Association Between Dietary Adherence and Cognitive Function Among Rural Older Patients with Cardiometabolic Multimorbidity: The Moderating Role of Health Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Cognitive Function Assessment
2.3. Dietary Adherence Assessment
2.4. Health Management Assessment
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Common Method Bias Test
3.3. Descriptive Statistics and Correlation Analysis of the Main Variables
3.4. Difference Analysis of Dietary Adherence and Cognitive Function
3.5. Hierarchical Regression Analysis of Cognitive Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitty, C.J.M.; MacEwen, C.; Goddard, A.; Alderson, D.; Marshall, M.; Calderwood, C.; Atherton, F.; McBride, M.; Atherton, J.; Stokes-Lampard, H.; et al. Rising to the challenge of multimorbidity. BMJ 2020, 368, l6964. [Google Scholar] [CrossRef]
- Luo, Y.; He, L.; Ma, T.; Li, J.; Bai, Y.; Cheng, X.; Zhang, G. Associations between consumption of three types of beverages and risk of cardiometabolic multimorbidity in UK Biobank participants: A prospective cohort study. BMC Med. 2022, 20, 273. [Google Scholar] [CrossRef] [PubMed]
- Busija, L.; Lim, K.; Szoeke, C.; Sanders, K.M.; McCabe, M.P. Do replicable profiles of multimorbidity exist? Systematic review and synthesis. Eur. J. Epidemiol. 2019, 34, 1025–1053. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Zhao, Y.; Shi, J.; Ma, S.; Hu, X.; Ma, M.; Li, X.; Shi, J.; Yang, J. Spatial heterogeneity and its influencing factors of cardiometabolic multimorbidity in a natural community population: A study based on Lingwu city, rural Northwest China. BMC Public Health 2025, 25, 3188. [Google Scholar] [CrossRef]
- Jin, Y.; Liang, J.; Hong, C.; Liang, R.; Luo, Y. Cardiometabolic multimorbidity, lifestyle behaviours, and cognitive function: A multicohort study. Lancet Healthy Longev. 2023, 4, e265–e273. [Google Scholar] [CrossRef]
- Huang, Z.T.; Luo, Y.; Han, L.; Wang, K.; Yao, S.S.; Su, H.X.; Chen, S.; Cao, G.Y.; De Fries, C.M.; Chen, Z.S.; et al. Patterns of cardiometabolic multimorbidity and the risk of depressive symptoms in a longitudinal cohort of middle-aged and older Chinese. J. Affect. Disord. 2022, 301, 1–7. [Google Scholar] [CrossRef]
- Dove, A.; Guo, J.; Marseglia, A.; Fastbom, J.; Vetrano, D.L.; Fratiglioni, L.; Pedersen, N.L.; Xu, W. Cardiometabolic multimorbidity and incident dementia: The Swedish twin registry. Eur. Heart J. 2023, 44, 573–582. [Google Scholar] [CrossRef]
- Xiao, L.X.; Wang, Z.Y.; Li, J.T.; Wang, H.M.; Hao, Y.M.; Zhou, P.; Huang, Y.L.; Deng, Q.J.; Hao, Y.C.; Yang, N.; et al. Association of cardiometabolic multimorbidity with all-cause and cardiovascular disease mortality among Chinese hypertensive patients. J. Geriatr. Cardiol. 2024, 21, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Arayici, M.E.; Kose, A. Prevalence of Alzheimer’s Disease and Cardiometabolic Multimorbidity in Older Adults Aged 60 and above in a Large-Scale Representative Sample in Türkiye: A Nationwide Population-Based Cross-Sectional Study. J. Epidemiol. Glob. Health 2025, 15, 86. [Google Scholar] [CrossRef]
- Su, B.; Chen, J.; Chen, C.; Wu, Y.; Li, Y.; Shen, X.; Zheng, X. Aging with Disabilities: Navigating the Dual Challenge of Aging and Disability in a Rapidly Aging Society with a Focus on China. China CDC Wkly. 2025, 7, 713–717. [Google Scholar]
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef]
