Longitudinal Association of Coffee and Tea Consumption with Bone Mineral Density in Older Women: A 10-Year Repeated-Measures Analysis in the Study of Osteoporotic Fractures
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Exposure
2.4. Outcome
2.5. Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BMD | Bone mineral density |
| CCI | Charlson comorbidity index |
| DALY | Disability-adjusted life years |
| MAR | Missing at random |
| LS | Least squares |
| SOF | Study of osteoporotic fractures |
| YLD | Years lived with disability |
Appendix A
Appendix A.1
| Outcome | Visit | Model 1 | Model 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| No | Yes | Difference (95% CI) | p Value | No | Yes | Difference (95% CI) | p Value | ||
| LS means of femoral neck BMD (g/cm2) | 2 | 0.656 | 0.655 | 0.000 (−0.002, 0.002) | 0.6859 | 0.651 | 0.650 | 0.000 (−0.003, 0.002) | 0.7187 |
| 4 | 0.634 | 0.634 | 0.000 (−0.002, 0.002) | 0.9345 | 0.631 | 0.631 | −0.001 (−0.003, 0.002) | 0.6725 | |
| 5 | 0.626 | 0.627 | 0.001 (−0.001, 0.003) | 0.4246 | 0.623 | 0.624 | 0.001 (−0.002, 0.004) | 0.4480 | |
| 6 | 0.619 | 0.619 | 0.000 (−0.002, 0.003) | 0.7388 | 0.617 | 0.618 | 0.001 (−0.002, 0.004) | 0.5827 | |
| 8 | 0.611 | 0.615 | 0.003 (0.000, 0.006) | 0.0565 | 0.613 | 0.616 | 0.003 (−0.001, 0.007) | 0.0921 | |
| 9 | 0.612 | 0.600 | −0.012 (−0.018, −0.005) | 0.0010 | 0.620 | 0.609 | −0.011 (−0.019, −0.003) | 0.0071 | |
| LS means of total hip BMD (g/cm2) | 2 | 0.766 | 0.766 | 0.000 (−0.001, 0.002) | 0.6758 | 0.756 | 0.757 | 0.001 (−0.001, 0.003) | 0.5623 |
| 4 | 0.738 | 0.740 | 0.001 (−0.001, 0.003) | 0.2275 | 0.733 | 0.734 | 0.001 (−0.001, 0.003) | 0.3717 | |
| 5 | 0.727 | 0.728 | 0.001 (−0.001, 0.003) | 0.2608 | 0.725 | 0.726 | 0.001 (−0.001, 0.004) | 0.2916 | |
| 6 | 0.718 | 0.717 | −0.001 (−0.003, 0.001) | 0.3545 | 0.717 | 0.717 | 0.000 (−0.002, 0.003) | 0.8971 | |
| 8 | 0.703 | 0.706 | 0.003 (0.000, 0.006) | 0.0283 | 0.709 | 0.712 | 0.003 (0.000, 0.006) | 0.0697 | |
| 9 | 0.706 | 0.704 | −0.002 (−0.008, 0.005) | 0.6005 | 0.723 | 0.721 | −0.002 (−0.009, 0.005) | 0.5435 | |
Appendix A.2
| Outcome | Visit | Model 1 | Model 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| No | Yes | Difference (95% CI) | p Value | No | Yes | Difference (95% CI) | p Value | ||
| LS means of femoral neck BMD (g/cm2) | 2 | 0.655 | 0.656 | 0.000 (−0.002, 0.003) | 0.7318 | 0.650 | 0.651 | 0.001 (−0.002, 0.003) | 0.4955 |
| 4 | 0.634 | 0.635 | 0.002 (0.000, 0.004) | 0.1240 | 0.630 | 0.632 | 0.002 (−0.001, 0.004) | 0.1855 | |
| 5 | 0.626 | 0.626 | 0.000 (−0.002, 0.003) | 0.8256 | 0.624 | 0.624 | 0.000 (−0.003, 0.003) | 0.9554 | |
| 6 | 0.620 | 0.619 | −0.001 (−0.004, 0.002) | 0.4261 | 0.619 | 0.617 | −0.002 (−0.005, 0.001) | 0.2360 | |
