Risk Profiles of Poor Diet Quality Among University Students: A Multivariate Segmentation Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Instruments and Measures
- Sociodemographic and health variables (sex, age, weight, height, academic program, year of study, self-reported socioeconomic status [SES], cohabitation, employment and financial status, medical treatment or prescribed diet, history of COVID-19 infection, and restrictions on physical activity [PA] during lockdown). Body mass index (BMI, kg·m−2) was calculated from self-reported weight and height and subsequently categorized according to WHO criteria [33].
- Diet quality: assessed using the Healthy Eating Index adapted for the Spanish population [34], which evaluates adherence to healthy eating recommendations across nine food components, including overall dietary variety. Each item is scored from 0 to 10, with a total possible score of 100. Based on conventional cut-offs, scores were classified as unhealthy diet (<50), diet needing modification (50–80), or healthy diet (>80). Previous research has demonstrated that the HEI is a valid and reliable indicator of diet quality among university student populations [35,36].
- Physical activity: measured using the International Physical Activity Questionnaire–Short Form (IPAQ-SF®) [37]. This seven-item self-report instrument has demonstrated acceptable validity and reliability in student populations in Spain [38] and Chile [39] and is widely used in global surveillance studies [40]. According to WHO guidelines for adults aged 18–64 years [41], respondents were categorized into low, moderate, or high PA levels.
2.3. Procedures
2.4. Ethical Considerations
2.5. Statistical Analysis
3. Results
3.1. Sociodemographic Sample Characteristics
3.2. Frequency of Food Groups Consumption by Country
3.3. Diet Quality
3.4. Predictors of Poor Diet Quality
3.4.1. Exhaustive CHAID Model
3.4.2. CART Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| COVID-19 | Coronavirus Disease 2019 |
| IPAQ-SF | International Physical Activity Questionnaire—Short Form |
| HEI | Healthy Eating Index |
| ANOVA | Analysis of Variance |
| CHAID | Chi-squared Automatic Interaction Detection |
| CART | Classification and Regression Trees |
| WHO | World Health Organization |
| SES | Socioeconomic Status |
| PA | Physical Activity |
| ICAR | Research Committee for the Attention to Research |
| BMI | Body Mass Index |
References
- World Health Organization. World Health Statistics 2023: Monitoring Health for the SDGs; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Nuñez-Leyva, R.E.; Lozano-López, T.E.; Calizaya-Milla, Y.E.; Calizaya-Milla, S.E.; Saintila, J. Excess Weight and Body Fat Percentage Associated with Waist Circumference as a Cardiometabolic Risk Factor in University Students. Scientifica 2022, 2022, 1310030. [Google Scholar] [CrossRef]
- Doak, S.; Kearney, J.M.; McCormack, J.M.; Keaver, L. The relationship between diet and lifestyle behaviours in a sample of higher education students; a cross-sectional study. Clin. Nutr. ESPEN 2023, 54, 293–299. [Google Scholar] [CrossRef]
- Padilla-Samaniego, M.V.; Solís-Manzano, A.M.; Sandoval-Tamayo, V.P.; Morales-Caluña, E.R.; Suárez-González, K.D.; Solórzano-Ibarra, N. The impact of diet and sociodemographic factors on cardiovascular health in university students. Int. J. Environ. Res. Public Health 2025, 22, 752. [Google Scholar] [CrossRef]
- Cicekli, I.; Gokce-Eskin, S. High prevalence and co-occurrence of modifiable risk factors for non-communicable diseases among university students: A cross-sectional study. Front. Public Health 2025, 12, 1484164. [Google Scholar] [CrossRef]
- Treasure, J.; Duarte, T.A.; Schmidt, U. Eating disorders. Lancet 2020, 395, 899–911. [Google Scholar] [CrossRef]
- Budhiwianto, S.; Bennett, C.J.; Bristow, C.A.; Dart, J. Global Prevalence of Eating Disorders in Nutrition and Dietetic University Students: A Systematic Scoping Review. Nutrients 2023, 15, 2317. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Okafor, H.; Biediger-Friedman, L.; Behnke, A. Association between diet and symptoms of anxiety and depression in college students: A systematic review. J. Am. Coll. Health 2023, 71, 1270–1280. [Google Scholar] [CrossRef]
- Solomou, S.; Logue, J.; Reilly, S.; Pérez-Algorta, G. A systematic review of the association of diet quality with the mental health of university students: Implications in health education practice. Health Educ. Res. 2023, 38, 28–68. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Villegas, A.; Henríquez-Sánchez, P.; Ruiz-Canela, M.; Lahortiga, F.; Molero, P.; Toledo, E.; Martínez-González, M.A. A longitudinal analysis of diet quality scores and risk of incident depression in the SUN Project. BMC Med. 2015, 13, 197. [Google Scholar] [CrossRef]
- Tomás-Gallego, G.; Dalmau-Torres, J.M.; Jiménez-Boraita, R.; Ortuño-Sierra, J.; Gargallo-Ibort, E. Adherence to the Mediterranean diet in Spanish university students: Association with lifestyle, mental and emotional well-being. Nutrients 2025, 17, 698. [Google Scholar] [CrossRef]
