Pecans and Human Health: Distinctive Benefits of an American Nut
Abstract
1. Introduction
2. Pecan Production, Cultivars, and Harvesting
3. Pecan Nutritive Attributes
4. Pecan (Poly)phenols
4.1. Spectrophotometric and Antioxidant Assays
4.2. (Poly)phenol Profiling and Quantification
5. Bio-Accessibility and Bioavailability
6. Diet Quality
7. Pecans in Body Weight and Appetite Management
7.1. Body Weight
7.2. Compensatory Mechanisms
| Ref. No. | First Author/Date | Study Model | Methods, Generally | Duration/Intervention | Results |
|---|---|---|---|---|---|
| [51] | Hart T, 2025 | Human RCT Parallel 2 Arm | Adults with ≥1 criterion for metabolic syndrome (n = 138) FMD, BP, cf-PWV, lipids/lipoproteins, and glycemic control | 12-week intervention Pecans—57 g/d to replace usual snack or Control—usual diet without pecans | ↑ Healthy Eating Index ↑ BW (trend) ↓ TC, ↓ LDLc, ↓ non-HDLc, ↓ TG ↔ FMD, ↔ PWV, ↔ BP |
| [52] | Dos Santos J, 2022 | Human RCT Parallel 3 Arm | CAD participants (n = 204) TyG index Markers of glycemic profile and non-traditional anthropometric measures Diet quality: HEI | 12-week intervention Pecans—30 g/d in healthy diet (n = 68) or Olive oil—30 mL/d in healthy diet (n = 69) or Control—healthy diet (n = 67) | ↑ Healthy Eating Index ↔ Anthropometric measures: body weight, BMI and waist circumference ↔ TyG index (within pecan trend) ↔ Glycemia, ↔ HBA1c, ↔ HOMA-IR |
| [53] | Morgan W, 2000 | Human RCT parallel 2 Arm | Adults with normal lipid levels (n = 19) Blood lipid changes Dietary intake | 8-week intervention Pecans—68 g/d or Control—no nuts, self-selected diet | ↑ Energy/kcal, ↔ body weight ↓ TC, ↓ HDLc ↓ LDLc (within group) Dietary intake Pecan group ↑ Dietary fat, ↑ monounsaturated fat ↑ Polyunsaturated fat, ↑ insoluble fiber ↑ Magnesium |
| [56] | Cogan B, 2023a | Human RCT Parallel 2 Arm | Healthy older adults (n = 44) BW and body fat % Subjective appetite—VAS Changes in physiological appetite Energy intake (EI) in-lab and at-home | 4-week intervention Pecans—68 g/d (n = 21) or Control—no nuts (n = 23) Pre-and post-4 h postprandial with high fat meal | ↔ Body weight, ↔ body fat ↔ Subjective appetite ↓ Peak desire to eat with pecans ↑ PYY, ↔ CCK, ↔ ghrelin ↔ Energy intake (overall) (trend for difference in EI at buffet meal, ↓ pecans vs. ↑ control, p = 0.11) |
| [57] | Rajaram S, 2001 | Human RCT Crossover 2 Arm | Healthy adults with elevated lipids (n = 23) Lipid and lipoprotein profiles | 4-week intervention Pecans 20% kcal SUB in Step 1 diet (fat energy 39.6%) or Step 1 diet (fat energy 28.3%) | ↔ Body weight ↓ TC, ↓ LDLc, ↑ HDL, ↓ TG ↓ Apo B, ↓ Lipoprotein(a), ↑ Apo A1 |
| [58] | Guarneiri L, 2022a | Human RCT Parallel 3 Arm | Adults with overweight or obesity or hypercholesterolemia (n = 93) BW and total body fat %: actual and theoretical changes determined | 8-week intervention ADD—68 g/d pecans added to a free-living diet (n = 30) or SUB—68 g/d pecans substituted for isocaloric foods from habitual diet (n = 31) or Control-usual diet no nuts (n = 32) | ↑ Body weight (trend ADD, SUB vs. control) ↑ Body fat (SUB) ↔ Body fat (ADD) Actual vs. theoretic changes in BW < in pecan groups (p < 0.001) Actual vs. theoretical changes in body fat % < in ADD but not SUB groups (p < 0.05) |
| [62] | Guarneiri L, 2021b | Human RCT Parallel 3 Arm | Adults with overweight or obesity or hypercholesterolemia (n = 52) Indirect calorimetry: resting metabolic rate (RMR) Diet-induced thermogenesis (DIT) and substrate utilization | 8-week intervention ADD—68 g/d pecans added to a free-living diet (n = 16) or SUB—68 g/d pecans substituted for isocaloric foods from habitual diet (n = 18) or Control—usual diet, no nuts (n = 18) | SUB group ↑ Fasting RMR, ↑ fat oxidation ↓ Respiratory exchange ratio ADD group ↑ DIT No between-group differences |
| [64] | Peters J, 2024 | Human RCT Crossover 2 Arm | Adults with overweight or obesity (n = 20) Subjective appetite scales, blood markers, and energy expenditure | Pecan (250 kcal) or Control—tortilla chips (250 kcal) | ↔ Subjective satiety ↔ Energy intake ↑ PYY ↑ GLP-1 |
| [65] | Prater M, 2024 | Human RCT Crossover 2 Arm | Healthy adults (n = 31) Postprandial appetite and blood markers VAS and food records | Postprandial evaluation Pecan (ground)—68 g breakfast shake or Control meal—breakfast shake, macronutrient and calorie matched | ↑ Fullness, ↔ hunger, ↔ desire ↔ Prospective consumption, ↓ appetite at home (240–780 min post-meal) Postprandial—↑ PYY, ↓ ghrelin (120 min) ↔ Energy intake |
| [66] | Guarneiri L, 2022b | Human RCT Parallel 3 Arm | Adults with overweight or obesity or hypercholesterolemia (n = 47) Changes in CCK, PYY, ghrelin, and subjective appetite VAS questionnaires and recorded intake | 8-week intervention ADD—68 g/d pecans added to a free-living diet (n = 15) or SUB—68 g/d pecans substituted for isocaloric foods from habitual diet (n = 16) or Control—usual diet, no nuts (n = 16) | ADD > SUB and ADD > Control ↓ Prospective consumption, ↓ desire to eat within ADD ↓ Prospective consumption, ↓ desire to eat, ↑ fullness within ADD Postprandial ↑ CCK, ↑ PYY, ↓ ghrelin ADD > Control ↓ Overall appetite (trend p = 0.06) ↔ Energy intake |