| 8 | 0.612 | 0.615 | 0.004 (0.000, 0.007) | 0.0286 | 0.613 | 0.616 | 0.003 (−0.001, 0.007) | 0.1139 | |
| 9 | 0.604 | 0.605 | 0.001 (−0.006, 0.008) | 0.7669 | 0.613 | 0.614 | 0.001 (−0.007, 0.009) | 0.8361 | |
| LS means of total hip BMD (g/cm2) | 2 | 0.766 | 0.767 | 0.000 (−0.002, 0.002) | 0.7088 | 0.756 | 0.757 | 0.001 (−0.001, 0.003) | 0.3118 |
| 4 | 0.738 | 0.740 | 0.002 (0.000, 0.004) | 0.1383 | 0.733 | 0.735 | 0.002 ( 0.000, 0.004) | 0.0683 | |
| 5 | 0.728 | 0.728 | 0.001 (−0.002, 0.003) | 0.6265 | 0.725 | 0.726 | 0.001 (−0.002, 0.003) | 0.6044 | |
| 6 | 0.717 | 0.719 | 0.003 (0.000, 0.005) | 0.0329 | 0.716 | 0.719 | 0.003 (0.001, 0.006) | 0.0159 | |
| 8 | 0.703 | 0.707 | 0.005 (0.001, 0.008) | 0.0040 | 0.709 | 0.714 | 0.004 (0.001, 0.007) | 0.0187 | |
| 9 | 0.704 | 0.706 | 0.002 (−0.005, 0.008) | 0.5952 | 0.722 | 0.720 | −0.001 (−0.009, 0.006) | 0.7022 | |
Appendix A.3

References
- Sozen, T.; Ozisik, L.; Basaran, N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
- Kanis, J.A.; Harvey, N.C.; Lorentzon, M.; Liu, E.; Schini, M.; Abrahamsen, B.; Adachi, J.D.; Alokail, M.; Borgstrom, F.; Bruyère, O.; et al. Race-specific FRAX models are evidence-based and support equitable care: A response to the ASBMR Task Force report on Clinical Algorithms for Fracture Risk. Osteoporos. Int. 2024, 35, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Lorentzon, M.; Johansson, H.; Harvey, N.; Liu, E.; Vandenput, L.; McCloskey, E.; Kanis, J. Osteoporosis and fractures in women: The burden of disease. Climacteric 2022, 25, 4–10. [Google Scholar] [CrossRef]
- GBD 2021 Low Bone Mineral Density Collaborators. The global, regional, and national burden attributable to low bone mineral density, 1990-2020: An analysis of a modifiable risk factor from the Global Burden of Disease Study 2021. Lancet Rheumatol. 2025, 7, e873–e894. [Google Scholar] [CrossRef]
- Fang, P.; She, Y.; Han, L.; Wan, S.; Shang, W.; Zhang, Z.; Min, W. A promising biomarker of elevated galanin level in hypothalamus for osteoporosis risk in type 2 diabetes mellitus. Mech. Ageing Dev. 2021, 194, 111427. [Google Scholar] [CrossRef]
- Liu, E. Hip fractures: Mortality, economic burden, and organisational factors for improved patient outcomes. Lancet Healthy Longev. 2023, 4, e360–e361. [Google Scholar] [CrossRef]
- McPhee, C.; Aninye, I.O.; Horan, L. Recommendations for Improving Women’s Bone Health Throughout the Lifespan. J. Women’s Health 2022, 31, 1671–1676. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [PubMed]
- International Coffee Organization. Coffee Report and Outlook. Available online: https://icocoffee.org/documents/cy2023-24/Coffee_Report_and_Outlook_December_2023_ICO.pdf (accessed on 9 October 2025).
