Dietary Selenium-Enriched Aquatic Products for Human Health
Abstract
1. Introduction
2. Introduction to Selenium-Enriched Aquatic Products
2.1. Key Advantages
2.2. Selenium-Enriched Aquaculture Animals and Their Selenium Content
3. Benefits for Human Health
3.1. Function of Selenoproteins in Aquatic Animals
| Selenoproteins | Abbreviation | Aquatic Animals | Benefits for Human Health |
|---|---|---|---|
| Glutathione peroxidase | GPX1 | Danio rerio, Sparus aurata [66], Ictalurus punctatus [18] | Reduce cellular H2O2 and lipid peroxides [4,7] |
| GPX2 | Oreochromis niloticus [66], Ictalurus punctatus [18] | Reduce intestinal peroxides [4,7] | |
| GPX3 | Pelteobagrus fulvidraco [66], Ictalurus punctatus [18] | Reduces plasma hydrogen peroxide [4,7], delaying aging [67], prevents rheumatoid arthritis [68] | |
| GPX4 | Gadus morhua, Thunnus maccoyi, Coho salmon [66] | Preventing iron-induced ferroptosis [4,7] | |
| GPX6 | Oryzias melastigma [69] | Enhance sperm capacitation and acrosome reaction [70] | |
| Iodothyronine deiodinase | DIO1 | Ctenopharyngodon idella [71,72] | Regulate thyroid hormone levels [73,74] |
| DIO2 | Ictalurus punctatus [18], Ctenopharyngodon idella [71] | Activate the biosynthesis of thyroid hormones in peripheral tissues [73,74] | |
| DIO3 | Ictalurus punctatus [18], Ctenopharyngodon Idella [71] | Inhibit thyroid hormone production through selective deiodination. [73,74] | |
| Thioredoxin reductase | TXNRD1 | Pelteobagrus fulvidraco [66] | Reduce thioredoxin levels and regulate antioxidant activity [4,73] |
| TXNRD2 | Pelteobagrus fulvidraco [66,75] | Regulating transcription factors and modulating mitochondrial-mediated apoptosis mechanisms [7,73] | |
| TXNRD3 | Pelteobagrus fulvidraco [75] | Regulating male fertility [76] | |
| Selenophosphate synthetase 2 | SEPHS2 | Danio rerio [77] | Participates in the synthesis of all selenoproteins [73,74] |
| Methionine-R-sulfoxide reductase 1 (Selenoprotein R) | MSRB1 (SELENOR) | Salmon fish [66], Pelteobagrus fulvidraco [78] | Participates in antioxidant defense and regulates redox processes [73,74] |
| 15 kDa Selenoprotein (Selenoprotein F) | 15 kDa (SELENOF) | Pelteobagrus fulvidraco [66,78] | Associated with protein folding and secretion processes [79] |
| Selenoprotein H | SELENOH | Ictalurus punctatus [18], Pelteobagrus fulvidraco [78] | exhibits protective effects against oxidative stress, cellular senescence, and intestinal tumorigenesis [80] |
| Selenoprotein I | SELENOI | Ictalurus punctatus [18], Pelteobagrus fulvidraco [78] | Participates in liver phospholipid metabolism [81], control colitis and colorectal cancer [82] |
| Selenoprotein K | SELENOK | Oreochromis niloticus [66], Ctenopharyngodon idella [72] | Mediate neuromodulation and cognitive function, prevent Alzheimer’s disease (AD) [83] |
| Selenoprotein M | SELENOM | Pelteobagrus fulvidraco [66,78] | Regulating antioxidant stress and inflammation in pathological processes [84] |
| Selenoprotein N | SELENON | Pelteobagrus fulvidraco [78] Danio rerio [85] | Modulating endoplasmic reticulum stress to prevent muscle dysfunction [86] |
| Selenoprotein O | SELENOO | Pelteobagrus fulvidraco [78] | Increase neutrophil levels to alleviate liver inflammation [87] |
| Selenoprotein P | SELENOP | Danio rerio [66] Ictalurus punctatus [18], Pelteobagrus fulvidraco [75], Magallana gigas [88] | Delaying aging [67], reventing rheumatoid arthritis and osteoarthritis [68] |
| Selenoprotein S | SELENOS | Pelteobagrus fulvidraco [78] | Maintain ovarian function and improve female reproductive performance [89] |
| Selenoprotein T | SELENOT | Pelteobagrus fulvidraco [66] Ictalurus punctatus [18] | Maintain dopamine signaling in the brain [90] |
| Selenoprotein V | SELENOV | No | Body fat accumulation inhibitor, energy expenditure activator [91] |
| Selenoprotein W | SELENOW | Oncorhynchus mykiss [66], Ctenopharyngodon idella [72] | Regulate protein synthesis to prevent muscle atrophy [92] |
| Selenoprotein L | SELENOL | Ctenopharyngodon idella [64] Oreochromis mossambicus [93] | Selenoproteins not identified in humans, peculiar to aquatic animals. |