- Adjibade, M.; Julia, C.; Allès, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective association between ultra-processed food consumption and depressive symptoms in the French NutriNet-Santé cohort. BMC Med. 2019, 17, 78. [Google Scholar] [CrossRef]
- Marx, W.; Lane, M.; Hockey, M.; Aslam, H.; Berk, M.; Walder, K.; Borsini, A.; Firth, J.; Pariante, C.M.; Berding, K.; et al. Diet and depression: Exploring the biological mechanisms of action. Mol. Psychiatry 2021, 26, 134–150. [Google Scholar] [CrossRef]
- Jurado-Gonzalez, P.; López-Toledo, S.; Bach-Faig, A.; Medina, F.X. Barriers and Enablers of Healthy Eating Among University Students in Oaxaca de Juarez: A Mixed-Methods Study. Nutrients 2025, 17, 1263. [Google Scholar] [CrossRef]
- Alosaimi, N.; Sherar, L.B.; Griffiths, P.; Pearson, N. Clustering of diet, physical activity and sedentary behaviour: Associations with health outcomes. BMC Public Health 2023, 23, 1572. [Google Scholar] [CrossRef] [PubMed]
- Telleria-Aramburu, N.; Arroyo-Izaga, M. Risk Factors of overweight/obesity-related lifestyles in university students: Results from the EHU12/24 study. Br. J. Nutr. 2022, 127, 914–926. [Google Scholar] [CrossRef]
- Ramón-Arbués, E.; Granada-López, J.M.; Martínez-Abadía, B.; Echániz-Serrano, E.; Antón-Solanas, I.; Jerue, B.A. Factors Related to Diet Quality: A Cross-Sectional Study of 1055 University Students. Nutrients 2021, 13, 3512. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Quintero, M.R.; Ramírez-Sánchez, E.; Álvarez-Izazaga, M.; Chávez-Villasana, A.; Roldán-Amaro, J.A.; Cortés-Pérez, T. Diferencias por nivel socioeconómico y escolar en la adquisición de alimentos de la población mexicana. Nutr. Hosp. 2023, 40, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lacoba, R.; Pardo-García, I.; Amo-Saus, E.; Escribano-Sotos, F. Socioeconomic and lifestyle-related factors associated with unhealthy diet: A cross-sectional study of university students. BMC Public Health 2018, 18, 1241. [Google Scholar] [CrossRef]
- Desbouys, L.; Méjean, C.; De Henauw, S.; Castetbon, K. Socio-economic and cultural disparities in diet among adolescents and young adults: A systematic review. Public Health Nutr. 2020, 23, 843–860. [Google Scholar] [CrossRef]
- Murphy, J.J.; MacDonncha, C.; Murphy, M.H.; Murphy, N.; Timperio, A.; Leech, R.M.; Woods, C.B. Identification of health-related behavioural clusters and their association with demographic characteristics in Irish university students. BMC Public Health 2019, 19, 121. [Google Scholar] [CrossRef] [PubMed]
- Lonati, E.; Cazzaniga, E.; Adorni, R.; Zanatta, F.; Belingheri, M.; Colleoni, M.; Riva, M.A.; Steca, P.; Palestini, P. Health-Related Lifestyles among University Students: Focusing on Eating Habits and Physical Activity. Int. J. Environ. Res. Public Health 2024, 21, 626. [Google Scholar] [CrossRef] [PubMed]
- Yannakoulia, M.; Lykou, A.; Kastorini, C.M.; Saranti Papasaranti, E.; Petralias, A.; Veloudaki, A.; Linos, A. Socio-economic and lifestyle parameters associated with diet quality of children and adolescents using classification and regression tree analysis: The DIATROFI study. Public Health Nutr. 2016, 19, 339–347. [Google Scholar] [CrossRef]
- Li, X.; Braakhuis, A.; Li, Z.; Roy, R. How does the university food environment impact student dietary behaviors? A systematic review. Front. Nutr. 2022, 9, 840818. [Google Scholar] [CrossRef] [PubMed]
- Trujillano, J.; Serviá, L.; Badia, M.; Serrano, J.C.E.; Bordejé-Laguna, M.L.; Lorencio, C.; Vaquerizo, C.; Flordelis-Lasierra, J.L.; Martínez de Lagrán, I.; Portugal-Rodríguez, E.; et al. Methodological Review of Classification Trees for Risk Stratification: An Application Example in the Obesity Paradox. Nutrients 2025, 17, 1903. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef]
- Jehi, T.; Khan, R.; Halawani, R.; Dos Santos, H. Effect of the COVID-19 outbreak on diet, body weight and food security among higher education students: A systematic review. Br. J. Nutr. 2023, 129, 1916–1928. [Google Scholar] [CrossRef]
- Cantarero-Prieto, D.; Lanza-León, P.; Moreno, P.; Blázquez-Fernández, C.; Lera, J.; Gonzalez-Diego, F.J.; González-Rodríguez, I. Change in eating habits during the Spanish COVID-19 lockdown: Evidence from a university community. PeerJ 2023, 11, e14244. [Google Scholar] [CrossRef]
- Murillo, A.G.; Gómez, G.; Durán-Agüero, S.; Parra-Soto, S.L.; Araneda, J.; Morales, G.; Ríos-Castillo, I.; Carpio-Arias, V.; Cavagnari, B.M.; Nava-González, E.J.; et al. Dietary patterns and dietary recommendations achievement among Latin American college students during the COVID-19 pandemic lockdown. Front. Sustain. Food Syst. 2022, 6, 836299. [Google Scholar] [CrossRef]
- Okanagan Charter: An International Charter for Health Promoting Universities and Colleges; University of British Columbia: Kelowna, BC, Canada, 2015.