- Ibrahim, A.A.; Rahman, M.S.; Noman, M.R.A.F.; Nur, A.H. Tea and Tea Industry Scenario: A Review of World and Bangladesh Perspective. Int. J. Tea Sci. 2024, 18, 6–17. [Google Scholar] [CrossRef]
- Walter, K. Caffeine and health. JAMA 2022, 327, 693. [Google Scholar] [CrossRef]
- Lu, X.; Zhu, X.; Li, G.; Wu, L.; Shao, L.; Fan, Y.; Pan, C.-W.; Wu, Y.; Borné, Y.; Ke, C. Habitual Coffee, Tea, and Caffeine Consumption, Circulating Metabolites, and the Risk of Cardiometabolic Multimorbidity. J. Clin. Endocrinol. Metab. 2025, 110, e1845–e1855. [Google Scholar] [CrossRef]
- San Francisco Coordinating Center. About the SOF Study. Available online: https://sofonline.ucsf.edu/Home/About (accessed on 9 October 2025).
- Kanis, J.A.; Johansson, H.; McCloskey, E.V.; Liu, E.; Åkesson, K.E.; Anderson, F.A.; Azagra, R.; Bager, C.L.; Beaudart, C.; Bischoff-Ferrari, H.A.; et al. Previous fracture and subsequent fracture risk: A meta-analysis to update FRAX. Osteoporos. Int. 2023, 34, 2027–2045. [Google Scholar] [CrossRef]
- Schousboe, J.T.; Binkley, N.; Leslie, W.D. The association of hip bone mineral density (BMD) with incident major osteoporotic and hip fractures varies by body mass index. J. Clin. Densitom. 2025, 28, 101577. [Google Scholar] [CrossRef]
- Liu, E.; Liu, R.Y.; Moraros, J.; McCloskey, E.V.; Harvey, N.C.; Lorentzon, M.; Johansson, H.; Kanis, J.A. Association between walking and hip fracture in women aged 65 and older: 20-year follow-up from the study of osteoporotic fractures. Osteoporos. Int. 2025, 36, 1155–1164. [Google Scholar] [CrossRef]
- West, B.T.; Welch, K.B.; Galecki, A.T. Linear Mixed Models: A Practical Guide Using Statistical Software, 3rd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022. [Google Scholar]
- Schandelmaier, S.; Guyatt, G. Same Old Challenges in Subgroup Analysis—Should We Do More About Methods Implementation? JAMA Netw. Open 2024, 7, e243339. [Google Scholar] [CrossRef]
- Wang, X.; Piantadosi, S.; Le-Rademacher, J.; Mandrekar, S.J. Statistical Considerations for Subgroup Analyses. J. Thorac. Oncol. 2021, 16, 375–380. [Google Scholar] [CrossRef]
- Liu, E.; Liu, R.Y. Imputing Covariance for Meta-Analysis in the Presence of Interaction. Appl. Sci. 2025, 15, 141. [Google Scholar] [CrossRef]
- Gauthier, J.; Wu, Q.V.; Gooley, T.A. Cubic splines to model relationships between continuous variables and outcomes: A guide for clinicians. Bone Marrow Transplant. 2020, 55, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, M.; Hua, Y.; Hui, Z.; Zhang, Y.; Lin, Y.; Du, J.; Ni, C.; Wang, X. Soft drinks, tea and coffee consumption in relation to risk of fracture: Evidence from china health and nutrition survey. J. Bone Miner. Metab. 2023, 41, 621–630. [Google Scholar] [CrossRef]
- Zeng, X.; Su, Y.; Tan, A.; Zou, L.; Zha, W.; Yi, S.; Lv, Y.; Kwok, T. The association of coffee consumption with the risk of osteoporosis and fractures: A systematic review and meta-analysis. Osteoporos. Int. 2022, 33, 1871–1893. [Google Scholar] [CrossRef] [PubMed]