| [67] | Marquardt A, 2019 | Human RCT Crossover 2 Arm | Healthy adults (n = 22) TG, antioxidant measures, and VAS for appetite ratings | High saturated fat postprandial test (3 h) Muffin with 28 g pecans (partial replacement for butter) or Control muffin with butter (no pecans) | ↔ Satiety, (males) ↓ Satiety (females) ↓ TG, ↓ lipid peroxidation (males) ↑ Total antioxidant capacity (males) |
8. Pecans in Cardiometabolic Health: Diabetes and Cardiovascular Disease Risk
8.1. Metabolic Health/Diabetes Risk
8.2. Glycemic Control
9. Cardiovascular Health/Vascular Disease Risk
9.1. Pecans and Lipid Metabolism
9.2. Pecans and Emerging CVD Risk Factors
10. Pecans in Brain and Gut Health
10.1. Brain Health
10.2. Gut Health
11. Summary and Future Work
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DM | Diabetes mellitus |
| OW/OB | Overweight and Obese |
| hs-CRP | Highly sensitive C-reactive protein |
| CVD | Cardiovascular disease |
| NHANES | National Health and Nutrition Examination Survey |
| OGTT | Oral Glucose Tolerance Test |
| IL-6 | Interleukin 6 |
| TNF-α | Tumor Necrotic Factor alfa |
| HOMA | IR Homeostasis Model Assessment of Insulin Resistance |
| IGI | Insulinogenic index |
| AUCs | Area under the curves (AUCs) |
| LDL | Cholesterol—Low-density Cholesterol |
| HDL | Cholesterol—High-density Cholesterol |
| AMPK, 5′AMP | Activated protein kinase |
| BMI | Body mass index |
| BW | Body weight |
| BP | Blood pressure |
| CCK | Cholecystokinin |
| FMD | Flow-mediated dilation |
| GLP-1 | Glucagon-like peptide-1 |
| LPS | Lipopolysaccharide |
| PWV | Pulse wave velocity |
| PYY | Peptide YY |
| RMR | Resting metabolic rate |
| TyG | Triglyceride–glucose index |
| VAS | Visual analog scale |
| ADD | Addition group |
| Apo A1 | Apolipoprotein A1 |
| Apo B | Apolipoprotein B |
| DP | Degree of polymerization |
| ESI-MS/MS | Electrospray ionization tandem mass spectrometry |
| HMW | High-molecular-weight |
| HPLC | High-performance liquid chromatography |
| LMW | Low-molecular-weight |
| MDA | Malondialdehyde |
| ORAC | Oxygen radical absorbance capacity |
| RCT | Randomized controlled trial |
| TPC | Total phenolic content |
| ROS | Reactive oxygen species |
References
- King, J.C.; Rechkemmer, G.; Geiger, C.J. Second International Nuts and Health Symposium, 2007: Introduction. J. Nutr. 2008, 138, 1734S–1735S. [Google Scholar] [CrossRef]
- King, J.C.; Blumberg, J.; Ingwersen, L.; Jenab, M.; Tucker, K.L. Tree Nuts and Peanuts as Components of a Healthy Diet. J. Nutr. 2008, 138, 1736S–1740S. [Google Scholar] [CrossRef] [PubMed]
- International Nut and Dried Fruit Council. INC International Nut and Dried Fruit Council Pecans Crop Progress Report. International Nuts & Dried Fruits Statistical Yearbook. 2023. Available online: https://inc.nutfruit.org/wp-content/uploads/2023/05/Statistical-Yearbook-2022-2023.pdf (accessed on 24 March 2025).
- Fabrizio, G.C.; Van der Watt, E.; Gesine, M.C. Propagation of Pecan (Carya illinoensis): A Review. Afr. J. Biotechnol. 2018, 17, 586–605. [Google Scholar] [CrossRef]
- USDA Pecan Production. Released January 24, 2024, by the National Agricultural Statistics Service (NASS), Agricultural Statistics Board, United States Department of Agriculture (USDA). 2024. Available online: https://esmis.nal.usda.gov/sites/default/release-files/5425kg32f/nv936p236/00001m546/pecnpr24.pdf (accessed on 5 July 2025).
- Cason, C.; Yemmireddy, V.K.; Moreira, J.; Adhikari, A. Antioxidant Properties of Pecan Shell Bioactive Components of Different Cultivars and Extraction Methods. Foods 2021, 10, 713. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P.C. Pecan cultivars for North Florida (HS106). University of Florida IFAS Extension. 2017. Available online: http://edis.ifas.ufl.edu (accessed on 28 February 2025).
- Andersen, P.C.; Crocker, T.E. The Pecan Tree. EDIS 2004, 1–15. Available online: https://journals.flvc.org/edis/article/view/113269 (accessed on 1 May 2025). [CrossRef]
- Pecan Nation. Available online: https://thepecannation.com/about-us/?id=our-process (accessed on 19 October 2025).
- Yusufali, Z.; Liu, X.; Wang, X.; Kubenka, K.; Du, X. Texture Properties, Crude Fat, Fatty Acid Profiles, Total Soluble Solids, and Total Polyphenols for 21 Pecan Varieties and the Effects of the Harvest Year. ACS Food Sci. Technol. 2023, 3, 1663–1679. [Google Scholar] [CrossRef]
- Murley, T.; Kelly, B.; Adhikari, J.; Reid, W.; Koppel, K. A Comparison of Fatty Acid and Sensory Profiles of Raw and Roasted Pecan Cultivars. J. Food Sci. 2020, 85, 2665–2672. [Google Scholar] [CrossRef]