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry; Report of a WHO Expert Committee; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 1995; Volume 854. [Google Scholar]
- Norte, A.I.; Ortiz, R. Calidad de la dieta española según el índice de alimentación saludable. Nutr. Hosp. 2011, 26, 330–336. [Google Scholar]
- Alegría-Lertxundi, I.; Rocandio, A.M.; Telletxea, S.; Rincón, E.; Arroyo-Izaga, M. Relación entre el índice de consumo de pescado y carne y la adecuación y calidad de la dieta en mujeres jóvenes universitarias. Nutr. Hosp. 2014, 30, 1135–1143. [Google Scholar] [CrossRef]
- Muñoz-Cano, J.M.; Córdova-Hernández, J.A.; del Valle-Leveaga, D. El índice de alimentación saludable de estudiantes de nuevo ingreso a una universidad de México. Nutr. Hosp. 2015, 31, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- IPAQ. Scoring Protocol for the International Physical Activity Questionnaire (IPAQ). Available online: https://sites.google.com/view/ipaq/score (accessed on 14 May 2025).
- Rodríguez-Muñoz, S.; Corella, C.; Abarca-Sos, A.; Zaragoza, J. Validation of three short physical activity questionnaires with accelerometers among university students in Spain. J. Sports Med. Phys. Fitness 2017, 57, 1660–1668. [Google Scholar] [CrossRef]
- Palma-Leal, X.; Costa-Rodríguez, C.; Barranco-Ruiz, Y.; Hernández-Jana, S.; Rodríguez-Rodríguez, F. Fiabilidad del Cuestionario Internacional de Actividad Física (IPAQ)-versión corta y del Cuestionario de Autoevaluación de la Condición Física (IFIS) en estudiantes universitarios chilenos. J. Mov. Health 2022, 19, 1–12. [Google Scholar] [CrossRef]
- Milena, S.; Mayordomo-Pinilla, N.; Pérez-Gómez, J.; Rojo-Ramos, J. Revisión sistemática exploratoria: Identificación de los cuestionarios de actividad física más usados en los últimos cinco años. E-Motion 2023, 21, 112–138. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Gómez, G.; Kovalskys, I.; Leme, A.C.B.; Quesada, D.; Rigotti, A.; Cortés Sanabria, L.Y.; Yépez García, M.C.; Liria-Domínguez, M.R.; Herrera-Cuenca, M.; Fisberg, R.M.; et al. Socioeconomic Status Impact on Diet Quality and Body Mass Index in Eight Latin American Countries: ELANS Study Results. Nutrients 2021, 13, 2404. [Google Scholar] [CrossRef] [PubMed]
- Assilian, T.; Dehove, H.; Charreire, H.; Baudry, J.; Kesse-Guyot, E.; Péneau, S.; Julia, C.; Gross, O.; Oppert, J.-M.; Bellicha, A. Improving student diet and food security in higher education using participatory and co-creation approaches: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 71. [Google Scholar] [CrossRef]
- Yoon, B.; Jun, K. Effects of nutrition class with cooking lab on college students’ eating behaviors and well-being in the United States: A mixed-methods study. Nutr. Res. Pract. 2025, 19, 305–317. [Google Scholar] [CrossRef]
- Quarta, S.; Siculella, L.; Levante, A.; Carluccio, M.A.; Calabriso, N.; Scoditti, E.; Damiano, F.; Lecciso, F.; Pinto, P.; García-Conesa, M.T.; et al. Association between Mediterranean lifestyle and perception of well-being and distress in a sample population of university Italian students. Int. J. Food Sci. Nutr. 2023, 74, 556–567. [Google Scholar] [CrossRef]