- Gabrio, A.; Plumpton, C.; Banerjee, S.; Leurent, B. Linear mixed models to handle missing at random data in trial-based economic evaluations. Health Econ. 2022, 31, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Twisk, J.; de Boer, M.; de Vente, W.; Heymans, M. Multiple imputation of missing values was not necessary before performing a longitudinal mixed-model analysis. J. Clin. Epidemiol. 2013, 66, 1022–1028. [Google Scholar] [CrossRef]
- Rame, A. Coffee consumption, bone mineral density and incidence hip fracture in Icelandic community dwelling adults. Proc. Nutr. Soc. 2021, 80, E35. [Google Scholar] [CrossRef]
- Adıgüzel, K.T.; Köroğlu, Ö. Caffeine intake and bone mineral density in postmenopausal women. Gulhane Med. J. 2022, 64, 262–267. [Google Scholar] [CrossRef]
- Berman, N.K.; Honig, S.; Cronstein, B.N.; Pillinger, M.H. The effects of caffeine on bone mineral density and fracture risk. Osteoporos. Int. 2022, 33, 1235–1241. [Google Scholar] [CrossRef]
- Jahng, S.Y.; Kim, H.W.; Lee, S.H.; Jeong, J.Y.; Son, H.R. Association between Coffee Consumption and Bone Mineral Density in Korean Men Aged 50 Years and Older: A Cross Sectional Analysis of Korea National Health and Nutrition Examination Survey 2011. Korean J. Fam. Pract. 2020, 10, 15–22. [Google Scholar] [CrossRef]
- Cui, A.; Xiao, P.; He, J.; Fan, Z.; Xie, M.; Chen, L.; Zhuang, Y.; Wang, H. Association between caffeine consumption and bone mineral density in children and adolescent: Observational and Mendelian randomization study. PLoS ONE 2023, 18, e0287756. [Google Scholar] [CrossRef]
- Chen, C.-C.; Shen, Y.-M.; Li, S.-B.; Huang, S.-W.; Kuo, Y.-J.; Chen, Y.-P. Association of coffee and tea intake with bone mineral density and hip fracture: A meta-analysis. Medicina 2023, 59, 1177. [Google Scholar] [CrossRef]
- da Costa, M.S.; da Silva Pontes, K.S.; Guedes, M.R.; Silva, M.I.B.; Klein, M.R.S.T. Association of habitual coffee consumption with obesity, sarcopenia, bone mineral density and cardiovascular risk factors: A two-year follow-up study in kidney transplant recipients. Clin. Nutr. 2023, 42, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, S.; Xia, B.; He, Q.; Mi, N.; Zhao, J.; Hu, L.; Wang, D.; Zheng, L.; Sheng, P. Association of coffee and tea consumption with osteoporosis risk: A prospective study from the UK biobank. Bone 2024, 186, 117135. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhai, T. Coffee Drinking and the Odds of Osteopenia and Osteoporosis in Middle-Aged and Older Americans: A Cross-Sectional Study in NHANES 2005–2014. Calcif. Tissue Int. 2024, 114, 348–359. [Google Scholar] [CrossRef]
- Li, W.; Xie, Y.; Jiang, L. Coffee and tea consumption on the risk of osteoporosis: A meta-analysis. Front. Nutr. 2025, 12, 1559835. [Google Scholar] [CrossRef]