- Etgen, T.; Sander, D.; Bickel, H.; Förstl, H. Mild cognitive impairment and dementia: The importance of modifiable risk factors. Dtsch. Arztebl. Int. 2011, 108, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Vassilaki, M.; Aakre, J.A.; Cha, R.H.; Kremers, W.K.; St Sauver, J.L.; Mielke, M.M.; Geda, Y.E.; Machulda, M.M.; Knopman, D.S.; Petersen, R.C.; et al. Multimorbidity and Risk of Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2015, 63, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, E.; An, Y.; Zoli, M.; Tanaka, T.; Simonsick, E.M.; Kitner-Triolo, M.H.; Studenski, S.A.; Resnick, S.M.; Ferrucci, L. Association Between Accelerated Multimorbidity and Age-Related Cognitive Decline in Older Baltimore Longitudinal Study of Aging Participants without Dementia. J. Am. Geriatr. Soc. 2016, 64, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, Y.; Xiong, L.; Jin, N.; Zhao, P.; Liang, Z.; Cheng, L.; Kang, L. Multimorbidity measures associated with cognitive function among community-dwelling older Chinese adults. Alzheimer’s Dement. 2024, 20, 6221–6231. [Google Scholar] [CrossRef]
- Dove, A.; Marseglia, A.; Shang, Y.; Grande, G.; Vetrano, D.L.; Laukka, E.J.; Fratiglioni, L.; Xu, W. Cardiometabolic multimorbidity accelerates cognitive decline and dementia progression. Alzheimer’s Dement. 2023, 19, 821–830. [Google Scholar] [CrossRef]
- Fratiglioni, L.; Paillard-Borg, S.; Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004, 3, 343–353. [Google Scholar] [CrossRef]
- Naureen, Z.; Dhuli, K.; Medori, M.C.; Caruso, P.; Manganotti, P.; Chiurazzi, P.; Bertelli, M. Dietary supplements in neurological diseases and brain aging. J. Prev. Med. Hyg. 2022, 63, E174–E188. [Google Scholar] [CrossRef]
- Nishi, S.K.; Babio, N.; Gómez-Martínez, C.; Martínez-González, M.; Ros, E.; Corella, D.; Castañer, O.; Martínez, J.A.; Alonso-Gómez, Á.M.; Wärnberg, J.; et al. Mediterranean, DASH, and MIND Dietary Patterns and Cognitive Function: The 2-Year Longitudinal Changes in an Older Spanish Cohort. Front. Aging Neurosci. 2021, 13, 782067. [Google Scholar] [CrossRef]
- Zhong, W.F.; Song, W.Q.; Wang, X.M.; Li, Z.H.; Shen, D.; Liu, D.; Zhang, P.D.; Shen, Q.Q.; Liang, F.; Nan, Y.; et al. Dietary Diversity Changes and Cognitive Frailty in Chinese Older Adults: A Prospective Community-Based Cohort Study. Nutrients 2023, 15, 3784. [Google Scholar] [CrossRef]
- Nooyens, A.C.J.; Yildiz, B.; Hendriks, L.G.; Bas, S.; van Boxtel, M.P.J.; Picavet, H.S.J.; Boer, J.M.A.; Verschuren, W.M.M. Adherence to dietary guidelines and cognitive decline from middle age: The Doetinchem Cohort Study. Am. J. Clin. Nutr. 2021, 114, 871–881. [Google Scholar] [CrossRef]
- Fortier, M.; Castellano, C.A.; St-Pierre, V.; Myette-Côté, É.; Langlois, F.; Roy, M.; Morin, M.C.; Bocti, C.; Fulop, T.; Godin, J.P.; et al. A ketogenic drink improves cognition in mild cognitive impairment: Results of a 6-month RCT. Alzheimer’s Dement. 2021, 17, 543–552. [Google Scholar] [CrossRef]
- Sakakibara, B.M.; Obembe, A.O.; Eng, J.J. The prevalence of cardiometabolic multimorbidity and its association with physical activity, diet, and stress in Canada: Evidence from a population-based cross-sectional study. BMC Public Health 2019, 19, 1361. [Google Scholar] [CrossRef]