- Yildiz Turgut, D.; Özdemir, M. Determination of Oil Content and Fatty Acid Composition of Twenty-Six Pecan Cultivars Grown in Türkiye. Hortic. Stud. 2023, 40, 1–7. [Google Scholar] [CrossRef]
- Fernandes, G.D.; Gómez-Coca, R.B.; Pérez-Camino, M.D.C.; Moreda, W.; Barrera-Arellano, D. Chemical Characterization of Major and Minor Compounds of Nut Oils: Almond, Hazelnut, and Pecan Nut. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Ferrari, V.; Gil, G.; Heinzen, H.; Zoppolo, R.; Ibáñez, F. Influence of Cultivar on Nutritional Composition and Nutraceutical Potential of Pecan Growing in Uruguay. Front. Nutr. 2022, 9, 868054. [Google Scholar] [CrossRef]
- Reis Ribeiro, S.; Klein, B.; Machado Ribeiro, Q.; Duarte dos Santos, I.; Gomes Genro, A.L.; de Freitas Ferreira, D.; Janner Hamann, J.; Smanioto Barin, J.; Cichoski, A.J.; Fronza, D.; et al. Chemical Composition and Oxidative Stability of Eleven Pecan Cultivars Produced in Southern Brazil. Food Res. Int. 2020, 136, 109596. [Google Scholar] [CrossRef]
- Yilmaz, R.; Yildirim, A.N.; Çelik, C.; Karakurt, Y. Determination of Nut Characteristics and Biochemical Components of Some Pecan Nut Cultivars. Yuz. Yil Univ. J. Agric. Sci. 2021, 31, 906–914. [Google Scholar] [CrossRef]
- Flores-Córdova, M.A.; Sánchez Chávez, E.; Chávez-Mendoza, C.; García-Hernández, J.L.; Preciado-Rangel, P. Bioactive Compounds and Phytonutrients in Edible Part and Nutshell of Pecan (Carya illinoinensis). Cogent Food Agric. 2016, 2, 1262936. [Google Scholar] [CrossRef]
- Çelik, S.A. Determination of Physico-Mechanical and Chemical Properties of Pecan [Carya illinoinensis (Wangenh.) K. Koch] Grown in Türkiye. Appl. Fruit Sci. 2024, 66, 1977–1985. [Google Scholar] [CrossRef]
- Robbins, K.S.; Shin, E.C.; Shewfelt, R.L.; Eitenmiller, R.R.; Pegg, R.B. Update on the Healthful Lipid Constituents of Commercially Important Tree Nuts. J. Agric. Food Chem. 2011, 59, 12083–12092. [Google Scholar] [CrossRef]
- Siebeneichler, T.J.; Crizel, R.L.; Duarte, T.d.O.; Carvalho, I.R.; Galli, V.; de Souza, R.S.; Martins, C.R.; Ferreira, C.D.; Hoffmann, J.F. Influence of Cultivar on Quality Parameters of Pecans Produced in Southern Brazil. Sci. Hortic. 2024, 336, 113423. [Google Scholar] [CrossRef]
- Zhang, X.; Chang, J.; Yao, X.; Wang, J.; Zhang, J.; Yang, Y.; Yang, S.; Wang, K.; Ren, H. Chemical Composition in Kernels of Ten Grafted Pecan (Carya illinoensis) Varieties in Southeastern China. Sci 2022, 4, 25. [Google Scholar] [CrossRef]
- Santos, L.L.; De Almeida, P.C.L.; Rodrigues, C.A.; De Battisti, L.F.F.; Costa, L.H.; Bastos, R.G.; De Oliveira, C.M.; Ferraz, V.P.; Moraes, A.L.L.; de Almeida Paula, H.A.; et al. Nutritional Composition, Fatty Acid Profile, Phytochemistry and Evaluation of the Effects of Carya illinoinensis on Diabetes. Int. J. Food Sci. Technol. 2019, 54, 2595–2603. [Google Scholar] [CrossRef]
- Woźniak, M.; Waśkiewicz, A.; Ratajczak, I. The Content of Phenolic Compounds and Mineral Elements in Edible Nuts. Molecules 2022, 27, 4326. [Google Scholar] [CrossRef]
- Zhang, X.; Chang, J.; Ren, H.; Wu, Y.; Huang, M.; Wu, S.; Yang, S.; Yao, X.; Wang, K. Mineral Nutrient Dynamics in Pecans (Carya illinoensis) ‘Mahan’ Grown in Southern China. Front. Plant Sci. 2022, 13, 1003728. [Google Scholar] [CrossRef]
- Wu, S.; Yao, X.; Wang, K.; Yang, S.; Ren, H.; Huang, M.; Chang, J. Quality Analysis and Comprehensive Evaluation of Fruits from Different Cultivars of Pecan (Carya illinoinensis (Wangenheim) K. Koch). Forests 2022, 13, 746. [Google Scholar] [CrossRef]
- Bouali, I.; Tsafouros, A.; Ntanos, E.; Albouchi, A.; Boukhchina, S.; Roussos, P.A. Influence of Ripening Process on Pecan Nut (Carya illinoinensis) Kernel Quality: Phenolic Profile, Antioxidant Activity, and Carbohydrate Composition. Horticulturae 2023, 9, 1093. [Google Scholar] [CrossRef]
- Jia, X.; Luo, H.; Xu, M.; Zhai, M.; Guo, Z.; Qiao, Y.; Wang, L. Dynamic Changes in Phenolics and Antioxidant Capacity during Pecan (Carya illinoinensis) Kernel Ripening and Its Phenolics Profiles. Molecules 2018, 23, 435. [Google Scholar] [CrossRef]
- Robbins, K.S.; Ma, Y.; Wells, M.L.; Greenspan, P.; Pegg, R.B. Separation and Characterization of Phenolic Compounds from U.S. Pecans by Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2014, 62, 4332–4341. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Sabharanjak, S.M.; Zengin, G.; Mollica, A.; Szostak, A.; Simirgiotis, M.; Huminiecki, Ł.; Horbanczuk, O.K.; Nabavi, S.M.; Mocan, A. Pecan Nuts: A Review of Reported Bioactivities and Health Effects. Trends Food Sci. Technol. 2018, 71, 246–257. [Google Scholar] [CrossRef]
- Flores-Córdova, M.A.; Sánchez, E.; Muñoz-Márquez, E.; Ojeda-Barrios, D.L.; Soto-Parra, J.M.; Preciado-Rangel, P. Phytochemical Composition and Antioxidant Capacity in Mexican Pecan Nut. Emir. J. Food Agric. 2017, 29, 346–350. [Google Scholar] [CrossRef]