- Ye, Y.; Zhong, R.; Xiong, X.M.; Wang, C.E. Association of coffee intake with bone mineral density: A Mendelian randomization study. Front. Endocrinol. 2024, 15, 1328748. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, T.; Hu, L.; Li, J.; Gan, C.; Xu, J.; Chen, F.; Xiang, Z.; Wang, X.; Sheng, J. Effect of caffeine on ovariectomy-induced osteoporosis in rats. Biomed. Pharmacother. 2019, 112, 108650. [Google Scholar] [CrossRef] [PubMed]
- Rapuri, P.B.; Gallagher, J.C.; Nawaz, Z. Caffeine decreases vitamin D receptor protein expression and 1, 25 (OH) 2D3 stimulated alkaline phosphatase activity in human osteoblast cells. J. Steroid Biochem. Mol. Biol. 2007, 103, 368–371. [Google Scholar] [CrossRef]
- Heaney, R.P. Effects of caffeine on bone and the calcium economy. Food Chem. Toxicol. 2002, 40, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-L.; Nfor, O.; Lu, W.-Y.; Tantoh, D.M.; Liaw, Y.-P. Relationship between coffee consumption and osteoporosis risk determined by the ESR1 polymorphism rs2982573. J. Nutr. Health Aging 2022, 26, 558–563. [Google Scholar] [CrossRef]
- Ni, S.; Wang, L.; Wang, G.; Lin, J.; Ma, Y.; Zhao, X.; Ru, Y.; Zheng, W.; Zhang, X.; Zhu, S. Drinking tea before menopause is associated with higher bone mineral density in postmenopausal women. Eur. J. Clin. Nutr. 2021, 75, 1454–1464. [Google Scholar] [CrossRef]
- Lee, D.B.; Song, H.J.; Paek, Y.-J.; Park, K.H.; Seo, Y.-G.; Noh, H.-M. Relationship between Regular Green Tea Intake and Osteoporosis in Korean Postmenopausal Women: A Nationwide Study. Nutrients 2022, 14, 87. [Google Scholar] [CrossRef]
- Hegarty, V.M.; May, H.M.; Khaw, K.-T. Tea drinking and bone mineral density in older women. Am. J. Clin. Nutr. 2000, 71, 1003–1007. [Google Scholar] [CrossRef]
- Devine, A.; Hodgson, J.M.; Dick, I.M.; Prince, R.L. Tea drinking is associated with benefits on bone density in older women. Am. J. Clin. Nutr. 2007, 86, 1243–1247. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Yang, J.-L.; Jiang, H.-C.; Lai, Z.; Wu, F.; Liu, Z.-X. Updated association of tea consumption and bone mineral density: A meta-analysis. Medicine 2017, 96, e6437. [Google Scholar] [CrossRef]
- Sun, K.; Wang, L.; Ma, Q.; Cui, Q.; Lv, Q.; Zhang, W.; Li, X. Association between tea consumption and osteoporosis: A meta-analysis. Medicine 2017, 96, e9034. [Google Scholar] [CrossRef] [PubMed]
- Dostal, A.M.; Arikawa, A.; Espejo, L.; Kurzer, M.S. Long-Term Supplementation of Green Tea Extract Does Not Modify Adiposity or Bone Mineral Density in a Randomized Trial of Overweight and Obese Postmenopausal Women. J. Nutr. 2016, 146, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Lau, K.M.; Choy, W.Y.; Leung, P.C. Effects of tea catechins, epigallocatechin, gallocatechin, and gallocatechin gallate, on bone metabolism. J. Agric. Food Chem. 2009, 57, 7293–7297. [Google Scholar] [CrossRef] [PubMed]