- Knuppel, A.; Papier, K.; Key, T.J.; Travis, R.C. EAT-Lancet score and major health outcomes: The EPIC-Oxford study. Lancet 2019, 394, 213–214. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Li, R.; Yao, P.; Yu, H.; Pan, A.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Liu, G. Proteomic signatures of healthy dietary patterns are associated with lower risks of major chronic diseases and mortality. Nat. Food 2025, 6, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Al-Salmi, N.; Cook, P.; D’Souza, M.S. Diet Adherence among Adults with Type 2 Diabetes Mellitus: A Concept Analysis. Oman Med. J. 2022, 37, e361. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.H.; Bancroft, G.V.; Turner, A.P. Self-management training for people with chronic disease: A shared learning experience. J. Health Psychol. 2005, 10, 863–872. [Google Scholar] [CrossRef]
- Ramos-Vera, C.; Saintila, J.; O’Diana, A.G.; Calizaya-Milla, Y.E. Identifying latent comorbidity patterns in adults with perceived cognitive impairment: Network findings from the behavioral risk factor surveillance system. Front. Public Health 2022, 10, 981944. [Google Scholar] [CrossRef]
- Zhang, W.; Su, M.; Li, D.; Yang, F.; Li, Z. The association between family doctor contract services and the health of middle-aged and older people in China: An instrumental variables analysis. Sci. Rep. 2024, 14, 16229. [Google Scholar] [CrossRef]
- Lai, S.; Lu, L.; Zhou, Z.; Shen, C.; Yang, X.; Zhao, Y.; Zhang, X. The effects of family physician-contracted service on health-related quality of life and equity in health in China. Int. J. Equity Health 2021, 20, 15. [Google Scholar] [CrossRef]
- Hao, X.; Yang, Y.; Gao, X.; Dai, T. Evaluating the Effectiveness of the Health Management Program for the Elderly on Health-Related Quality of Life among Elderly People in China: Findings from the China Health and Retirement Longitudinal Study. Int. J. Environ. Res. Public Health 2019, 16, 113. [Google Scholar] [CrossRef]
- Hu, F.; Qin, W.; Xu, L. Association between Dietary Patterns and Cardiometabolic Multimorbidity among Chinese Rural Older Adults. Nutrients 2024, 16, 2830. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Preacher, K.J.; Curran, P.J.; Bauer, D.J. Computational tools for probing interaction effects in multiple linear regression, multilevel modeling, and latent curve analysis. J. Educ. Behav. Stat. 2006, 31, 427–448. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Lu, J.; Wu, H.; Ren, L. The dilution effect of healthy lifestyles on the risk of cognitive function attributed to socioeconomic status among Chinese older adults: A national wide prospective cohort study. J. Glob. Health 2024, 14, 04010. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Gu, S.; Zhen, X.; Sun, X.; Gu, Y.; Dong, H. Trends in Cognitive Function Among Chinese Elderly from 1998 to 2018: An Age-Period-Cohort Analysis. Front. Public Health 2021, 9, 753671. [Google Scholar] [CrossRef] [PubMed]
- Galioto, R.; Gunstad, J.; Heinberg, L.J.; Spitznagel, M.B. Adherence and weight loss outcomes in bariatric surgery: Does cognitive function play a role? Obes. Surg. 2013, 23, 1703–1710. [Google Scholar] [CrossRef]
- Xu, C.; Lee, Y.H.; Jeune, S.; Shelley, M. Changing Dietary Patterns among Chinese Older Adults: A Rural-Urban Comparative Analysis (2008–2018). Int. J. Behav. Med. 2025, 1–13. [Google Scholar] [CrossRef]
- Del Razo-Olvera, F.M.; Martin-Vences, A.J.; Brito-Córdova, G.X.; Elías-López, D.; Landa-Anell, M.V.; Melgarejo-Hernández, M.A.; Cruz-Bautista, I.; Manjarrez-Martínez, I.; Gómez-Velasco, D.V.; Aguilar-Salinas, C.A. Primary Barriers of Adherence to a Structured Nutritional Intervention in Patients with Dyslipidemia. Nutrients 2021, 13, 1744. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Dhana, K.; Huang, Y.; Huang, L.; Tao, Y.; Liu, X.; Melo van Lent, D.; Zheng, Y.; Ascherio, A.; Willett, W.; et al. Association of the Mediterranean Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) Diet with the Risk of Dementia. JAMA Psychiatry 2023, 80, 630–638. [Google Scholar] [CrossRef]