- Robbins, K.S.; Gong, Y.; Wells, M.L.; Greenspan, P.; Pegg, R.B. Reprint of “Investigation of the Antioxidant Capacity and Phenolic Constituents of U.S. Pecans. J. Funct. Foods 2015, 18, 1002–1013. [Google Scholar] [CrossRef]
- Jia, X.; Tan, W.; Guo, Z.; Mo, Z.; Liu, P.; Xu, M. Targeted Metabolomics Reveals Key Phenolic Changes in Pecan Nut Quality Deterioration under Different Storage Conditions. Food Chem. 2023, 424, 136377. [Google Scholar] [CrossRef]
- Rábago-Panduro, L.M.; Martín-Belloso, O.; Welti-Chanes, J.; Morales-de la Peña, M. Changes in Bioactive Compounds Content and Antioxidant Capacity of Pecan Nuts [Carya illinoinensis (Wangenh. K. Koch)] during Storage. Rev. Mex. Ing. Quim. 2020, 19, 1439–1452. [Google Scholar] [CrossRef]
- Tan, W.; He, Y.; Wang, Z.; Ni, Y.; Xu, M.; Du, J.; Liu, C.; Jia, X. Effect of Moisture Content of Fresh Pecans on Mechanical Shelling Efficiency, Nutritional Features, and Packaging Method. Foods 2025, 14, 757. [Google Scholar] [CrossRef]
- Pham, T.; Yusufali, Z.; Wang, X.; Kubenka, K.; Du, X. Impact of Room-Temperature Storage on the Pecan Kernel Color, Carotenoids, Polyphenols, and Physicochemical Properties. ACS Food Sci. Technol. 2023, 3, 1077–1089. [Google Scholar] [CrossRef]
- Bouali, I.; Tsafouros, A.; Ntanos, E.; Albouchi, A.; Boukhchina, S.; Roussos, P.A. Inter-Cultivar and Temporal Variation of Phenolic Compounds, Antioxidant Activity and Carbohydrate Composition of Pecan (Carya illlinoinensis) Kernels Grown in Tunisia. Hortic. Environ. Biotechnol. 2020, 61, 183–196. [Google Scholar] [CrossRef]
- Noperi-Mosqueda, L.C.; Soto-Parra, J.M.; Sánchez, E.; Piña-Ramírez, F.J.; Pérez-Leal, R.; Flores-Córdova, M.A.; Salas-Salazar, N.A. Impact of Organic and Mineral Fertilization in Pecan Nut on Production, Quality and Antioxidant Capacity. Agric. Sci. 2019, 10, 227–240. [Google Scholar] [CrossRef]
- Gong, Y.; Pegg, R.B.; Kerrihard, A.L.; Lewis, B.E.; Heerema, R.J. Pecan Kernel Phenolics Content and Antioxidant Capacity Are Enhanced by Mechanical Pruning and Higher Fruit Position in the Tree Canopy. J. Am. Soc. Hortic. Sci. 2020, 145, 193–202. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, M.-H.; Kim, Y.-M.; Kim, C.-S.; Choi, M.-K. Mineral Contents and Antioxidant Capacity of Selected Nuts. Trace Elem. Electrolytes 2021, 38, 201–211. [Google Scholar] [CrossRef]
- Abe, L.T.; Lajolo, F.M.; Genovese, M.I. Comparison of Phenol Content and Antioxidant Capacity of Nuts. Cienc. Tecnol. Aliment. 2010, 30, 254–259. [Google Scholar] [CrossRef]
- De La Rosa, L.A.; Alvarez-Parrilla, E.; Shahidi, F. Phenolic Compounds and Antioxidant Activity of Kernels and Shells of Mexican Pecan (Carya illinoinensis). J. Agric. Food Chem. 2011, 59, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Frezza, C.; Sciubba, F.; Giampaoli, O.; De Salvador, F.R.; Lucarini, M.; Engel, P.; Patriarca, A.; Spagnoli, M.; Gianferri, R.; Delfini, M.; et al. Comparison of the Metabolic Profile of Pecan Nuts Cultivars [Carya illinoinensis (Wangenh.) K. Koch] by NMR Spectroscopy. Nat. Prod. Res. 2023, 39, 2023–2028. [Google Scholar] [CrossRef]
- Xu, M.; Liu, P.; Jia, X.; Zhai, M.; Zhou, S.; Wu, B.; Guo, Z. Metabolic Profiling Revealed the Organ-specific Distribution Differences of Tannins and Flavonols in Pecan. Food Sci. Nutr. 2020, 8, 4987–5006. [Google Scholar] [CrossRef]
- Kellett, M.E.; Greenspan, P.; Gong, Y.; Pegg, R.B. Cellular Evaluation of the Antioxidant Activity of U.S. Pecans [Carya illinoinensis (Wangenh.) K. Koch]. Food Chem. 2019, 293, 511–519. [Google Scholar] [CrossRef]
- Gong, Y.; Pegg, R.B. Separation of Ellagitannin-Rich Phenolics from U.S. Pecans and Chinese Hickory Nuts Using Fused-Core HPLC Columns and Their Characterization. J. Agric. Food Chem. 2017, 65, 5810–5820. [Google Scholar] [CrossRef]
- Cheung, M.; Robinson, J.A.; Greenspan, P.; Pegg, R.B. Evaluating the Phenolic Composition and Antioxidant Properties of Georgia Pecans after in Vitro Digestion. Food Biosci. 2023, 51, 102351. [Google Scholar] [CrossRef]
- Hudthagosol, C.; Haddad, E.H.; McCarthy, K.; Wang, P.; Oda, K.; Sabaté, J. Pecans Acutely Increase Plasma Postprandial Antioxidant Capacity and Catechins and Decrease Ldl Oxidation in Humans1-3. J. Nutr. 2011, 141, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Suh, J.H.; Guarneiri, L.L.; Cooper, J.A.; Paton, C.M. LC-MS Analysis of Urolithin-Related Metabolites in Human Plasma Reveals Glucuronide Conjugates as the Primary Species after 4-Weeks of Pecan Consumption. J. Food Bioact. 2023, 21, 28–34. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 9th Edition. December 2020. Available online: https://www.dietaryguidelines.gov/ (accessed on 28 February 2025).
- U.S. Department of Agriculture. Healthy Eating Index (HEI). 2020. Available online: https://fns-prod.azureedge.us/sites/default/files/media/file/AverageHealthyEatingIndex-2020ScoresfortheUSPopulation.pdf (accessed on 15 November 2025).