- Dvoretskiy, S.; Cole, T.; Skelding, M.-B.; Reaves, L.A.; Edens, N.K.; Pereira, S.L. The Green Tea Catechin, EGCg, Preserves Both Muscle and Bone in Aging Sarcopenic Rats. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Pocock, N.; Eisman, J.A. Interpretation of bone mineral density measurement and its change. J. Clin. Densitom. 2000, 3, 107–119. [Google Scholar] [CrossRef]




| Variable | Visit | Coffee | Tea | ||
|---|---|---|---|---|---|
| No | Yes | No | Yes | ||
| Femoral neck BMD, N, mean (SD), g/cm2 | 2 | 3577, 0.651 (0.109) | 4334, 0.647 (0.112) | 5865, 0.648 (0.111) | 2047, 0.649 (0.109) |
| 4 | 2626, 0.634 (0.115) | 3581, 0.630 (0.117) | 3630, 0.631 (0.115) | 2576, 0.634 (0.118) | |
| 5 | 2455, 0.629 (0.116) | 3201, 0.626 (0.119) | 3506, 0.627 (0.119) | 2150, 0.627 (0.117) | |
| 6 | 2126, 0.625 (0.116) | 2566, 0.623 (0.125) | 2806, 0.626 (0.121) | 1886, 0.621 (0.120) | |
| Total hip BMD, N, mean (sd), g/cm2 | 2 | 3627, 0.760 (0.129) | 4394, 0.754 (0.133) | 5947, 0.757 (0.132) | 2075, 0.757 (0.129) |
| 4 | 2626, 0.739 (0.133) | 3581, 0.734 (0.134) | 3630, 0.735 (0.134) | 2576, 0.738 (0.133) | |
| 5 | 2455, 0.733 (0.133) | 3201, 0.728 (0.137) | 3506, 0.729 (0.136) | 2150, 0.732 (0.134) | |
| 6 | 2126, 0.727 (0.133) | 2566, 0.723 (0.141) | 2806, 0.725 (0.139) | 1886, 0.725 (0.136) | |
| Age, N, mean (sd), y | 2 | 3610, 73.4 (5.1) | 4380, 73.2 (4.9) | 5926, 73.3 (5.0) | 2065, 73.3 (5.0) |
| 4 | 2622, 76.6 (4.7) | 3576, 76.5 (4.6) | 3624, 76.4 (4.6) | 2573, 76.7 (4.7) | |
| 5 | 2449, 78.3 (4.4) | 3191, 78.3 (4.4) | 3496, 78.2 (4.4) | 2144, 78.4 (4.4) | |
| 6 | 2121, 80.0 (4.1) | 2564, 80.0 (4.1) | 2802, 80.0 (4.1) | 1883, 80.0 (4.1) | |
| BMI, N, mean (sd), kg/m2 | 2 | 3516, 26.2 (4.4) | 4278, 26.2 (4.4) | 5786, 26.2 (4.4) | 2009, 26.2 (4.4) |
| 4 | 2572, 26.5 (4.6) | 3511, 26.4 (4.5) | 3547, 26.3 (4.5) | 2535, 26.6 (4.5) | |
| 5 | 2419, 26.5 (4.6) | 3154, 26.5 (4.6) | 3453, 26.5 (4.6) | 2120, 26.5 (4.6) | |
| 6 | 2081, 26.5 (4.6) | 2519, 26.3 (4.5) | 2748, 26.4 (4.6) | 1852, 26.4 (4.5) | |
| Charlson comorbidity index, N, mean (sd) | 2 | 3627, 1.4 (1.7) | 4394, 1.3 (1.7) | 5947, 1.3 (1.7) | 2075, 1.3 (1.7) |
| 4 | 2626, 2.9 (2.8) | 3581, 2.6 (2.8) | 3630, 2.7 (2.8) | 2576, 2.8 (2.8) | |
| 5 | 2455, 3 (2.9) | 3201, 2.8 (2.8) | 3506, 2.9 (2.9) | 2150, 2.9 (2.8) | |
| 6 | 2126, 3.1 (2.9) | 2567, 3 (2.9) | 2807, 3 (2.9) | 1886, 3.1 (2.9) | |
| Current smoker, yes/total (%) | 2 | 194/3627 (5.4) | 439/4393 (10.0) | 494/5946 (8.3) | 139/2075 (6.7) |
| 4 | 95/2626 (3.6) | 255/3581 (7.1) | 238/3630 (6.6) | 112/2576 (4.4) | |
| 5 | 66/2455 (2.7) | 202/3201 (6.3) | 203/3506 (5.8) | 65/2150 (3.0) | |
| 6 | 51/2126 (2.4) | 128/2567 (5.4) | 125/2807 (4.5) | 64/1886 (3.4) | |
| Menopause age, mean (sd) | 2 | 2930, 48.2 (5.6) | 3630, 47.9 (5.8) | 4871, 48.1 (5.7) | 1690, 47.8 (5.8) |
| 4 | 2116, 48.2 (5.6) | 2963, 48.1 (5.7) | 2972, 48.1 (5.7) | 2107, 48.2 (5.7) | |
| 5 | 1984, 48.3 (5.5) | 2633, 48.1 (5.7) | 2847, 48.1 (5.6) | 1770, 48.3 (5.5) | |