- Vélez-Toral, M.; Morales-Domínguez, Z.; Granado-Alcón, M.D.C.; Díaz-Milanés, D.; Andrés-Villas, M. Mediterranean diet, psychological adjustment and health perception in university students: The mediating effect of healthy and unhealthy food groups. Nutrients 2021, 13, 3769. [Google Scholar] [CrossRef]
- López-Olivares, M.; Mohatar-Barba, M.; Fernández-Gómez, E.; Enrique-Mirón, C. Mediterranean diet and emotional well-being of students in Melilla (University of Granada). Nutrients 2020, 12, 1826. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Martini, D. Ultra-processed foods, diet quality and human health. Nutrients 2023, 15, 2890. [Google Scholar] [CrossRef] [PubMed]
- Valerino-Perea, S.; Armstrong, M.E.G.; Papadaki, A. Adherence to a traditional Mexican diet and non-communicable disease-related outcomes: Secondary analysis of the Mexican National Health Survey. Br. J. Nutr. 2023, 129, 1266–1279. [Google Scholar] [CrossRef]
- Lai, I.-J.; Chang, L.-C.; Lee, C.-K.; Liao, L.-L. Nutrition literacy mediates relationships between multilevel factors and healthy eating behavior in college students. Nutrients 2021, 13, 3451. [Google Scholar] [CrossRef]
- Hutchesson, M.J.; Duncan, M.J.; Oftedal, S.; Ashton, L.M.; Oldmeadow, C.; Kay-Lambkin, F.; Whatnall, M.C. Latent Class Analysis of Multiple Health Risk Behaviors among Australian University Students and Associations with Psychological Distress. Nutrients 2021, 13, 425. [Google Scholar] [CrossRef] [PubMed]
- Tanton, J.; Dood, L.J.; Woodfield, L.; Mabhala, M. Eating Behaviours of British University Students: A Cluster Analysis on a Neglected Issue. Adv. Prev. Med. 2015, 2015, 639239. [Google Scholar] [CrossRef] [PubMed]
- El Ansari, W.; Sebena, R.; El-Ansari, K.; Suominen, S. Clusters of lifestyle behavioral risk factors and their associations with depressive symptoms and stress: Evidence from students in Finland. BMC Public Health 2024, 24, 1103. [Google Scholar] [CrossRef]
- Wattanapisit, A.; Abdul, H.; Car, J.; Abdul-Mumin, K.H.; de la Cruz, M.H.T.O.; Chia, M.; Rosenberg, M.; Ho, M.R.; Chaiyasong, S.; Mahmudiono, T.; et al. The clusters of health-risk behaviours and mental wellbeing and their sociodemographic correlates: A study of 15,366 ASEAN university students. BMC Public Health 2022, 22, 1840. [Google Scholar] [CrossRef]


| Total (n = 686) | Chile (n = 161) | Spain (n = 180) | Italy (n = 183) | Mexico (n = 162) | ||
|---|---|---|---|---|---|---|
| Variables | Groups | fi(%) | fi(%)[R] † | fi(%)[R] † | fi(%)[R] † | fi(%)[R] † |
| Gender *** | Female | 417(60.8) | 57(35.4)[−7.5] | 109(60.6)[−0.1] | 134(73.2)[4.0] | 117(72.2)[3.4] |
| Male | 269(39.2) | 104(64.6)[7.5] | 71(39.4)[0.1] | 49(26.8)[−4.0] | 45(27.8)[−3.4] | |
| Study *** | Pedagogy | 129(18.8) | 0(0.0)[−7.0] | 27(15.0)[−1.5] | 1(0.5)[−7.4] | 101(62.3)[16.2] |
| Early Childhood Education | 15(2.2) | 0(0.0)[−2.2] | 15(8.3)[6.6] | 0(0.0)[−2.4] | 0(0.0)[−2.2] | |
| Primary Education | 130(19.0) | 0(0.0)[−7.0] | 130(72.2)[21.2] | 0(0.0)[−7.6] | 0(0.0)[−7.0] | |
| Physical Education Pedagogy | 161(23.5) | 161(100)[26.2] | 0(0.0)[−8.7] | 0(0.0)[−8.7] | 0(0.0)[−8.1] | |
| Clinical Psychology | 67(9.8) | 0(0.0)[−4.8] | 0(0.0)[−5.1] | 67(36.6)[14.3] | 0(0.0)[−4.8] | |
| Educational Psychology | 88(12.8) | 0(0.0)[−5.6] | 0(0.0)[−6.0] | 74(40.4)[13.0] | 14(8.6)[−1.8] | |