| Selenoprotein U | SELENOU | Ctenopharyngodon idella [64] | |
| Selenoprotein E | SELENOE | Ictalurus punctatus [18] | |
| Selenoprotein J | SELENOJ | Oreochromis mossambicus [93] | |
| Selenoprotein X | SELENOX | Danio rerio [94] | |
| Glutathione peroxidase | GPX7 | Bostrychus sinensis [95] | |
| GPX8 | Bostrychus sinensis [95] | ||
| GPX9 | Ictalurus punctatus [18] |
3.2. The Application of Aquatic Products in Human Health
4. Prospects for the Development and Utilization of Selenium-Enriched Aquatic Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prabhu, K.S.; Lei, X.G. Selenium. Adv. Nutr. Int. Rev. J. 2016, 7, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, K.; Xu, Z.; Wang, L.; Zhu, Y.; Yu, Z.; Li, T.; Huang, J. Potential Applications and Risks of Supranutritional Selenium Supplementation in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Critical Review. Nutrients 2025, 17, 2484. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, M.; Tang, S.; Li, M.; Wu, R.; Wan, S.; Chen, L.; Wei, X.; Feng, S. Effects and Impact of Selenium on Human Health, A Review. Molecules 2024, 30, 50. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Raza, A.; Johnson, H.; Singh, A.; Sharma, A.K. Impact of selenium nanoparticles in the regulation of inflammation. Arch. Biochem. Biophys. 2022, 732, 109466. [Google Scholar] [CrossRef]
- Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef]
- Mistry, H.D.; Pipkin, F.B.; Redman, C.W.; Poston, L. Selenium in reproductive health. Am. J. Obstet. Gynecol. 2012, 206, 21–30. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lu, Y.; Dun, X.; Wang, X.; Wang, H. Research Progress of Selenium-Enriched Foods. Nutrients 2023, 15, 4189. [Google Scholar] [CrossRef]
- Shi, S.Y. Research on the Evaluation of High-Quality Development in China’s Fisheries Sector. Master’s Thesis, Zhejiang Ocean University, Zhoushan, China, 2023. [Google Scholar]
- Tacon, A.G.J.; Lemos, D.; Metian, M. Fish for Health: Improved Nutritional Quality of Cultured Fish for Human Consumption. Rev. Fish. Sci. Aquac. 2020, 28, 449–458. [Google Scholar] [CrossRef]
- Fiorella, K.J.; Okronipa, H.; Baker, K.; Heilpern, S. Contemporary Aquaculture: Implications for Human Nutrition. Curr. Opin. Biotechnol. 2021, 70, 83–90. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, Z.; Liu, Q.; Wang, X.; Zheng, L.; He, S.; Yang, F.; Ji, H.; Dong, W. Selenium nanoparticles in aquaculture: Unique advantages in the production of Se-enriched grass carp (Ctenopharyngodon idella). Anim. Nutr. 2024, 16, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, Q.; Wang, Y.; Wang, X.; Ma, Y.; Yang, F.; Dong, W.; Ji, H. A screening for optimal selenium enrichment additives for selenium-enriched fish production: Application of a HPLC-ICP-MS method. Food Chem. X 2023, 21, 101088. [Google Scholar] [CrossRef] [PubMed]
- A Byrd, K.; Thilsted, S.H.; Fiorella, K.J. Fish nutrient composition: A review of global data from poorly assessed inland and marine species. Public Health Nutr. 2020, 24, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Keyvanshokooh, S.; Salati, A.P.; Ghasemi, A.; Nazemroaya, S.; Houshmand, H.; Mozanzadeh, M.T. Reproductive Benefits of Dietary Selenium Nanoparticles (SeNPs) in Asian Seabass (Lates calcarifer) Male Broodstock. Mar. Biotechnol. 2025, 27, 45. [Google Scholar] [CrossRef]
- Li, Z.M.; Jin, X.M.; Qiu, H.L.; Xu, W.H.; Hu, C.; Chen, K.; Huang, J.Q.; Wang, L.S. Nano-Selenium supplementation Improves Meat Quality, Protein Deposition, and Selenoprotein Gene Expression in Channel Catfish (Ictalurus punctatus). Biol. Trace Elem. Res. 2025, 1–18. [Google Scholar] [CrossRef]
- Goulart, J.F.F.; Pereira, A.C.; Marques, A.M.B.; Martins, I.D.C.A. Nutritional value of seven demersal fish species from the North Atlantic Azores archipelago. Food Chem. X 2024, 24, 102046. [Google Scholar] [CrossRef]
- Matos, Â.P.; Matos, A.C.; Moecke, E.H.S. Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Braz. J. Food Technol. 2019, 22, 19318. [Google Scholar] [CrossRef]
- Li, L.; Shen, Y.; Yang, W.; Xu, X.; Li, J. Effect of different stocking densities on fish growth performance: A meta-analysis. Aquaculture 2021, 544, 737152. [Google Scholar] [CrossRef]