| 6 | 1702, 48.5 (5.4) | 2117, 48.2 (5.7) | 2265, 48.3 (5.6) | 1554, 48.3 (5.5) | |
| Average calcium consumed per week (mg), N, median (IQR) | 2 | 3627, 4422.7 (4009.6) | 4394, 4320.8 (3624.4) | 5947, 4394.1 (3947.3) | 2075, 4325.4 (3480.5) |
| 4 | 2626, 4411.5 (4015.1) | 3581, 4336.7 (3592.5) | 3630, 4351.6 (3942.8) | 2576, 4382.1 (3480.7) | |
| 5 | 2455, 4360.3 (3909.3) | 3201, 4334.4 (3659.7) | 3506, 4334.4 (3887.5) | 2150, 4370.5 (3594.6) | |
| 6 | 2126, 4333 (3949.3) | 2566, 4377.8 (3574.6) | 2806, 4319.6 (3865.3) | 1886, 4416.7 (3546.9) | |
| Average protein consumed per week (g), N, median (IQR) | 2 | 3627, 342.9 (171.9) | 4394, 342.1 (172.6) | 5947, 340.7 (171) | 2075, 348 (173.6) |
| 4 | 2626, 344.2 (172.1) | 3581, 340.9 (168.1) | 3630, 339.1 (171.6) | 2576, 345.5 (167.8) | |
| 5 | 2455, 341.7 (174.4) | 3201, 343.1 (167.4) | 3506, 340.5 (174.7) | 2150, 345.1 (166.3) | |
| 6 | 2126, 341.2 (173.7) | 2566, 343.4 (165.4) | 2806, 338.7 (170.3) | 1886, 347.7 (167.4) | |
| Lifetime alcohol use (drinks/week) ×years, N, median (IQR) | 2 | 3627, 13.8 (76.5) | 4394, 28.1 (115.3) | 5947, 21.0 (93.1) | 2075, 26.8 (99.0) |
| 4 | 2626, 15.0 (80.0) | 3581, 28.8 (112.3) | 3630, 23.1 (95.5) | 2576, 26.3 (100.0) | |
| 5 | 2455, 15.4 (79.5) | 3201, 29.4 (110.8) | 3506, 23.1 (97.4) | 2150, 26.9 (94.8) | |
| 6 | 2126, 21.5 (85.4) | 2566, 30.0 (108.3) | 2806, 24.2 (96.3) | 1886, 29.4 (97.8) | |
| Number of physical activities per year over lifetime, N, median (IQR) | 2 | 3520, 3830 (4400) | 4268, 3670 (4227.5) | 5769, 3750 (4350) | 2020, 3690 (4165) |
| 4 | 2552, 3950 (4325) | 3479, 3750 (4255) | 3516, 3877.5 (4245) | 2514, 3765 (4340) | |
| 5 | 2389, 3810 (4255) | 3106, 3852.5 (4185) | 3398, 3910 (4190) | 2097, 3745 (4255) | |
| 6 | 2067, 3870 (4290) | 2494, 3812.5 (4200) | 2709, 3800 (4185) | 1852, 3862.5 (4342.5) | |
| Current oral estrogen use, yes/total (%) | 2 | 529/3569 (14.8) | 608/4346 (14) | 856/5874 (14.6) | 281/2042 (13.8) |
| 4 | 377/2579 (14.6) | 535/3544 (15.1) | 526/3574 (14.7) | 386/2548 (15.1) | |
| 5 | 357/2416 (14.8) | 483/3167 (15.3) | 520/3454 (15.1) | 320/2129 (15.0) | |
| 6 | 310/2094 (14.8) | 406/2536 (16.0) | 429/2773 (15.5) | 287/1857 (15.5) | |
| Current use steroid pills, yes/total (%) | 2 | 74/3556 (2.1) | 77/4320 (1.8) | 101/5839 (1.7) | 50/2038 (2.5) |
| 4 | 48/2572 (1.9) | 52/3527 (1.5) | 57/3566 (1.6) | 43/2532 (1.7) | |
| 5 | 39/2412 (1.6) | 41/3147 (1.3) | 54/3447 (1.6) | 26/2112 (1.2) | |
| 6 | 37/2087 (1.8) | 29/2527 (1.1) | 38/2767 (1.4) | 28/1847 (1.5) | |
| Outcome | Visit | Model 1 | Model 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| No | Yes | Difference (95% CI) | p Value | No | Yes | Difference (95% CI) | p Value | ||
| LS means of femoral neck BMD (g/cm2) | 2 | 0.654 | 0.654 | 0.000 (−0.002, 0.001) | 0.6069 | 0.650 | 0.649 | −0.001 (−0.003, 0.001) | 0.5924 |
| 4 | 0.633 | 0.633 | 0.000 (−0.002, 0.002) | 0.9708 | 0.630 | 0.629 | −0.001 (−0.003, 0.002) | 0.6394 | |