- Smith, M.; Bauermeister, S. Adherence to the MIND dietary pattern and the association with cognitive outcomes in the UK Biobank. Alzheimer's Dement. 2024, 20, e087249. [Google Scholar] [CrossRef]
- MM, M.Z.; You, Y.X.; Shahar, S.; Shahril, M.R.; Malek Rivan, N.F.; Nik Mohd Fakhruddin, N.N.I.; Yap, A.X.W. Development of Malaysian-MIND diet scores for prediction of mild cognitive impairment among older adults in Malaysia. BMC Geriatr. 2024, 24, 387. [Google Scholar] [CrossRef]
- Mosconi, L.; Murray, J.; Tsui, W.H.; Li, Y.; Davies, M.; Williams, S.; Pirraglia, E.; Spector, N.; Osorio, R.S.; Glodzik, L.; et al. Mediterranean Diet and Magnetic Resonance Imaging-Assessed Brain Atrophy in Cognitively Normal Individuals at Risk for Alzheimer’s Disease. J. Prev. Alzheimer’s Dis. 2014, 1, 23–32. [Google Scholar] [CrossRef]
- Wu, R.; Fei, F.; Lu, T.; Zhu, J.; Hu, D. Effect of family doctor contract services on non-communicable disease management among the elderly: A systematic review and meta-analysis. Front. Health Serv. 2025, 5, 1462806. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.D.; Espeland, M.A.; Whitmer, R.A.; Snyder, H.M.; Leng, X.; Lovato, L.; Papp, K.V.; Yu, M.; Kivipelto, M.; Alexander, A.S.; et al. Structured vs Self-Guided Multidomain Lifestyle Interventions for Global Cognitive Function: The US POINTER Randomized Clinical Trial. JAMA 2025, 334, 681–691. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, M.; Wei, X. Research progress on community health management model for older adults with chronic diseases and multiple morbidities. Br. J. Hosp. Med. 2024, 85, 1–9. [Google Scholar] [CrossRef]


| Characteristics | Group | N | % |
|---|---|---|---|
| Gender | |||
| Male | 519 | 34.90 | |
| Female | 968 | 65.10 | |
| Age group | |||
| 60~69 | 574 | 38.60 | |
| 70~79 | 789 | 53.06 | |
| ≥80 | 124 | 8.34 | |
| Educational level | |||
| Illiteracy | 691 | 46.47 | |
| Primary school | 491 | 33.02 | |
| Junior school and above | 305 | 20.51 | |
| Marital status | |||
| Unmarried/divorced/widowed | 384 | 25.82 | |
| Married | 1103 | 74.18 | |
| Living arrangement | |||
| Living alone | 302 | 20.31 | |
| living only with spouse | 977 | 65.70 | |
| Living with spouse and children | 208 | 13.99 | |
| Personal annual income (CNY) | |||
| <5000 | 880 | 59.18 | |
| 5000~10,000 | 368 | 24.75 | |
| ≥10,000 | 239 | 16.07 | |
| Medical insurance type | |||
| UEBMI | 38 | 2.56 | |
| RBMI | 1429 | 98.10 | |
| Others | 20 | 1.34 | |
| Self-rated health | |||
| Poor | 385 | 25.89 | |
| General | 530 | 35.64 | |
| Good | 572 | 38.47 | |
| Number of CMDs | |||
| 2 | 818 | 55.01 | |
| 3 | 462 | 31.06 | |
| ≥4 | 207 | 13.93 | |
| Health management | |||
| Never received | 145 | 9.75 | |
| Received | 1342 | 90.25 | |
| Smoke | |||
| Current smoker | 183 | 12.31 | |
| Former smoker | 169 | 11.37 | |
| Non-smoker | 1135 | 76.32 | |
| Alcohol | |||
| Current drinker | 235 | 15.80 | |
| Former drinker | 140 | 9.42 | |
| Non-drinker | 1112 | 74.78 |
| Characteristics | SD | 1 | 2 | 3 |
|---|---|---|---|---|
| 1. Dietary adherence | 2.157 0.286 | 1 | ||
| 2. Health management | 1.900 0.297 | 0.081 ** | 1 | |
| 3. Cognitive function | 20.790 6.278 | 0.140 *** | 0.054 * | 1 |
| Characteristics | Health Management | t | p | |
|---|---|---|---|---|