- Ryu, B.; Shin, K.-H.; Kim, S.-K. Muscle Protein Hydrolysates and Amino Acid Composition in Fish. Mar. Drugs 2021, 19, 377. [Google Scholar] [CrossRef]
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A.O. Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef]
- Yu, H.; Xian, M.; Qu, C.; Peng, P.; Yongo, E.; Xia, G.; Xiao, J.; Guo, Z. Comprehensive distribution of Se in yellowfin tuna dark meat and characterization of its Se-enriched water-soluble protein. Food Chem. 2025, 493, 145700. [Google Scholar] [CrossRef]
- Singhato, A.; Judprasong, K.; Sridonpai, P.; Laitip, N.; Ornthai, N.; Yafa, C. Speciation of selenium in fresh and cooked commonly consumed fish in Thailand. J. Food Compos. Anal. 2023, 120, 105303. [Google Scholar] [CrossRef]
- Farooq, M.R.; Zhang, Z.; Yuan, L.; Liu, X.; Li, M.; Song, J.; Wang, Z.; Yin, X. Characterization of Selenium Speciation in Se-Enriched Crops: Crop Selection Approach. J. Agric. Food Chem. 2024, 72, 3388–3396. [Google Scholar] [CrossRef] [PubMed]
- Tangjaidee, P.; Swedlund, P.; Xiang, J.; Yin, H.; Quek, S.Y. Selenium-enriched plant foods: Selenium accumulation, speciation, and health functionality. Front. Nutr. 2023, 9, 962312. [Google Scholar] [CrossRef]
- Qi, Z.; Duan, A.; Ng, K. Selenosugar, selenopolysaccharide, and putative selenoflavonoid in plants. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13329. [Google Scholar] [CrossRef]
- Tinggi, U.; Perkins, A.V. Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients 2022, 14, 5308. [Google Scholar] [CrossRef]
- Pappa, E.C.; Pappas, A.C.; Surai, P.F. Selenium content in selected foods from the Greek market and estimation of the daily intake. Sci. Total Environ. 2006, 372, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Burtseva, T.I.; Salnikova, E.V.; Ajsuvakova, O.P.; Skalnaya, M.G.; Kirichuk, A.A.; Tinkov, A.A. Geographic variation of environmental, food, and human hair selenium content in an industrial region of Russia. Environ. Res. 2019, 171, 293–301. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.; da Silva, F.M.; Muccillo-Baisch, A.L. Selenium content of Brazilian foods: A review of the literature values. J. Food Compos. Anal. 2017, 58, 10–15. [Google Scholar] [CrossRef]
- Wang, X.; Chang, F.; Dong, Q.; Jia, P.; Luan, H.; Wang, X.; Zhang, J.; Yuan, X.; Zhang, X.; Yang, S.; et al. Selenium application during fruit development can effectively inhibit browning of fresh-cut apples by enhancing antioxidant capacity and suppressing polyphenol oxidase activity. J. Plant Physiol. 2023, 287, 154050. [Google Scholar] [CrossRef]
- Cámara-Martos, F.; Obregón-Cano, S.; de Haro-Bailón, A. Glucosinolates, Ca, Se Contents, and Bioaccessibility in Brassica rapa Vegetables Obtained by Organic and Conventional Cropping Systems. Foods 2022, 11, 350. [Google Scholar] [CrossRef]
- McNaughton, S.; Marks, G. Selenium Content of Australian Foods: A Review of Literature Values. J. Food Compos. Anal. 2002, 15, 169–182. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.; Lee, H.-S.; Kim, C.-I.; Hwang, I.K.; Park, H.K.; Oh, C.-H. Selenium content in representative Korean foods. J. Food Compos. Anal. 2009, 22, 117–122. [Google Scholar] [CrossRef]
- Hintze, K.J.; Lardy, G.P.; Marchello, M.J.; Finley, J.W. Areas with high concentrations of selenium in the soil and forage produce beef with enhanced concentrations of selenium. J. Agric. Food Chem. 2001, 49, 1062–1067. [Google Scholar] [CrossRef]
- Fernández-Bautista, T.; Gómez-Gómez, B.; Gracia-Lor, E.; Pérez-Corona, T.; Madrid, Y. Selenium Health Benefit Values and Hg and Se speciation studies for elucidating the quality and safety of highly consumed fish species and fish-derived products. Food Chem. 2023, 435, 137544. [Google Scholar] [CrossRef]
- Sales, S.; Lourenço, H.; Bandarra, N.; Cardoso, C.; Brito, P.; Botelho, M.; Gonçalves, S.; Coelho, I.; Delgado, I.; Pessoa, M.; et al. Elemental Composition and In Vitro Bioaccessibility Assessment of Holothuroids. J. Food Compos. Anal. 2022, 115, 104986. [Google Scholar] [CrossRef]