- Hart, T.L.; Kris-Etherton, P.M.; Petersen, K.S. Consuming Pecans as a Snack Improves Lipids/Lipoproteins and Diet Quality Compared with Usual Diet in Adults at Increased Risk of Cardiometabolic Diseases: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2025, 121, 769–778. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.L.; Portal, V.L.; Markoski, M.M.; de Quadros, A.S.; Bersch-Ferreira, Â.; Marcadenti, A. Effect of Pecan Nuts and Extra-Virgin Olive Oil on Glycemic Profile and Nontraditional Anthropometric Indexes in Patients with Coronary Artery Disease: A Randomized Clinical Trial. Eur. J. Clin. Nutr. 2022, 76, 827–834. [Google Scholar] [CrossRef]
- Morgan, W.A.; Clayshulte, B.J. Pecans Lower Low-Density Lipoprotein Cholesterol in People with Normal Lipid Levels. J. Am. Diet. Assoc. 2000, 100, 312–318. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms Linking Obesity to Insulin Resistance and Type 2 Diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef]
- Cogan, B.; Pearson, R.C.; Jenkins, N.T.; Paton, C.M.; Cooper, J.A. A Pecan-Enriched Diet Reduced Postprandial Appetite Intensity and Enhanced Peptide YY Secretion: A Randomized Control Trial. Clin. Nutr. ESPEN 2023, 56, 25–35. [Google Scholar] [CrossRef]
- Rajaram, S.; Burke, K.; Connell, B.; Myint, T.; Sabaté, J. A Monounsaturated Fatty Acid-Rich Pecan-Enriched Diet Favorably Alters the Serum Lipid Profile of Healthy Men and Women. J. Nutr. 2001, 131, 2275–2279. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Paton, C.M.; Cooper, J.A. Changes in Body Weight in Response to Pecan-Enriched Diets with and without Substitution Instructions: A Randomised, Controlled Trial. J. Nutr. Sci. 2022, 11, e16. [Google Scholar] [CrossRef] [PubMed]
- Guarneiri, L.L.; Cooper, J.A. Intake of Nuts or Nut Products Does Not Lead to Weight Gain, Independent of Dietary Substitution Instructions: A Systematic Review and Meta-Analysis of Randomized Trials. Adv. Nutr. 2021, 12, 384–401. [Google Scholar] [CrossRef] [PubMed]
- Nishi, S.K.; Paz-Graniel, I.; Ni, J.; Valle-Hita, C.; Khoury, N.; Garcia-Gavilán, J.F.; Babio, N.; Salas-Salvadó, J. Effect of Nut Consumption on Blood Lipids: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103771. [Google Scholar] [CrossRef] [PubMed]
- Nikodijevic, C.J.; Probst, Y.C.; Tan, S.-Y.; Neale, E.P. The Effects of Tree Nut and Peanut Consumption on Energy Compensation and Energy Expenditure: A Systematic Review and Meta-Analysis. Adv. Nutr. 2023, 14, 77–98. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Paton, C.M.; Cooper, J.A. Pecan-Enriched Diets Increase Energy Expenditure and Fat Oxidation in Adults at-Risk for Cardiovascular Disease in a Randomised, Controlled Trial. J. Hum. Nutr. Diet. 2021, 35, 774–785. [Google Scholar] [CrossRef]
- Nikodijevic, C.J.; Probst, Y.C.; Tan, S.-Y.; Neale, E.P. The Metabolizable Energy and Lipid Bioaccessibility of Tree Nuts and Peanuts: A Systematic Review with Narrative Synthesis of Human and In Vitro Studies. Adv. Nutr. 2023, 14, 796–818. [Google Scholar] [CrossRef]
- Peters, J.C.; Breen, J.A.; Pan, Z.; Nicklas, J.; Cornier, M.-A. A Randomized, Crossover Trial Assessing Appetite, Energy Metabolism, Blood Biomarkers, and Ad Libitum Food Intake Responses to a Mid-Morning Pecan Snack vs. an Equicaloric High-Carbohydrate Snack in Healthy Volunteers with Overweight/Obesity. Nutrients 2024, 16, 2084. [Google Scholar] [CrossRef]
- Prater, M.C.; Guadagni, A.J.; Cooper, J.A. Postprandial Appetite Responses to a Pecan Enriched Meal: A Randomized Crossover Trial. Appetite 2024, 201, 107598. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Paton, C.M.; Cooper, J.A. Appetite Responses to Pecan-Enriched Diets. Appetite 2022, 173, 106003. [Google Scholar] [CrossRef]
- Marquardt, A.R.; Lewandowski, K.R.; Paton, C.M.; Cooper, J.A. Comparison of Metabolic and Antioxidant Responses to a Breakfast Meal with and without Pecans. J. Funct. Foods 2019, 62, 103559. [Google Scholar] [CrossRef]
- Chew, N.W.S.; Ng, C.H.; Tan, D.J.H.; Kong, G.; Lin, C.; Chin, Y.H.; Lim, W.H.; Huang, D.Q.; Quek, J.; Fu, C.E.; et al. The Global Burden of Metabolic Disease: Data from 2000 to 2019. Cell Metab. 2023, 35, 414–428.e3. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.L.; Eliasziw, M.; Oliver Chen, C.Y.; Blumberg, J.B. A Pecan-Rich Diet Improves Cardiometabolic Risk Factors in Overweight and Obese Adults: A Randomized Controlled Trial. Nutrients 2018, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- Guarneiri, L.L.; Paton, C.M.; Cooper, J.A. Pecan-Enriched Diets Decrease Postprandial Lipid Peroxidation and Increase Total Antioxidant Capacity in Adults at-Risk for Cardiovascular Disease. Nutr. Res. 2021, 93, 69–78. [Google Scholar] [CrossRef]
- Cogan, B.; Pearson, R.C.; Jenkins, N.T.; Paton, C.M.; Cooper, J.A. A 4-Week Pecan-Enriched Diet Improves Postprandial Lipid Peroxidation in Aging Adults. J. Med. Food 2023, 26, 654–662. [Google Scholar] [CrossRef]
- Feng, J.; Kong, F. Enzyme Inhibitory Activities of Phenolic Compounds in Pecan and the Effect on Starch Digestion. Int. J. Biol. Macromol. 2022, 220, 117–123. [Google Scholar] [CrossRef]
- Delgadillo-Puga, C.; Torre-Villalvazo, I.; Noriega, L.G.; Rodríguez-López, L.A.; Alemán, G.; Torre-Anaya, E.A.; Cariño-Cervantes, Y.Y.; Palacios-Gonzalez, B.; Furuzawa-Carballeda, J.; Tovar, A.R.; et al. Pecans and Its Polyphenols Prevent Obesity, Hepatic Steatosis and Diabetes by Reducing Dysbiosis, Inflammation, and Increasing Energy Expenditure in Mice Fed a High-Fat Diet. Nutrients 2023, 15, 2591. [Google Scholar] [CrossRef]
- Cogan, B.; Pearson, R.C.; Paton, C.M.; Jenkins, N.T.; Cooper, J.A. Pecan-Enriched Diet Improves Cholesterol Profiles and Enhances Postprandial Microvascular Reactivity in Older Adults. Nutr. Res. 2023, 111, 44–58. [Google Scholar] [CrossRef]
- de Araújo, A.R.; Sampaio, G.R.; da Silva, L.R.; Portal, V.L.; Markoski, M.M.; de Quadros, A.S.; Rogero, M.M.; da Silva Torres, E.A.F.; Marcadenti, A. Effects of Extra Virgin Olive Oil and Pecans on Plasma Fatty Acids in Patients with Stable Coronary Artery Disease. Nutrition 2021, 91–92, 111411. [Google Scholar] [CrossRef]
- Weschenfelder, C.; Gottschall, C.B.A.; Markoski, M.M.; Portal, V.L.; Quadros, A.S.D.; Bersch-Ferreira, Â.C.; Marcadenti, A. Effects of Supplementing a Healthy Diet with Pecan Nuts or Extra-Virgin Olive Oil on Inflammatory Profile of Patients with Stable Coronary Artery Disease: A Randomised Clinical Trial. Br. J. Nutr. 2022, 127, 862–871. [Google Scholar] [CrossRef]
- Campos, V.P.; Portal, V.L.; Markoski, M.M.; Quadros, A.S.; Bersch-Ferreira, C.; Garavaglia, J.; Marcadenti, A. Effects of a Healthy Diet Enriched or Not with Pecan Nuts or Extra-Virgin Olive Oil on the Lipid Profile of Patients with Stable Coronary Artery Disease: A Randomised Clinical Trial. J. Hum. Nutr. Diet. 2020, 33, 439–450. [Google Scholar] [CrossRef]
- Haddad, E.; Jambazian, P.; Karunia, M.; Tanzman, J.; Sabaté, J. A Pecan-Enriched Diet Increases γ-Tocopherol/Cholesterol and Decreases Thiobarbituric Acid Reactive Substances in Plasma of Adults. Nutr. Res. 2006, 26, 397–402. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Paton, C.M.; Cooper, J.A. Angiopoietin-Like Protein Responses to Pecan-Enriched Diets Versus a Nut-Excluded Diet. J. Med. Food 2022, 25, 1066–1072. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Alvarez-Parrilla, E.; López-Díaz, J.A.; Maldonado-Mendoza, I.E.; Gómez-García, M.D.C.; De La Rosa, L.A. The Pecan Nut (Carya illinoinensis) and Its Oil and Polyphenolic Fractions Differentially Modulate Lipid Metabolism and the Antioxidant Enzyme Activities in Rats Fed High-Fat Diets. Food Chem. 2015, 168, 529–537. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Paton, C.M.; Cooper, J.A. Pecan-Enriched Diets Alter Cholesterol Profiles and Triglycerides in Adults at Risk for Cardiovascular Disease in a Randomized, Controlled Trial. J. Nutr. 2021, 151, 3091–3101. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Spaulding, M.O.; Marquardt, A.R.; Cooper, J.A.; Paton, C.M. Acute Consumption of Pecans Decreases Angiopoietin-like Protein-3 in Healthy Males: A Secondary Analysis of Randomized Controlled Trials. Nutr. Res. 2021, 92, 62–71. [Google Scholar] [CrossRef] [PubMed]
- WHO. Available online: https://www.Who.Int/News-Room/Fact-Sheets/Detail/Cardiovascular-Diseases-(Cvds) (accessed on 10 March 2025).