| 5 | 0.624 | 0.625 | 0.001 (−0.001, 0.003) | 0.4816 | 0.622 | 0.623 | 0.001 (−0.002, 0.003) | 0.5098 | |
| 6 | 0.617 | 0.618 | 0.001 (−0.002, 0.003) | 0.8268 | 0.616 | 0.617 | 0.001 (−0.002, 0.003) | 0.6465 | |
| LS means of total hip BMD (g/cm2) | 2 | 0.764 | 0.764 | 0.000 (−0.001, 0.002) | 0.7576 | 0.757 | 0.757 | 0.000 (−0.001, 0.002) | 0.6981 |
| 4 | 0.736 | 0.737 | 0.001 (−0.001, 0.003) | 0.3411 | 0.733 | 0.734 | 0.001 (−0.001, 0.003) | 0.5053 | |
| 5 | 0.725 | 0.726 | 0.001 (−0.001, 0.003) | 0.3841 | 0.724 | 0.725 | 0.001 (−0.001, 0.003) | 0.4745 | |
| 6 | 0.716 | 0.715 | −0.002 (−0.004, 0.001) | 0.1548 | 0.716 | 0.716 | 0.000 (−0.003, 0.002) | 0.8666 | |
| Outcome | Visit | Model 1 for Tea Consumption | Model 2 for Tea Consumption | ||||||
|---|---|---|---|---|---|---|---|---|---|
| No | Yes | Difference (95% CI) | p Value | No | Yes | Difference (95% CI) | p Value | ||
| LS means of femoral neck BMD (g/cm2) | 2 | 0.654 | 0.654 | 0.000 (−0.002, 0.002) | 0.8217 | 0.649 | 0.650 | 0.001 (−0.002, 0.003) | 0.5590 |
| 4 | 0.632 | 0.633 | 0.002 (−0.001, 0.004) | 0.1385 | 0.629 | 0.631 | 0.001 (−0.001, 0.004) | 0.2169 | |
| 5 | 0.624 | 0.625 | 0.000 (−0.002, 0.003) | 0.7296 | 0.622 | 0.623 | 0.000 (−0.003, 0.002) | 0.9381 | |
| 6 | 0.618 | 0.617 | −0.001 (−0.004, 0.001) | 0.2928 | 0.618 | 0.615 | −0.002 (−0.005, 0.001) | 0.1341 | |
| LS means of total hip BMD (g/cm2) | 2 | 0.764 | 0.764 | 0.000 (−0.002, 0.002) | 0.8951 | 0.756 | 0.757 | 0.001 (−0.001, 0.003) | 0.5640 |
| 4 | 0.736 | 0.738 | 0.001 (−0.001, 0.003) | 0.1975 | 0.733 | 0.734 | 0.002 (−0.001, 0.004) | 0.1407 | |
| 5 | 0.726 | 0.726 | 0.000 (−0.002, 0.002) | 0.6571 | 0.724 | 0.725 | 0.000 (−0.002, 0.002) | 0.8541 | |
| 6 | 0.715 | 0.717 | 0.002 (0.000, 0.004) | 0.0354 | 0.715 | 0.718 | 0.003 (0.000, 0.005) | 0.0260 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.Y.; Liu, E. Longitudinal Association of Coffee and Tea Consumption with Bone Mineral Density in Older Women: A 10-Year Repeated-Measures Analysis in the Study of Osteoporotic Fractures. Nutrients 2025, 17, 3660. https://doi.org/10.3390/nu17233660
Liu RY, Liu E. Longitudinal Association of Coffee and Tea Consumption with Bone Mineral Density in Older Women: A 10-Year Repeated-Measures Analysis in the Study of Osteoporotic Fractures. Nutrients. 2025; 17(23):3660. https://doi.org/10.3390/nu17233660
Chicago/Turabian StyleLiu, Ryan Yan, and Enwu Liu. 2025. "Longitudinal Association of Coffee and Tea Consumption with Bone Mineral Density in Older Women: A 10-Year Repeated-Measures Analysis in the Study of Osteoporotic Fractures" Nutrients 17, no. 23: 3660. https://doi.org/10.3390/nu17233660
APA StyleLiu, R. Y., & Liu, E. (2025). Longitudinal Association of Coffee and Tea Consumption with Bone Mineral Density in Older Women: A 10-Year Repeated-Measures Analysis in the Study of Osteoporotic Fractures. Nutrients, 17(23), 3660. https://doi.org/10.3390/nu17233660