- Frías-Espericueta, M.G.; Sánchez-Betancourt, A.; Ruelas-Inzunza, J.; Escobar-Sánchez, O.; Osuna-Martínez, C.C.; Aguilar-Juárez, M.; Soto-Jiménez, M.F.; Valenzuela-Quiñonez, F.; Nieves-Soto, M.; Bojórquez-Sánchez, C.; et al. Total Mercury and Selenium in wild Shrimp from Coastal Lagoons of Northwest Mexico: Human Health risk Assessment. Bull. Environ. Contam. Toxicol. 2023, 110, 42. [Google Scholar] [CrossRef]
- Hao, Y.R. Isolation and Characterisation of Selenium-Binding Proteins from the Scallop Pecten Chinensis, and Proteomic Analysis Under Short-Term Selenium Stress. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2023. [Google Scholar] [CrossRef]
- Zhang, B.X. Investigation into Selenium Enrichment in Fish Products from Ankang City, and the Effect of Selenium-Fortified Feed on Accumulation Levels of Selenium in Multiscale Whitefish. Master’s Thesis, Northwest A&F University, Xi’an, China, 2019. [Google Scholar]
- Xu, Z.-J.; Ren, F.-Z.; Zhang, Z.-W.; Xu, S.-W.; Huang, J.-Q. Advances of Selenium in Poultry Nutrition and Health. J. Nutr. 2025, 155, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, B.M.; Leal, D.F.; Frias-De-Diego, A.; Browning, M.; Odle, J.; Crisci, E. The health benefits of selenium in food animals: A review. J. Anim. Sci. Biotechnol. 2022, 13, 58. [Google Scholar] [CrossRef]
- Salas-Garzón, Z.; Escobar-Sánchez, O.; Ruelas-Inzunza, J.; Sánchez-Osuna, K.; Corro-Espinosa, D. Distribution of Hg and Se in Muscle and Liver of the Thornback Guitarfish Platyrhinoidis triseriata from the Eastern Pacific Ocean. Bull. Environ. Contam. Toxicol. 2022, 109, 272–278. [Google Scholar] [CrossRef]
- Detering, C.A.; Brix, K.V.; Adzic, M.; A Fulton, B.; DeForest, D.K. Relationships in selenium concentrations among fish tissues to support selenium assessments and regulations. Environ. Toxicol. Chem. 2025, 44, 1742–1757. [Google Scholar] [CrossRef]
- Ferraz, A.H.; Costa, L.P.; Mirlean, N.; Seus-Arrache, E.R.; Adebayo, S. Selenium Content in Freshwater and Marine Fish from Southern Brazil Coastal Plain: A Comparative Analysis on Environmental and Dietary Aspects. Biol. Trace Elem. Res. 2022, 201, 946–958. [Google Scholar] [CrossRef]
- The Chinese Nutrition Society has released the 2023 edition of the Dietary Reference Intakes for Nutrients for Chinese Resi-dents. Acta Nutr. Sin. 2023, 45, 414. [CrossRef]
- Lin, F.; Zhang, H.; Yu, J.; Yu, C.; Chen, C.; Sun, Z.; Wang, S.; Wen, X. Effects of dietary selenium on growth performance, antioxidative status and tissue selenium deposition of juvenile Chu’s croaker (Nibea coibor). Aquaculture 2021, 536, 736439. [Google Scholar] [CrossRef]
- Sultan, I.; Fatima, M.; Shah, S.Z.H.; Khan, N.; Nadeem, H.; Ali, W. Effects of dietary nano-selenium concentration on growth, proximate chemical composition and antioxidant enzymes, and physiological responses to stressors by juvenile Catla catla. Aquaculture 2024, 588, 740914. [Google Scholar] [CrossRef]
- Xu, X.-J.; Zhang, D.-G.; Zhao, T.; Xu, Y.-H.; Luo, Z. Dietary selenium sources differentially regulate selenium concentration, mRNA and protein expression of representative selenoproteins in various tissues of yellow catfish Pelteobagrus fulvidraco. Br. J. Nutr. 2021, 127, 490–502. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, H.; Liu, C.; Fei, S.; Hu, X.; Han, D.; Jin, J.; Yang, Y.; Xie, S.; Zhu, X. Effects of Different Dietary Selenium Sources on the Meat Quality and Antioxidant Capacity of Yellow Catfish (Pelteobagrus fulvidraco). Aquac. Nutr. 2023, 2023, 7981183. [Google Scholar] [CrossRef]
- Ashouri, S.; Keyvanshokooh, S.; Salati, A.P.; Johari, S.A.; Pasha-Zanoosi, H. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 2015, 446, 25–29. [Google Scholar] [CrossRef]
- Saffari, S.; Keyvanshokooh, S.; Zakeri, M.; Johari, S.; Pasha-Zanoosi, H. Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquac. Nutr. 2016, 23, 611–617. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y.; Wang, L.; Bai, Z.; Shohel, R.M.; Jiang, Z.; Ren, T. Toxicity effects of different dietary selenium forms on sea cucumber, Apostichopus japonicus. Aquac. Rep. 2019, 15, 100209. [Google Scholar] [CrossRef]