| Educational Therapy | 47(6.9) | 0(0.0)[−3.9] | 0(0.0)[−4.2] | 0(0.0)[−4.3] | 47(29.0)[12.8] | |
| Social and Vocational Pedagogies and Others | 49(7.1) | 0(0.0)[−4.0] | 8(4.4)[−1.6] | 41(22.4)[9.4] | 0(0.0)[−4.0] | |
| Year *** | First | 245(35.7) | 75(46.6)[3.3] | 62(34.4)[−0.4] | 36(19.7)[−5.3] | 72(44.4)[2.7] |
| Second | 94(13.7) | 4(2.5)[−4.7] | 59(32.8)[8.7] | 16(8.7)[−2.3] | 15(9.3)[−1.9] | |
| Third | 115(16.8) | 22(13.7)[−1.2] | 22(12.2)[−1.9] | 16(8.7)[−3.4] | 55(34.0)[6.7] | |
| Fourth | 105(15.3) | 8(5.0)[−4.2] | 37(20.6)[2.3] | 52(28.4)[5.8] | 8(4.9)[−4.2] | |
| Fifth | 127(18.5) | 52(32.3)[5.1] | 0(0.0)[−7.4] | 63(34.4)[6.5] | 12(7.4)[−4.2] | |
| Domestic cohabitation *** | With immediate family members | 575(83.8) | 130(80.7)[−1.2] | 165(91.7)[3.3] | 131(71.6)[−5.2] | 149(92.0)[3.2] |
| With non-family members | 111(16.2) | 31(19.3)[1.2] | 15(8.3)[−3.3] | 52(28.4)[5.2] | 13(8.0)[−3.2] | |
| Number of cohabitants *** | One (living alone) | 28(4.1) | 9(5.6)[1.1] | 7(3.9)[−0.2] | 3(1.6)[−1.9] | 9(5.6)[1.1] |
| Two | 87(12.7) | 18(11.2)[−0.7] | 21(11.7)[−0.5] | 34(18.6)[2.8] | 14(8.6)[−1.8] | |
| Three | 155(22.6) | 40(24.8)[0.8] | 36(20.0)[−1.0] | 48(26.2)[1.4] | 31(19.1)[−1.2] | |
| Four | 231(33.7) | 44(27.3)[−1.9] | 91(50.6)[5.6] | 47(25.7)[−2.7] | 49(30.2)[−1.1] | |
| Five or more | 185(27.0) | 50(31.1)[1.3] | 25(13.9)[−4.6] | 51(27.9)[0.3] | 59(36.4)[3.1] | |
| Socioeconomic level *** | High | 34(5.0) | 1(0.6)[−2.9] | 27(15.0)[7.2] | 5(2.7)[−1.6] | 1(0.6)[−2.9] |
| Higher-middle | 100(14.6) | 9(5.6)[−3.7] | 43(23.9)[4.1] | 48(26.2)[5.2] | 0(0.0)[−6.0] | |
| Middle | 337(49.1) | 50(31.1)[−5.2] | 85(47.2)[−0.6] | 79(43.2)[−1.9] | 123(75.9)[7.8] | |
| Lower-middle | 99(14.4) | 61(37.9)[9.7] | 21(11.7)[−1.2] | 17(9.3)[−2.3] | 0(0.0)[−6.0] | |
| Low | 55(8.0) | 27(16.8)[4.7] | 2(1.1)[−4.0] | 4(2.2)[−3.4] | 22(13.6)[3.0] | |
| Don’t know/No response | 61(8.9) | 13(8.1)[−0.4] | 2(1.1)[−4.3] | 30(16.4)[4.2] | 16(9.9)[0.5] | |
| Employment status *** | Employed | 263(38.3) | 60(37.3)[−0.3] | 98(54.4)[5.2] | 71(38.8)[0.1] | 34(21.0)[−5.2] |
| Unemployed | 423(61.7) | 101(62.7)[0.3] | 82(45.6)[−5.2] | 112(61.2)[−0.1] | 128(79.0)[5.2] | |
| Financial status * | Fully dependent | 406(59.2) | 95(59.0)[−0.1] | 97(53.9)[−1.7] | 103(56.3)[−0.9] | 111(68.5)[2.8] |
| Covers <50% of expenses | 153(22.3) | 26(16.1)[−2.1] | 54(30.0)[2.9] | 45(24.6)[0.9] | 28(17.3)[−1.8] | |
| Covers >50% of expenses | 81(11.8) | 27(16.8)[2.2] | 21(11.7)[−0.1] | 21(11.5)[−0.2] | 12(7.4)[−2.0] | |
| Fully independent | 46(6.7) | 13(8.1)[0.8] | 8(4.4)[−1.4] | 14(7.7)[0.6] | 11(6.8)[0.0] | |
| Under treatment *** | Medical | 58(8.5) | 13(8.1)[−0.2] | 18(10.0)[0.9] | 20(10.9)[1.4] | 7(4.3)[−2.2] |
| Psychological | 72(10.5) | 12(7.5)[−1.4] | 11(6.1)[−2.2] | 39(21.3)[5.6] | 10(6.2)[−2.1] | |
| No | 556(81.0) | 136(84.5)[1.3] | 151(83.9)[1.1] | 124(67.8)[−5.4] | 145(89.5)[3.1] | |
| On a special diet * | Yes | 51(7.4) | 8(5.0)[−1.4] | 15(8.3)[0.5] | 22(12.0)[2.8] | 6(3.7)[−2.1] |
| No | 635(92.6) | 153(95.0)[1.4] | 165(91.7)[−0.5] | 161(88.0)[−2.8] | 156(96.3)[2.1] | |
| Previously infected with COVID-19 *** | Not to my knowledge | 345(50.3) | 107(66.5)[4.7] | 62(34.4)[−5.0] | 70(38.3)[−3.8] | 106(65.4)[4.4] |