- Santulli, G. Angiopoietin-Like Proteins: A Comprehensive Look. Front. Endocrinol. 2014, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2025. Available online: https://www.Who.Int/News-Room/Fact-Sheets/Detail/Dementia (accessed on 10 March 2025).
- Carecho, R.; Carregosa, D.; dos Santos, C.N. Low Molecular Weight (Poly)Phenol Metabolites Across the Blood-Brain Barrier: The Underexplored Journey. Brain Plast. 2020, 6, 193–214. [Google Scholar] [CrossRef]
- Zhao, R.; Jia, N.; Wu, S.; Wen, J.; Huang, Y.; Zhao, C.; Chen, W. Therapeutic Potential and Limitation of Condensed and Hydrolyzed Tannins in Parkinson’s Disease. Int. J. Biol. Macromol. 2025, 307, 141814. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Micek, A.; Mena, P.; Del Rio, D.; Galvano, F.; Castellano, S.; Grosso, G. Dietary (Poly)Phenols and Cognitive Decline: A Systematic Review and Meta-Analysis of Observational Studies. Mol. Nutr. Food Res. 2024, 68, e2300472. [Google Scholar] [CrossRef]
- Hole, K.L.; Williams, R.J. Flavonoids as an Intervention for Alzheimer’s Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Brain Plast. 2020, 6, 167–192. [Google Scholar] [CrossRef]
- Guadagni, A.J.; Prater, M.C.; Paton, C.M.; Cooper, J.A. Cognitive Function in Response to a Pecan-Enriched Meal: A Randomized, Double-Blind, Cross-over Study in Healthy Adults. Nutr. Neurosci. 2025, 28, 1075–1092. [Google Scholar] [CrossRef] [PubMed]
- Cogan, B.; Pearson, R.C.; Paton, C.M.; Jenkins, N.T.; Cooper, J.A. Effects of a 4-Week Pecan-Enriched Diet on Cognitive Function in Healthy Older Adults. Nutr. Healthy Aging 2022, 7, 159–171. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, X.; Tan, W.; Wang, Z.; Du, J.; Guo, Z.; Wang, T.; Xu, M.; Liu, C. Characterization of Pecan, Hickory, and Walnut Phospholipids and the Comparable Effects of Pecan Phospholipids with Soy Phospholipids on Scopolamine-induced Dementia in Mice. J. Food Sci. 2025, 90, e70055. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef]
- Creedon, A.C.; Hung, E.S.; Berry, S.E.; Whelan, K. Nuts and Their Effect on Gut Microbiota, Gut Function and Symptoms in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2020, 12, 2347. [Google Scholar] [CrossRef]
| Nutrient/Compound | Average Amount (Per 100 g) |
|---|---|
| Calories (kcal) | 700 |
| Protein (g) | 9.96 |
| Ash (g) | 1.44 |
| Total fat (g) | 73.3 |
| Fatty acids, total saturated (g) | 6.46 |
| Fatty acids, total monounsaturated (g) | 39.3 |
| Fatty acids, total polyunsaturated (g) | 22.9 |
| Carbohydrates | |
| Carbohydrates by difference (g) | 12.7 |
| Fiber, total dietary (g) | 5.8 |
| Minerals | |
| Calcium (mg) | 55 |
| Iron (mg) | 2.37 |
| Magnesium (mg) | 103 |
| Phosphorus (mg) | 253 |
| Potassium (mg) | 360 |
| Sodium (mg) | <2.5 |
| Zinc (mg) | 3.93 |
| Copper (mg) | 0.91 |
| Manganese (mg) | 2.28 |
| Molybdenum (µg) | 15.6 |
| Vitamins | |
| Thiamin (mg) | 0.55 |
| Niacin (mg) | 0.95 |
| Vitamin B-6 (mg) | 0.17 |
| Biotin (µg) | 22.7 |
| Vitamin K (phylloquinone) (µg) | 4.1 |
| Vitamin K (Dihydrophylloquinone) (µg) | <0.1 |
| Vitamin K (Menaquinone-4) (µg) | <0.1 |
| Amino Acids | |
| Tryptophan (g) | 0.115 |
| Threonine (g) | 0.302 |
| Isoleucine (g) | 0.365 |
| Leucine (g) | 0.67 |
| Lysine (g) | 0.32 |
| Methionine (g) | 0.168 |
| Phenylalanine (g) | 0.462 |
| Tyrosine (g) | 0.312 |
| Valine (g) | 0.435 |
| Arginine (g) | 1.36 |
| Histidine (g) | 0.262 |
| Alanine (g) | 0.438 |
| Aspartic acid (g) | 0.87 |
| Glutamic acid (g) | 2.5 |
| Glycine (g) | 0.492 |
| Proline (g) | 0.61 |
| Serine (g) | 0.54 |
| Hydroxyproline (g) | <0.01 |
| Cysteine (g) | 0.305 |
| Phytosterols | |
| Stigmasterol (mg) | 3 |
| Campestrol (mg) | 6 |
| β-Sitosterol (mg) | 117 |
| Flavonoids | |
| Catechin (mg) | 7.24 |
| Cyanidin (mg) | 10.74 |
| Delphinidin (mg) | 7.28 |
| Epicatechin (mg) | 0.82 |
| Epigallocatechin (mg) | 5.63 |
| Epigallocatechin gallate (mg) | 2.30 |
| Proanthocyanidins | |
| Monomers (mg) | 17.22 |
| Dimers (mg) | 42.13 |
| Trimers (mg) | 26.03 |
| 4–6 mers (mg) | 101.43 |
| 7–10 mers (mg) | 84.23 |
| Polymers (mg) | 223.01 |
| Ref. No. | First Author Date | Model | Methods, Generally | Interventions | Results |
|---|---|---|---|---|---|
| [46] | Cheung M, 2023 | In Vitro Digestion Model | Acetonic crude extracts: raw and roasted pecans Digested and undigested extracts of raw pecan phenolics were separated into low- and high-molecular-weight (LMW and HMW) fractions via Sephadex LH-20 column chromatography Characterization: RP-HPLC–ESI–MS | Raw and roasted Georgia pecans | LMW fraction: flavan-3-ols and ellagic acid derivatives. Post-digestion: overall ↓ phenolics from 16% to 100% HMW fraction: procyanidins with DP 2–6 Post-digestion: ↓ higher oligomeric procyanidins and significant ↑ in quantity of dimers. ↓ in antioxidant capacity ↓ TPC was mirrored by the ↓ in overall phenolics, as evidenced via HPLC analysis HPLC–ESI–MS/MS: digestion altered the phenolic profile of the LMW and HMW fractions ↑ Dimers from depolymerization (DP4–6) and dimerization of catechin/epicatechin |