- Ning, Y.; Wu, X.; Zhou, X.; Ding, J.; Chang, Y.; Yang, Z.; Huang, Z.; Zuo, R. An evaluation on the selenium yeast supplementation in the practical diets of early juvenile sea cucumber (Apostichopus japonicus): Growth performance, digestive enzyme activities, immune and antioxidant capacity, and body composition. Aquac. Nutr. 2021, 27, 2142–2153. [Google Scholar] [CrossRef]
- Wang, K.; Liu, L.; He, Y.; Qu, C.; Miao, J. Effects of Dietary Supplementation with κ-Selenocarrageenan on the Selenium Accumulation and Intestinal Microbiota of the Sea Cucumbers Apostichopus japonicus. Biol. Trace Elem. Res. 2020, 199, 2753–2763. [Google Scholar] [CrossRef]
- Ghaffarizadeh, A.; Sotoudeh, E.; Mozanzadeh, M.T.; Sanati, A.M.; Ghasemi, A. Supplementing dietary selenium nano-particles increased growth, antioxidant capacity and immune-related genes transcription in Pacific whiteleg shrimp (Penaeus vannamei) juveniles. Aquac. Rep. 2022, 25, 101215. [Google Scholar] [CrossRef]
- Kong, Y.; Li, S.; Liu, M.; Yao, C.; Yang, X.; Zhao, N.; Li, M. Effect of dietary organic selenium on survival, growth, antioxidation, immunity and gene expressions of selenoproteins in abalone Haliotis discus hannai. Aquac. Res. 2018, 50, 847–855. [Google Scholar] [CrossRef]
- Pham, H.D.; Siddik, M.A.B.; Fotedar, R.; Nguyen, C.M.; Nahar, A.; Gupta, S.K. Total Bioavailable Organic Selenium in Fishmeal-Based Diet Influences Growth and Physiology of Juvenile Cobia Rachycentron canadum (Linnaeus, 1766). Biol. Trace Elem. Res. 2018, 190, 541–549. [Google Scholar] [CrossRef]
- Shi, M.; Qin, F.; Yuan, L.; Song, X.; Bu, Y.; Liu, Z.; Fu, J. The effects of nano-selenium on the growth performance, selenium content and nutritional composition of Chinese mantis shrimp. Feed Ind. 2015, 36, 21–25. [Google Scholar] [CrossRef]
- Lobanov, A.V.; Hatfield, D.L.; Gladyshev, V.N. Eukaryotic selenoproteins and selenoproteomes. Biochim. Biophys. Acta 2009, 1790, 1424–1428. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Wu, L.; Liu, Q.; Zhang, D.; Yin, J. Expression of selenoprotein genes in muscle is crucial for the growth of rainbow trout (Oncorhynchus mykiss) fed diets supplemented with selenium yeast. Aquaculture 2018, 492, 82–90. [Google Scholar] [CrossRef]
- He, P.; Zhang, X.; Wu, W.; Liu, G.; Liu, S.; Wang, C.; Yu, H. Molecular characterization and tissue distribution of nine selenoprotein genes in grass carp Ctenopharyngodon idella and their mRNA expressions in response to high-fat diet and high-fat diet supplemented with selenium. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2022, 259, 110706. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, P.; Wen, S.; Zhang, M.; Gisbert, E.; Todorcevic, M.; Zhou, J. Protective effect of selenium supplementation against damage of health and muscle quality in Onychostoma macrolepis under a thermally oxidized fish oil–enriched diet. Fish Physiol. Biochem. 2025, 51, 144. [Google Scholar] [CrossRef]
- Li, Z.-M.; Wang, X.-L.; Jin, X.-M.; Huang, J.-Q.; Wang, L.-S. The effect of selenium on antioxidant system in aquaculture animals. Front. Physiol. 2023, 14, 1153511. [Google Scholar] [CrossRef] [PubMed]
- Vetter, V.M.; Demircan, K.; Homann, J.; Chillon, T.S.; Mülleder, M.; Shomroni, O.; Steinhagen-Thiessen, E.; Ralser, M.; Lill, C.M.; Bertram, L.; et al. Low blood levels of selenium, selenoprotein P and GPx3 are associated with accelerated biological aging: Results from the Berlin Aging Study II (BASE-II). Clin. Epigenet. 2025, 17, 62. [Google Scholar] [CrossRef]
- Wahl, L.; Chillon, T.S.; Seemann, P.; Ohrndorf, S.; Ochwadt, R.; Becker, W.; Schomburg, L.; Hoff, P. Serum selenium, selenoprotein P and glutathione peroxidase 3 in rheumatoid, psoriatic, juvenile idiopathic arthritis, and osteoarthritis. J. Nutr. Biochem. 2024, 135, 109776. [Google Scholar] [CrossRef]
- Liang, P.; Saqib, H.S.A.; Ni, X.; Shen, Y. Long-read sequencing and de novo genome assembly of marine medaka (Oryzias melastigma). BMC Genom. 2020, 21, 640. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, K.; Zhang, D.; Zhao, Z.; Huang, J.; Zhou, L.; Feng, M.; Shi, J.; Wei, H.; Li, L.; et al. GPx6 is involved in the in vitro induced capacitation and acrosome reaction in porcine sperm. Theriogenology 2020, 156, 107–115. [Google Scholar] [CrossRef]