| Based on self-administered test results | 130(19.0) | 11(6.8)[−4.5] | 52(28.9)[4.0] | 43(23.5)[1.8] | 24(14.8)[−1.5] | |
| Diagnosed by a physician | 211(30.8) | 43(26.7)[−1.3] | 66(36.7)[2.0] | 70(38.3)[2.6] | 32(19.8)[−3.5] | |
| Rest or restriction of physical activity during COVID-19 lockdown *** | No | 273(39.8) | 55(34.2)[−1.7] | 77(42.8)[1.0] | 64(35.0)[−1.6] | 77(47.5)[2.3] |
| Associated with infection | 110(16.0) | 24(14.9)[−0.4] | 17(9.4)[−2.8] | 41(22.4)[2.7] | 28(17.3)[0.5] | |
| Unrelated to COVID-19 | 211(30.8) | 72(44.7)[4.4] | 80(44.4)[4.6] | 50(27.3)[−1.2] | 9(5.6)[−8.0] | |
| Space limitations/lockdown circumstances | 92(13.4) | 10(6.2)[−3.1] | 6(3.3)[−4.6] | 28(15.3)[0.9] | 48(29.6)[6.9] | |
| Pre- and post-pandemic physical activity level *** | Much more PA now than before the pandemic | 141(20.6) | 68(42.2)[7.8] | 28(15.6)[−1.9] | 25(13.7)[−2.7] | 20(12.3)[−3.0] |
| More PA now | 149(21.7) | 37(23.0)[0.4] | 39(21.7)[0.0] | 30(16.4)[−2.0] | 43(26.5)[1.7] | |
| Similar PA pre- and post-pandemic | 208(30.3) | 28(17.4)[−4.1] | 58(32.2)[0.6] | 74(40.4)[3.5] | 48(29.6)[−0.2] | |
| Less PA now | 140(20.4) | 24(14.9)[−2.0] | 39(21.7)[0.5] | 37(20.2)[−0.1] | 40(24.7)[1.5] | |
| Much less PA in the post-pandemic period | 48(7.0) | 4(2.5)[−2.6] | 16(8.9)[1.2] | 17(9.3)[1.4] | 11(6.8)[−0.1] | |
| Habitual physical activity level *** | High | 407(59.3) | 123(76.4)[5.0] | 112(62.2)[0.9] | 92(50.3)[−2.9] | 80(49.4)[−2.9] |
| Moderate | 166(24.2) | 30(18.6)[−1.9] | 50(27.8)[1.3] | 35(19.1)[−1.9] | 51(31.5)[2.5] | |
| Low | 113(16.5) | 8(5.0)[−4.5] | 18(10.0)[−2.7] | 56(30.6)[6.0] | 31(19.1)[1.0] | |
| BMI-based weight status * | Underweight | 46(6.7) | 4(2.5)[−2.4] | 10(5.6)[−0.7] | 22(12.0)[3.4] | 10(6.2)[−0.3] |
| Normal weight | 434(63.3) | 102(63.4)[0.0] | 130(72.2)[2.9] | 117(63.9)[0.2] | 85(52.5)[−3.3] | |
| Overweight | 168(24.5) | 45(28.0)[1.2] | 37(20.6)[−1.4] | 35(19.1)[−2.0] | 51(31.5)[2.4] | |
| Obese | 38(5.5) | 10(6.2)[0.4] | 3(1.7)[−2.6] | 9(4.9)[−0.4] | 16(9.9)[2.8] |
| Total | Chile | Spain | Italy | Mexico | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Variables | N | Mean ± SD | N | Mean ± SD | N | Mean ± SD | N | Mean ± SD | N | Mean ± SD |
| Age *** | 685 | 22.41 ± 5.05 | 160 | 21.62 ± 2.85 | 180 | 20.96 ± 2.18 | 183 | 26.27 ± 7.62 | 162 | 20.43 ± 2.41 |
| Hours worked per week *** | 365 | 8.93 ± 12.15 | 51 | 14.60 ± 9.36 | 90 | 12.15 ± 8.39 | 62 | 13.17 ± 16.12 | 162 | 3.73 ± 10.93 |
| METs-min/week spent on VPA *** | 686 | 1970.33 ± 2325.86 | 161 | 2619.03 ± 2499.21 | 180 | 1736.27 ± 1963.43 | 183 | 1951.26 ± 2345.97 | 162 | 1607.23 ± 2384.60 |
| METs-min/week spent on MPA *** | 686 | 790.57 ± 1008.50 | 161 | 1040.99 ± 1061.06 | 180 | 502.13 ± 618.45 | 183 | 830.27 ± 1142.74 | 162 | 817.31 ± 1071.82 |
| METs-min/week spent on walking ** | 686 | 1419.44 ± 1276.13 | 161 | 1649.51 ± 1363.66 | 180 | 1208.22 ± 1107.06 | 183 | 1639.36 ± 1458.65 | 162 | 1177.05 ± 1046.92 |
| Total METs-min/week *** | 686 | 4180.37 ± 3412.10 | 161 | 5309.56 ± 3784.12 | 180 | 3446.70 ± 2491.52 | 183 | 4420.89 ± 3631.06 | 162 | 3601.64 ± 3349.35 |
| Body Mass Index *** | 686 | 23.48 ± 6.70 | 161 | 24.16 ± 3.41 | 180 | 22.41 ± 3.17 | 183 | 22.43 ± 4.29 | 162 | 25.16 ± 11.90 |
