 2.07) | 0.60 (0.08, 4.44) |
| p for trends | 0.444 | 0.777 | 0.634 |
| Events/Participants (%) | Unadjusted HR (95% CI) | Model 1 a HR (95% CI) | Model 2 b HR (95% CI) | |
|---|---|---|---|---|
| All-cause mortality | ||||
| Below EAR | 31/1644 | 0.99 (0.54, 1.81) | 1.17 (0.60, 2.28) | 1.66 (0.49, 5.60) |
| Low normal | 29/1435 | reference | reference | reference |
| High normal | 35/1620 | 1.43 (0.78, 2.62) | 1.49 (0.74, 3.00) | 1.96 (0.61, 6.28) |
| Above UL | 17/771 | 1.08 (0.52, 2.24) | 0.77 (0.33, 1.77) | 1.26 (0.33, 4.84) |
| p for trends | 0.589 | 0.874 | 0.568 | |
| CVD-specific mortality | ||||
| Below EAR | 3/1653 | 0.66 (0.11, 3.86) | 0.65 (0.14, 3.06) | - |
| Low normal | 3/1439 | reference | reference | reference |
| High normal | 3/1625 | 1.03 (0.17, 6.31) | 1.38 (0.21, 8.89) | - |
| Above UL | 4/773 | 1.29 (0.22, 7.52) | 0.93 (0.11, 7.52) | - |
| p for trends | 0.589 | 0.983 | - | |
| Cancer-specific mortality | ||||
| Below EAR | 14/1648 | 1.50 (0.63, 3.57) | 1.75 (0.66, 4.63) | 3.07 (0.77, 12.22) |
| Low normal | 13/1441 | reference | reference | reference |
| High normal | 22/1622 | 2.59 (1.15, 5.80)† | 3.13 (1.25, 7.81)† | 2.69 (0.65, 11.07) |
| Above UL | 9/772 | 1.50 (0.57, 4.01) | 1.18 (0.39, 3.61) | 1.29 (0.20, 8.12) |
| p for trends | 0.330 | 0.616 | 0.658 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.-H.; Kim, J.Y.; Ko, N.G.; Park, H.; Kwan, B.S.; Han, J.M.; Suh, S.; Bae, J.C.; Kim, T.H.; Kim, S.W.; et al. Iodine Intake and Risk of Mortality: Evidence from a Nationally Representative Korean Cohort. Nutrients 2025, 17, 3859. https://doi.org/10.3390/nu17243859
Cho J-H, Kim JY, Ko NG, Park H, Kwan BS, Han JM, Suh S, Bae JC, Kim TH, Kim SW, et al. Iodine Intake and Risk of Mortality: Evidence from a Nationally Representative Korean Cohort. Nutrients. 2025; 17(24):3859. https://doi.org/10.3390/nu17243859
Chicago/Turabian StyleCho, Jung-Hwan, Jun Young Kim, Nak Gyeong Ko, Hanaro Park, Byung Soo Kwan, Ji Min Han, Sunghwan Suh, Ji Cheol Bae, Tae Hyuk Kim, Sun Wook Kim, and et al. 2025. "Iodine Intake and Risk of Mortality: Evidence from a Nationally Representative Korean Cohort" Nutrients 17, no. 24: 3859. https://doi.org/10.3390/nu17243859
APA StyleCho, J.-H., Kim, J. Y., Ko, N. G., Park, H., Kwan, B. S., Han, J. M., Suh, S., Bae, J. C., Kim, T. H., Kim, S. W., Chung, J. H., Bak, H. R., & Kim, H. I. (2025). Iodine Intake and Risk of Mortality: Evidence from a Nationally Representative Korean Cohort. Nutrients, 17(24), 3859. https://doi.org/10.3390/nu17243859