- Ma, P.; Hu, Z.; Li, L.; Li, D.; Tang, R. Dietary selenium promotes the growth performance through growth hormone–insulin-like growth factor and hypothalamic–pituitary–thyroid axes in grass carp (Ctenopharyngodon idella). Fish Physiol. Biochem. 2021, 47, 1313–1327. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Z.; Wang, L.; Yu, H.; Zhang, X.; Rong, K. Dietary selenium requirement for on-growing grass carp, Ctenopharyngodon idellus. Aquaculture 2023, 573, 739572. [Google Scholar] [CrossRef]
- Shahidin; Wang, Y.; Wu, Y.; Chen, T.; Wu, X.; Yuan, W.; Zhu, Q.; Wang, X.; Zi, C. Selenium and Selenoproteins: Mechanisms, Health Functions, and Emerging Applications. Molecules 2025, 30, 437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef]
- Xu, X.-J.; Zhang, D.-G.; Zhao, T.; Xu, Y.-H.; Luo, Z. Characterization and expression analysis of seven selenoprotein genes in yellow catfish Pelteobagrus fulvidraco to dietary selenium levels. J. Trace Elem. Med. Biol. 2020, 62, 126600. [Google Scholar] [CrossRef]
- Dou, Q.; Turanov, A.A.; Mariotti, M.; Hwang, J.Y.; Wang, H.; Lee, S.-G.; Paulo, J.A.; Yim, S.H.; Gygi, S.P.; Chung, J.-J.; et al. Selenoprotein TXNRD3 supports male fertility via the redox regulation of spermatogenesis. J. Biol. Chem. 2022, 298, 102183. [Google Scholar] [CrossRef] [PubMed]
- Copeland, P.; Vetick, M. A Zebrafish Model for Selenoprotein Synthesis and Function (OR11-01-19). Curr. Dev. Nutr. 2019, 3 (Suppl. 1), nzz044.OR11. [Google Scholar] [CrossRef]
- Ke, J.; Zhang, D.-G.; Lei, X.-J.; Liu, G.-H.; Luo, Z. Characterization and tissue expression of twelve selenoproteins in yellow catfish Pelteobagrus fulvidraco fed diets varying in oxidized fish oil and selenium levels. J. Trace Elem. Med. Biol. 2023, 79, 127204. [Google Scholar] [CrossRef]
- Ren, B.; Liu, M.; Ni, J.; Tian, J. Role of Selenoprotein F in Protein Folding and Secretion: Potential Involvement in Human Disease. Nutrients 2018, 10, 1619. [Google Scholar] [CrossRef]
- Cao, L.; Pechan, T.; Lee, S.; Cheng, W.-H. Identification of Selenoprotein H Isoforms and Impact of Selenoprotein H Overexpression on Protein But Not mRNA Levels of 2 Other Selenoproteins in 293T Cells. J. Nutr. 2021, 151, 3329–3338. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, W.; Gao, F.; Yu, Z.; Ren, F.; Lei, X.G. Impacts and mechanism of liver-specific knockout of selenoprotein I on hepatic phospholipid metabolism, selenogenome expression, redox status, and resistance to CCl4 toxicity. Free Radic. Biol. Med. 2025, 235, 426–442. [Google Scholar] [CrossRef]
- Huang, X.; Yang, X.; Zhang, M.; Li, T.; Zhu, K.; Dong, Y.; Lei, X.; Yu, Z.; Lv, C.; Huang, J. SELENOI Functions as a Key Modulator of Ferroptosis Pathway in Colitis and Colorectal Cancer. Adv. Sci. 2024, 11, e2404073. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Cai, Z.; Ouyang, P.; Lin, S.; Zhang, S.; Liang, D.; Feng, Z.; Chen, C.; Ye, X.; Song, G.; et al. GluA2 palmitoylation by SELENOK modulates AMPAR assembly and synaptic plasticity in Alzheimer’s disease. Redox Biol. 2025, 86, 103831. [Google Scholar] [CrossRef]
- Guan, H.; Sun, Y.; Qiao, S.; Li, D.; Cai, J.; Zhang, Z. Mechanistic Insights Into the Role of Selenoprotein M in Nickel-Induced Lung Fibrosis. Biol. Trace Elem. Res. 2025, 1–13. [Google Scholar] [CrossRef]
- Barraza-Flores, P.; Moghadaszadeh, B.; Lee, W.; Isaac, B.; Sun, L.; Hickey, E.T.; Rockowitz, S.; Sliz, P.; Beggs, A.H. Zebrafish and cellular models of SELENON-Congenital myopathy exhibit novel embryonic and metabolic phenotypes. Skelet. Muscle 2025, 15, 7. [Google Scholar] [CrossRef]
- Risi, B.; Caria, F.; Damioli, S.; Labella, B.; Lanzi, G.; Bugatti, M.; Baronchelli, C.; Bertella, E.; Giovanelli, G.; Ferullo, L.; et al. SELENON-related myopathy as a cause of acute respiratory failure in middle age: A case report. J. Med. Case Rep. 2025, 19, 64. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, K.; Wang, Y.; Jiang, Q.; Du, Y.; Luo, D.; Li, X.; Li, S. Importance of Selenoprotein O in Regulating Hmgb1: A New Direction for Modulating ROS-Dependent NETs Formation to Aggravate the Progression of Acute Liver Inflammation. J. Agric. Food Chem. 2025, 73, 9382–9397. [Google Scholar] [CrossRef]