| Never Received | Received | |||
| Dietary adherence | 2.089 0.272 | 2.166 0.281 | −3.149 | 0.002 |
| Cognitive function | 19.760 6.366 | 20.900 6.260 | −2.087 | 0.037 |
| Characteristics | Model 1 | Model 2 | Model 3 | |||
|---|---|---|---|---|---|---|
| p | p | p | ||||
| Gender (ref: Male) | ||||||
| Female | −0.430 | 0.292 | −0.519 | 0.202 | −0.567 | 0.163 |
| Age group (ref: 60~69) | ||||||
| 70~79 | −0.739 | 0.012 | −0.803 | 0.006 | −0.850 | 0.004 |
| ≥80 | −2.662 | <0.001 | −2.820 | <0.001 | −2.817 | <0.001 |
| Educational level (ref: Illiteracy) | ||||||
| Primary school | 5.035 | <0.001 | 4.966 | <0.001 | 4.954 | <0.001 |
| Junior school and above | 7.164 | <0.001 | 6.951 | <0.001 | 6.897 | <0.001 |
| Marital status (ref: Unmarried/divorced/widowed) | ||||||
| Married | 0.330 | 0.564 | 0.409 | 0.473 | 0.357 | 0.529 |
| Living arrangement (ref: Living alone) | ||||||
| living only with spouse | 0.241 | 0.701 | 0.097 | 0.877 | 0.121 | 0.846 |
| Living with others | 0.200 | 0.726 | 0.098 | 0.862 | 0.080 | 0.887 |
| Personal annual income (CNY) (ref: <5000) | ||||||
| 5000~10,000 | 1.673 | <0.001 | 1.668 | <0.001 | 1.666 | <0.001 |
| ≥10,000 | 2.065 | <0.001 | 1.945 | <0.001 | 1.952 | <0.001 |
| Medical insurance type (ref: UEBMI) | ||||||
| RBMI | 1.256 | 0.153 | 1.261 | 0.149 | 1.294 | 0.138 |
| Others | −0.776 | 0.587 | −0.541 | 0.704 | −0.529 | 0.710 |
| Self-rated health (ref: Poor) | ||||||
| General | 1.578 | <0.001 | 1.449 | <0.001 | 1.426 | <0.001 |
| Good | 1.206 | 0.001 | 1.115 | 0.001 | 1.087 | 0.002 |
| Number of CMDs (ref: 2) | ||||||
| 3 | 0.109 | 0.717 | 0.138 | 0.642 | 0.138 | 0.641 |
| ≥4 | −0.012 | 0.976 | −0.077 | 0.850 | −0.103 | 0.800 |
| Smoke (ref: Current smoker) | ||||||
| Former smoker | 0.339 | 0.552 | 0.249 | 0.661 | 0.209 | 0.712 |
| Non-smoker | 1.178 | 0.015 | 1.049 | 0.030 | 1.043 | 0.030 |
| Alcohol (ref: Current drinker) | ||||||
| Former drinker | −0.706 | 0.215 | −0.755 | 0.182 | −0.751 | 0.184 |
| Non-drinker | −1.087 | 0.015 | −1.139 | 0.011 | −1.171 | 0.009 |
| Dietary adherence | 2.000 | <0.001 | −1.878 | 0.226 | ||
| Health management (ref: Never received) | ||||||
| Received | 0.515 | 0.247 | −8.468 | 0.014 | ||
| Dietary adherence × health management (ref: Dietary adherence × never received) | ||||||
| Dietary adherence × received | 4.287 | 0.009 | ||||
| Adjusted R2 | 0.347 | 0.355 | 0.357 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Xu, L.; Qin, W. Association Between Dietary Adherence and Cognitive Function Among Rural Older Patients with Cardiometabolic Multimorbidity: The Moderating Role of Health Management. Nutrients 2025, 17, 3820. https://doi.org/10.3390/nu17243820
Hu F, Xu L, Qin W. Association Between Dietary Adherence and Cognitive Function Among Rural Older Patients with Cardiometabolic Multimorbidity: The Moderating Role of Health Management. Nutrients. 2025; 17(24):3820. https://doi.org/10.3390/nu17243820
Chicago/Turabian StyleHu, Fangfang, Lingzhong Xu, and Wenzhe Qin. 2025. "Association Between Dietary Adherence and Cognitive Function Among Rural Older Patients with Cardiometabolic Multimorbidity: The Moderating Role of Health Management" Nutrients 17, no. 24: 3820. https://doi.org/10.3390/nu17243820
APA StyleHu, F., Xu, L., & Qin, W. (2025). Association Between Dietary Adherence and Cognitive Function Among Rural Older Patients with Cardiometabolic Multimorbidity: The Moderating Role of Health Management. Nutrients, 17(24), 3820. https://doi.org/10.3390/nu17243820