| Food Group | Group | Never or Almost Never fi(%)[R] † | Once a Week fi(%)[R] † | 1–2 Times a Week fi(%)[R] † | ≥3 Times a Week fi(%)[R] † | Every Day fi(%)[R] † |
|---|---|---|---|---|---|---|
| Cereals *** | Total | 22(3.2) | 10(1.5) | 64(9.3) | 198(28.9) | 392(57.1) |
| Chile | 3(1.9)[−1.1] | 4(2.5)[1.2] | 14(8.7)[−0.3] | 41(25.5)[−1.1] | 99(61.5)[1.3] | |
| Spain | 4(2.2)[−0.9] | 4(2.2)[1.0] | 14(7.8)[−0.8] | 61(33.9)[1.7] | 97(53.9)[−1.0] | |
| Italy | 9(4.9)[1.5] | 2(1.1)[−0.5] | 14(7.7)[−0.9] | 31(16.9)[−4.2] | 127(69.4)[3.9] | |
| Mexico | 6(3.7)[0.4] | 0(0.0)[−1.8] | 22(13.6)[2.1] | 65(40.1)[3.6] | 69(42.6)[−4.3] | |
| Vegetables *** | Total | 13(1.9) | 18(2.6) | 104(15.2) | 228(33.2) | 323(47.1) |
| Chile | 3(1.9)[0.0] | 5(3.1)[0.4] | 30(18.6)[1.4] | 41(25.5)[−2.4] | 82(50.9)[1.1] | |
| Spain | 4(2.2)[0.4] | 9(5.0)[2.3] | 43(23.9)[3.8] | 56(31.1)[−0.7] | 68(37.8)[−2.9] | |
| Italy | 4(2.2)[0.3] | 4(2.2)[−0.4] | 14(7.7)[−3.3] | 44(24.0)[−3.1] | 117(63.9)[5.3] | |
| Mexico | 2(1.2)[−0.7] | 0(0.0)[−2.4] | 17(10.5)[−1.9] | 87(53.7)[6.3] | 56(34.6)[−3.7] | |
| Fruits *** | Total | 48(7.0) | 46(6.7) | 135(19.7) | 199(29.0) | 258(37.6) |
| Chile | 9(5.6)[−0.8] | 14(8.7)[1.2] | 42(26.1)[2.3] | 39(24.2)[−1.5] | 57(35.4)[−0.7] | |
| Spain | 19(10.6)[2.2] | 19(10.6)[2.4] | 33(18.3)[−0.5] | 37(20.6)[−2.9] | 72(40.0)[0.8] | |
| Italy | 18(9.8)[1.8] | 13(7.1)[0.3] | 31(16.9)[−1.1] | 46(25.1)[−1.3] | 75(41.0)[1.1] | |
| Mexico | 2(1.2)[−3.3] | 0(0.0)[−3.9] | 29(17.9)[−0.7] | 77(47.5)[5.9] | 54(33.3)[−1.3] | |
| Dairy products *** | Total | 25(3.6) | 21(3.1) | 117(17.1) | 209(30.5) | 314(45.8) |
| Chile | 4(2.5)[−0.9] | 8(5.0)[1.6] | 17(10.6)[−2.5] | 59(36.6)[1.9] | 73(45.3)[−0.1] | |
| Spain | 1(0.6)[−2.6] | 3(1.7)[−1.3] | 21(11.7)[−2.2] | 24(13.3)[−5.8] | 131(72.8)[8.5] | |
| Italy | 11(6.0)[2.0] | 10(5.5)[2.2] | 36(19.7)[1.1] | 49(26.8)[−1.3] | 77(42.1)[−1.2] | |
| Mexico | 9(5.6)[1.5] | 0(0.0)[−2.6] | 43(26.5)[3.7] | 77(47.5)[5.4] | 33(20.4)[−7.4] | |
| Meat, fish, or eggs *** | Total | 21(3.1) | 10(1.5) | 103(15.0) | 289(42.1) | 263(38.3) |
| Chile | 9(5.6)[2.1] | 5(3.1)[2.0] | 18(11.2)[−1.6] | 62(38.5)[−1.1] | 67(41.6)[1.0] | |
| Spain | 2(1.1)[−1.8] | 1(0.6)[−1.2] | 20(11.1)[−1.7] | 72(40.0)[−0.7] | 85(47.2)[2.9] | |
| Italy | 4(2.2)[−0.8] | 4(2.2)[1.0] | 28(15.3)[0.1] | 71(38.8)[−1.1] | 76(41.5)[1.0] | |
| Mexico | 6(3.7)[0.5] | 0(0.0)[−1.8] | 37(22.8)[3.2] | 84(51.9)[2.9] | 35(21.6)[−5.0] | |
| Legumes *** | Total | 69(10.1) | 108(15.7) | 273(39.8) | 193(28.1) | 43(6.3) |
| Chile | 18(11.2)[0.5] | 45(28.0)[4.9] | 59(36.6)[−0.9] | 33(20.5)[−2.5] | 6(3.7)[−1.5] | |
| Spain | 11(6.1)[−2.1] | 25(13.9)[−0.8] | 97(53.9)[4.5] | 37(20.6)[−2.6] | 10(5.6)[−0.5] | |
| Italy | 31(16.9)[3.6] | 38(20.8)[2.2] | 65(35.5)[−1.4] | 35(19.1)[−3.2] | 14(7.7)[0.9] | |
| Mexico | 9(5.6)[−2.2] | 0(0.0)[−6.3] | 52(32.1)[−2.3] | 88(54.3)[8.5] | 13(8.0)[1.1] | |
| Processed meats *** | Total | 133(19.4) | 98(14.3) | 239(34.8) | 159(23.2) | 57(8.3) |
| Chile | 36(22.4)[1.1] | 25(15.5)[0.5] | 56(34.8)[0.0] | 34(21.1)[−0.7] | 10(6.2)[−1.1] | |
| Spain | 19(10.6)[−3.5] | 28(15.6)[0.6] | 58(32.2)[−0.9] | 41(22.8)[−0.1] | 34(18.9)[6.0] | |