- Baclaocos, J.; Santesmasses, D.; Mariotti, M.; Bierła, K.; Vetick, M.B.; Lynch, S.; McAllen, R.; Mackrill, J.J.; Loughran, G.; Guigó, R.; et al. Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs. J. Mol. Biol. 2019, 431, 4381–4407. [Google Scholar] [CrossRef]
- Qazi, I.H.; Angel, C.; Yang, H.; Pan, B.; Zoidis, E.; Zeng, C.-J.; Han, H.; Zhou, G.-B. Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules 2018, 23, 3053. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, Z.-F.; Hu, D.-Y.; Li, P.-J.; Wu, K.-N.; Fan, H.-H.; Deng, J.; Wu, H.-M.; Zhang, X.; Zhu, J.-H. The selenocysteine-containing protein SELENOT maintains dopamine signaling in the midbrain to protect mice from hyperactivity disorder. EMBO J. 2025, 44, 2906–2927. [Google Scholar] [CrossRef]
- Chen, L.-L.; Huang, J.-Q.; Wu, Y.-Y.; Chen, L.-B.; Li, S.-P.; Zhang, X.; Wu, S.; Ren, F.-Z.; Lei, X.-G. Loss of Selenov predisposes mice to extra fat accumulation and attenuated energy expenditure. Redox Biol. 2021, 45, 102048. [Google Scholar] [CrossRef]
- Yang, J.-C.; Liu, M.; Huang, R.-H.; Zhao, L.; Niu, Q.-J.; Xu, Z.-J.; Wei, J.-T.; Lei, X.G.; Sun, L.-H. Loss of SELENOW aggravates muscle loss with regulation of protein synthesis and the ubiquitin-proteasome system. Sci. Adv. 2024, 10, eadj4122. [Google Scholar] [CrossRef]
- Seale, L.A.; Gilman, C.L.; Moorman, B.P.; Berry, M.J.; Grau, E.G.; Seale, A.P. Effects of acclimation salinity on the expression of selenoproteins in the tilapia, Oreochromis mossambicus. J. Trace Elem. Med. Biol. 2014, 28, 284–292. [Google Scholar] [CrossRef]
- Mammalian Gene Collection (MGC) Program Team. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA 2002, 99, 16899–16903. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Xia, L.P.; Shen, B.; Zhang, J.S. Molecular cloning, expression and enzymatic activity analyses of GPX7 and GPX8 from Chinese black sleeper (Bostrychus sinensis). Oceanol. Limnol. Sin. 2022, 53, 697–709. [Google Scholar] [CrossRef]
- Chen, X.-D.; Zhao, Z.-P.; Zhou, J.-C.; Lei, X.G. Evolution, regulation, and function of porcine selenogenome. Free Radic. Biol. Med. 2018, 127, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Vernarelli, J.; Poirier, S. Investigating Trends in Nutrition: Greater Intake of Fish and Plant Protein is Associated with Better Diet Quality in US Adults. Curr. Dev. Nutr. 2020, 4, 572. [Google Scholar] [CrossRef]
- Xia, Z.; Miao, J.; Chen, B.; Guo, J.; Ou, Y.; Liang, X.; Yin, Y.; Tong, X.; Cao, Y. Purification, identification, and antioxidative mechanism of three novel selenium-enriched oyster antioxidant peptides. Food Res. Int. 2022, 157, 111359. [Google Scholar] [CrossRef]
- Xia, Z.; Chen, B.B.; Huang, W.; Kang, A.; Liang, X. Optimization of selenium-enriched oyster peptides by response surface methodology and its protective effect on oxidative damage of cells and ACE inhibitory activity. Food Ferment. Ind. 2023, 49, 120–128. [Google Scholar] [CrossRef]
- Schomburg, L. Selenium Deficiency in COVID-19—A Possible Long-Lasting Toxic Relationship. Nutrients 2022, 14, 283. [Google Scholar] [CrossRef] [PubMed]
- DeAngelo, S.L.; Győrffy, B.; Koutmos, M.; Shah, Y.M. Selenoproteins and tRNA-Sec: Regulators of cancer redox homeostasis. Trends Cancer 2023, 9, 1006–1018. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.E.; Hussein, N.A.; Rashad, M.M.; El-Sikaily, A.M.; Hassanin, A.E.-L.A.; El-Fakharany, E.M. Sea cucumber sulfated polysaccharides extract potentiates the anticancer effect of 5-fluorouracil on hepatocellular carcinoma cells. Sci. Rep. 2025, 15, 20255. [Google Scholar] [CrossRef]
- Cabral, A.E.; Rey, F.; Domingues, M.R.; Cabral, M.; Planas, M.; Palma, J.; Calado, R. Fatty acid profiles of cultured Hippocampus hippocampus trunk muscles and potential nutritional value. Front. Mar. Sci. 2023, 10, 1135250. [Google Scholar] [CrossRef]
- The Central Committee of the Communist Party of China and the State Council have issued the ‘Healthy China 2030’ planning outline. Bull. State Counc. People’s Repub. China 2016, 32, 5–20.