| [47] | Hudthagosol C, 2011 | Human RCT Crossover 3 Arm | Healthy men and women (n = 16) | Postprandial study (24 h) pecans, 90 g whole or blended or isocalorie control meal | ↑ γ-tocopherols (8 h) ↑ Hydrophilic- and lipophilic-ORAC (2 h) ↑ Epigallocatechin-3-gallate concentrations (1 and 2 h) ↓ Oxidized LDL (whole: 2, 3, 8 h) ↓ MDA:TG (pooled pecan data 3, 5, 8 h) |
| [48] | Kang M, 2023 | Human RCT parallel 2 Arm | Adults with overweight or obesity or hypercholesterolemia (n = 61) | 4-week intervention ADD—68 g/d pecans added to a free-living diet (n = 16) or SUB—68 g/d pecans substituted for isocaloric foods from habitual diet (n = 20) or Control—usual diet, no nuts (n = 25) | ↑ Urolithins (A and C) and ellagic acid after pecan intake Urolithin A glucuronide was most abundant after 4 weeks of pecan intake (2.6–106 ng/mL) |
| Ref. No. | First Author Date | Study Design | Methods, Generally | Duration/Interventions | Results |
|---|---|---|---|---|---|
| Metabolic/Diabetes | |||||
| [69] | McKay D, 2018 | Human RCT Parallel 2 Arm | Overweight or obese adults with central adiposity (n = 26) Biomarkers related to CVD and T2DM risk | 4-week intervention Pecan diet: Control diet with 15% total kcal replaced by pecans Control diet: Isocaloric diet matched for fiber and fat (typical American diet) | ↓ Insulin * ↔ Glucose ↓ HOMA-IR *, ↓ HOMA-β ↓ TC (trend), ↔ VLDL ↓ LDL (trend), ↔ HDL ↔ TG, ↔ Oxidized LDL ↔ SBP *, ↔ DBP ↔ CRP, ↔, E-selectin, ↔ Endothelin ↔ Plasma phenolics, ↔ tocopherols, * subgroup analysis, the greater the impairment the better the pecan-associated outcomes |
| [70] | Guarneiri L, 2021c | Human RCT Parallel 3 Arm | Adults at risk for cardiovascular disease Changes in lipid peroxidation and antioxidant capacity | 8-week intervention, at pre- and post-intervention: 2 h postprandial effects ADD—68 g/d pecans added to a free-living diet (n = 15) or SUB—68 g/d pecans substituted for isocaloric foods from their habitual diet (n = 16) or Control—usual diet, no nuts (n = 16) | ↓ Postprandial lipid peroxidation ↑ Total antioxidant capacity ↑ γ-tocopherol (within groups) |
| [71] | Cogan B, 2023b | Human RCT Parallel 2 Arm | Older adults (n = 41) Glucoregulatory effects and lipid peroxidation | 4-week intervention with 2 h high fat meal challenge pre- and post-intervention Pecans—68 g/d or Control—usual diet without pecans | ↔ Insulin, ↔ glucose ↓ Lipid peroxidation (post-meal) ↔ Total antioxidant capacity |
| [72] | Feng J, 2022 | In Vitro | Enzyme kinetic study: α-amylase and α-glucosidase | Pecan extract Phenolic compounds | Pecan extract: inhibited α-amylase, α-glucosidase activity, and starch digestion ↓ Glucose release during simulated digestion |
| [73] | Delgadillo-Puga C, 2023 | Animal Parallel 5 Arm | C57BL/6 mice Glucose/lipid metabolism markers Gut microbes | 18-week intervention Control diet (7% fat) or high fat (HF) diet (23% fat) or Whole Pecans 30% energy or Pecan Polyphenols 3.6 or 6.0 mg/g in HF diet | ↓ Insulin, ↓ HOMA-IR ↓ Glucose intolerance, ↓ TC, ↑ Mitochondrial activity ↓ Serum LPS ↑ Brown adipose thermogenesis ↑ AMPK activation, ↑ O2 consumption ↑ Alpha diversity ↑ Beta diversity ↔ Species enrichment |
| Lipids and emerging risk factors | |||||
| [74] | Cogan B, 2023c | Human RCT Parallel 2 Arm | Healthy older adults (n = 44) Fasting and postprandial lipids and vascular function, FMD, and reactive hyperemia (RH) | 4-week intervention Pecans—68/d (n = 21) or Control—usual diet without nuts (n = 23) | ↓ TC, ↓ LDLc, ↓ nonHDLc ↓ LDL particle, ↓ LDL particle medium ↓ Postprandial TG ↔ FMD, ↔ RH, ↑ postprandial RH slope ↑ RH time to half |
| [75] | de Araújo A, 2021 | Human RCT Parallel 3 Arm | Patients with stable coronary artery disease (n = 204) Plasma fatty acids (n = 149 included in analysis) | 12-week intervention Pecans—30 g/d in a healthy diet or Olive oil—30 mL/d in a healthy diet or Control—healthy diet | ↔ Plasma free fatty acids Correlations with lipid profiles weak |
| [76] | Weschenfelder C, 2022 | Human RCT Parallel 3 Arm | Patients with established coronary artery disease (n = 204) Inflammatory markers | 12-week intervention Pecans—30 g/d in a healthy diet or Olive oil—30 mL/d in a healthy diet or Control—healthy diet | ↔ IL-6, ↔ hsCRP ↔ Fibrinogen, ↔ IL-2 ↔ IL-4, ↔ IL-10 ↔ IFN-γ, ↔ IL-6/IL-10 ↔ IL-2/IL-4, ↔ IFN-/γIL-4 |
| [77] | Campos V, 2020 | Human RCT Parallel 3 Arm | Patients with stable coronary artery disease (n = 204) Lipid profile | 12-week intervention Pecans—30 g/d in a healthy diet or Olive oil—30 mL/d in a healthy diet or Control—healthy diet | ↔ LDLc, ↔ HDLc ↔ LDLc/HDLc, ↔ HDLc/TG ↓ nonHDLc, ↓ TC/HDLc ↓ IL-6 all groups |