| Food Types | Selenium Content Range (mg/kg) | References | |
|---|---|---|---|
| Grains | Rice | 0.177–0.205 | [30] |
| Bread | 0.09–0.20 | [31,32] | |
| Fruits | Banana | 0.043–0.057 | [30] |
| Apple | 0.103 ± 0.001 | [33] | |
| Vegetables | Broccoli | 0.061–0.118 | [30] |
| Turnip greens | 0.061–0.073 | [34] | |
| Dairy products | Milk | 0.107–0.162 | [30] |
| Cheese | 0.070–0.0789 | [35] | |
| Meat | Pork | 0.174–0.199 | [36] |
| Beef | 0.27–0.67 | [37] | |
| Aquatic products | Tuna | 1.6 ± 0.1 | [38] |
| Swordfish | 1.4 ± 0.2 | [38] | |
| Farmed salmon | 1.03 ± 0.07 | [38] | |
| Wild salmon | 0.74 ± 0.08 | [38] | |
| Holothuria arguinensis | 4.26 ± 0.08 | [39] | |
| Holothuria forskali | 2.35 ± 0.13 | [39] | |
| Holothuria mammata | 3.22 ± 0.43 | [39] | |
| Shrimp | 0.126–1.741 | [40] | |
| Chlamys nobilis | 0.27–2.37 | [41] | |
| Aristichthys nobilis | 0.33 | [42] | |
| Cyprinus carpio | 0.27 | [42] | |
| Ctenopharyngodon idella | 0.19 | [42] | |
| Animals | Weight (g) | Selenium in Feed | Selenium Concentration and Feeding Cycle | Selenium Content in Muscle and Body Wall (mg/kg) | References | AI (g/d) | UL (g/d) |
|---|---|---|---|---|---|---|---|
| Ctenopharyngodon idella | 250.79 ± 1.57 | Selenite, SeMet, Selenium nanoparticles (SeNP) | 0.9 mg/kg, 60 days | 0.395 ± 0.016, 0.592 ± 0.063, 0.629 ± 0.020 | [14] | 100–150 | <635 |
| Ictaluruspunctatus | 85.74 ± 5.75 | Nanoselenium (Nano-Se) | 5 mg/kg, 60 days | 0.126 ± 0.02 | [18] | 476 | <3175 |
| Scaphesthes macrolepis | 2.1 ± 0.03 | Nano-Se | 0.7, 1.47, 2.08, 60 days | 0.19–0.20 | [42] | 300–316 | <2000 |
| Nibea coibor | 11.34 ± 0.12 | Sodium selenite | 1.72 mg/kg, 8 weeks | 0.25 ± 0.01 | [49] | 240 | <1600 |
| Juvenile Catla catla | 6.41 ± 0.02 | Nano-Se | 1.08 mg/kg, | 0.53 ± 0.02 | [50] | 114 | <755 |
| Pelteobagrus fulvidraco | 7.55 ± 0.03 | Sodium-selenite, Se-yeast, SeMet | 0.25 mg/kg, 10 weeks | 0.11 ± 0.01, 0.15 ± 0.02, 0.13 ± 0.01 (DW) | [51] | 41–55 | <270 |
| 49.79 ± 0.65 | Sodium selenite, Se-yeast Se-enriched Spirulina platensis | 1.08, 1.14, 1.12 mg/kg, 50 days | 0.91 ± 0.02, 1.49 ± 0.02, 1.15 ± 0.02 | [52] | |||
| Cyprinus carpio | 9.94 ± 0.03 | SeNP | 0.5 mg/kg, 8 weeks | 0.65 ± 0.06 | [53] | 66–93 | <660 |
| 9.69 ± 0.12 | Sodium selenite, SeMet, Nano-Se | 0.7 mg/kg, 8 weeks | 0.81 ± 0.02, 0.91 ± 0.01, 0.89 ± 0.03 | [54] | |||
| Apostichopus japonicus | 1.34 ± 0.18 | Bio-fermenting Se, SeMet | 5 mg/kg, 30 days | 0.215 ± 0.02, 0.235 ± 0.03 (DW) | [55] | 20–33 | <130 |
| 0.11 ± 0.01 | Se-yeast | 1 mg/kg, 45 days | 3.1 ± 0.05 | [56] | |||
| 70 ± 10 | κ-Selenocarrageenan | 2 mg/kg, 30 days | 1.87 ± 0.02 | [57] | |||
| Penaeus vannamei | 1.55 ± 0.04 | SeNP | 0.38 mg/kg 8 weeks | 0.97 ± 0.08 | [58] | 62 | <620 |
| Haliotis discus hannai | 1.57 ± 0.01 | Organic Se (Sel-Plex) | 0.322, 0.427, 0.596 mg/kg, 60 days | 0.459 ± 0.02, 0.53 ± 0.05, 0.851 ± 0.07 | [59] | 71–130 | <705 |
| Rachycentron canadum | 13.65 ± 0.40 | Se-yeast | 1.5, 3 mg/kg, 8 weeks | 0.486–1.217 | [60] | 125 | <824 |
| Eriocheir sinensis | 4.5 ± 0.4 | Nano-Se | 0.1, 0.4, 0.8 mg/kg, 90 days | 0.22 ± 0.02, 0.23 ± 0.02, 0.25 ± 0.01 | [61] | 160–182 | <1600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, H.; Ren, H.; Wang, W.; Huang, J.; Wang, L.; Jin, X. Dietary Selenium-Enriched Aquatic Products for Human Health. Nutrients 2025, 17, 3640. https://doi.org/10.3390/nu17233640
Qiu H, Ren H, Wang W, Huang J, Wang L, Jin X. Dietary Selenium-Enriched Aquatic Products for Human Health. Nutrients. 2025; 17(23):3640. https://doi.org/10.3390/nu17233640
Chicago/Turabian StyleQiu, Huilong, Hai Ren, Weijian Wang, Jiaqiang Huang, Lianshun Wang, and Xiaomin Jin. 2025. "Dietary Selenium-Enriched Aquatic Products for Human Health" Nutrients 17, no. 23: 3640. https://doi.org/10.3390/nu17233640
APA StyleQiu, H., Ren, H., Wang, W., Huang, J., Wang, L., & Jin, X. (2025). Dietary Selenium-Enriched Aquatic Products for Human Health. Nutrients, 17(23), 3640. https://doi.org/10.3390/nu17233640