| [78] | Haddad E, 2006 | Human RCT Crossover 2 Arm | Healthy adults (n = 24) Tocopherols and measures of antioxidant capacity and oxidative stress | 4-week intervention Pecan—20% of energy in a diet or Control—usual diet | ↓ Lipid peroxidation by MDA ↑ γ-tocopherol, ↓ α-tocopherol ↔ Antioxidant capacity (FRAC and Trolox) |
| [79] | Guarneiri L, 2022c | Human RCT Parallel 3 Arm | Adults with overweight or obesity or hypercholesterolemia (n = 47) Determine changes in angiopoietin-like protein (ANGPTL) 3, -8, and -4 | 8-week intervention ADD—68 g/d pecans added to a free-living diet (n = 15) or SUB—68 g/d pecans substituted for isocaloric foods from their habitual diet (n = 16) or Control—usual diet, no nuts (n = 16) | Postprandial ↓ Angiopoietin-like protein (ANGPTLs)-3, ↔ ANGPTL-8, ↔ ANGPTL-4 (within group changes ADD and SUB) |
| [80] | Domínguez-Avila J, 2015 | Animal Parallel 5 Arm | Male Wistar rats (n = 30) Lipid metabolism and antioxidant defense (i.e., enzyme activities) | 9-week intervention Control diet or high fat diet (HFD), or ground pecan (1/2 fat of HFD) or pecan oil (1/2 fat of HFD) or pecan polyphenol fraction (1 mg/g HFD) | Compared to Control HFD: ↑ TC, ↑ leptin Whole pecan: ↓ TC, ↑ Apo B mRNA, ↑ LDL-R mRNA, ↓ lipid peroxidation, ↓ leptin, ↑ catalase, ↑ GPx, ↑ GST Oil: ↓ TG Polyphenols: ↑ Liver X receptor α mRNA |
| [81] | Guarneiri L, 2021d | Human RCT Parallel 3 Arm | Adults with overweight or obesity or hypercholesterolemia (n = 56) Changes in blood lipids and glycemia | 8-week intervention ADD—68 g/d pecans added to a free-living diet (n = 16) or SUB—68 g/d pecans substituted for isocaloric foods from their habitual diet (n = 18) or Control—usual diet, no nuts (n = 18) | Fasting ↔ Insulin, ↔ glucose ↓ TC, ↓ LDLc, ↓ TG, ↓ TC/HDL ↓ nonHDLc, ↓ Apo B (ADD, SUB: within-group comparison) Postprandial ↓ TG (ADD, within group) ↓ Glucose (SUB, within group) ↔ Insulin |
| [82] | Guarneiri L, 2021e | Human RCT Crossover 2 Arm (Study 1) 3 Arm (Study 2) | A secondary analysis using two studies that were double-blinded RCT Blood was collected at fasting, 30, 60, 120, and 180 min postprandially to determine changes in ANGPTL | Study 1 (n = 22) Pecans, 28 g or No nuts Study 2 (n = 30) Black walnuts or English walnuts or No nuts | In study 1, ↓ ANGPTL3, ↔ ANGPTL-4 In study 2, ↔ ANGPTL3, ↔ ANGPTL-4 |
| Ref. No. | First Author/Date | Study Design | Methods, Generally | Duration/Interventions | Results |
|---|---|---|---|---|---|
| [90] | Guadagni A, 2025 | Human RCT Crossover 2 Arm | Healthy adults (n = 31) A cognitive battery, VAS for motivation, and the Stanford Sleepiness Scale were administered at fasting and 1, 2, 3, and 4 h postprandially | 4 h postprandial study Pecan-enriched shake 68 g/d or Control—calorie matched high saturated fat shake | ↑ Cognitive performance 8/23 cognitive measures > Pecan 4 attention and processing 4 memory and learning 3/23 cognitive measures > Control |
| [91] | Cogan B, 2022 | Human RCT Parallel 2 Arm | Healthy adults (n = 42) Cognitive function assessments: fluid composite score and four subtests from the NIH Toolbox Cognitive Battery (NIHTB-CB) (Flanker Test, Digital Change Card Sort Test (DCCS), Picture Sequence Memory Test (PSMT), NIHTB Auditory Verbal Learning Test (RAVLT)) at fasting and 30 and 210 min after interventions | 4-week intervention Pecans—68 g/d or Control—high saturated fat meal without nuts | ↔ Cognitive performance |
| [92] | Jia X, 2025 | Animal Parallel 5 Arm | Demented mice (n = 210) Behavioral tests, including the step-through test, the step-down test, and the Morris water maze test | 4-week intervention Pecan phospholipid extract dose: 120, 60, 30 (mg/kg, IG) vs. Soy phospholipids: 400 and 200 (mg/kg, IG) intragastrically administered | ↑ Learning, ↑ memory via step-through test, step-down test, and Morris water maze test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandhu, A.K.; Edirisinghe, I.; Burton-Freeman, B. Pecans and Human Health: Distinctive Benefits of an American Nut. Nutrients 2025, 17, 3686. https://doi.org/10.3390/nu17233686
Sandhu AK, Edirisinghe I, Burton-Freeman B. Pecans and Human Health: Distinctive Benefits of an American Nut. Nutrients. 2025; 17(23):3686. https://doi.org/10.3390/nu17233686
Chicago/Turabian StyleSandhu, Amandeep K., Indika Edirisinghe, and Britt Burton-Freeman. 2025. "Pecans and Human Health: Distinctive Benefits of an American Nut" Nutrients 17, no. 23: 3686. https://doi.org/10.3390/nu17233686
APA StyleSandhu, A. K., Edirisinghe, I., & Burton-Freeman, B. (2025). Pecans and Human Health: Distinctive Benefits of an American Nut. Nutrients, 17(23), 3686. https://doi.org/10.3390/nu17233686