| Italy | 53(29.0)[3.8] | 45(24.6)[4.7] | 51(27.9)[−2.3] | 26(14.2)[−3.4] | 8(4.4)[−2.3] | |
| Mexico | 25(15.4)[−1.5] | 0(0.0)[−5.9] | 74(45.7)[3.3] | 58(35.8)[4.4] | 5(3.1)[−2.8] | |
| Sweets and commercially baked goods (pastries, treats, candies) *** | Total | 118(17.2) | 98(14.3) | 185(27.0) | 198(28.9) | 87(12.7) |
| Chile | 19(11.8)[−2.1] | 23(14.3)[0.0] | 50(31.1)[1.3] | 48(29.8)[0.3] | 21(13.0)[0.2] | |
| Spain | 49(27.2)[4.1] | 32(17.8)[1.6] | 49(27.2)[0.1] | 36(20.0)[−3.1] | 14(7.8)[−2.3] | |
| Italy | 30(16.4)[−0.3] | 43(23.5)[4.2] | 37(20.2)[−2.4] | 43(23.5)[−1.9] | 30(16.4)[1.8] | |
| Mexico | 20(12.3)[−1.9] | 0(0.0)[−5.9] | 49(30.2)[1.1] | 71(43.8)[4.8] | 22(13.6)[0.4] | |
| Sugar-sweetened beverages *** | Total | 206(30.0) | 94(13.7) | 190(27.7) | 121(17.6) | 75(10.9) |
| Chile | 26(16.1)[−4.4] | 15(9.3)[−1.8] | 31(19.3)[−2.7] | 48(29.8)[4.6] | 41(25.5)[6.8] | |
| Spain | 69(38.3)[2.8] | 37(20.6)[3.1] | 46(25.6)[−0.7] | 17(9.4)[−3.4] | 11(6.1)[−2.4] | |
| Italy | 80(43.7)[4.7] | 42(23.0)[4.2] | 38(20.8)[−2.4] | 16(8.7)[−3.7] | 7(3.8)[−3.6] | |
| Mexico | 31(19.1)[−3.5] | 0(0.0)[−5.8] | 75(46.3)[6.1] | 40(24.7)[2.7] | 16(9.9)[−0.5] |
| Variable | Group | Unhealthy fi(%)[R] † | Need Modifications fi(%)[R] † | Healthy fi(%)[R] † |
|---|---|---|---|---|
| Total | 96(14.0) | 530(77.3) | 60(8.7) | |
| Country *** | Chile | 30(18.6)[1.9] | 121(75.2)[−0.7] | 10(6.2)[−1.3] |
| Spain | 16(8.9)[−2.3] | 146(81.1)[1.4] | 18(10.0)[0.7] | |
| Italy | 17(9.3)[−2.1] | 140(76.5)[−0.3] | 26(14.2)[3.1] | |
| Mexico | 33(20.4)[2.7] | 123(75.9)[−0.5] | 6(3.7)[−2.6] | |
| Study * | Pedagogy | 28(21.7)[2.8] | 96(74.4)[−0.9] | 5(3.9)[−2.2] |
| Early Childhood Education | 2(13.3)[−0.1] | 11(73.3)[−0.4] | 2(13.3)[0.6] | |
| Primary Education | 9(6.9)[−2.6] | 107(82.3)[1.5] | 14(10.8)[0.9] | |
| Physical Education Pedagogy | 30(18.6)[2.7] | 121(75.2)[−0.7] | 10(6.2)[−1.3] | |
| Clinical Psychology | 7(10.4)[−0.9] | 49(73.1)[−0.8] | 11(16.4)[2.3] | |
| Educational Psychology | 8(9.1)[−1.4] | 70(79.5)[0.5] | 10(11.4)[0.9] | |
| Educational Therapy | 6(12.8)[−0.3] | 39(83.0)[1.0] | 2(4.3)[−1.1] | |
| Social and Vocational Pedagogies. and Others | 6(12.2)[−0.4] | 37(75.5)[−0.3] | 6(12.2)[0.9] | |
| Year * | First | 39(15.9)[1.1] | 190(77.6)[0.1] | 16(6.5)[−1.5] |
| Second | 9(9.6)[−1.3] | 74(78.7)[0.4] | 11(11.7)[1.1] | |
| Third | 19(16.5)[0.9] | 88(76.5)[−0.2] | 8(7.0)[−0.7] | |
| Fourth | 8(7.6)[−2.0] | 80(76.2)[−0.3] | 17(16.2)[2.9] | |
| Fifth | 21(16.5)[0.9] | 98(77.2)[0.0] | 8(6.3)[−1.1] | |
| Habitual physical activity level * | High | 54(13.3)[−0.7] | 310(76.2)[−0.8] | 43(10.6)[2.0] |
| Moderate | 17(10.2)[−1.6] | 136(81.9)[1.6] | 13(7.8)[−0.5] | |
| Low | 25(22.1)[2.7] | 84(74.3)[−0.8] | 4(3.5)[−2.1] |
| Variable | Groups | Min. | Máx. | Mean ± SD |
|---|---|---|---|---|
| Total | 24.5 | 100 | 63.71 ± 12.66 | |
| Country *** | Chile | 32.0 | 93.0 | 61.86 ± 12.55 |
| Spain | 27.5 | 89.5 | 66.38 ± 11.14 | |
| Italy | 33.0 | 100 | 67.08 ± 12.65 | |
| Mexico | 24.5 | 88.0 | 58.77 ± 12.55 | |
| Study *** | Pedagogy | 32.5 | 88.0 | 59.29 ± 12.28 |
| Early Childhood Education | 42.5 | 87.5 | 66.93 ± 12.04 | |
| Primary Education | 27.5 | 89.5 | 66.93 ± 11.02 | |
| Physical Education Pedagogy | 32.0 | 93.0 | 61.86 ± 12.55 | |
| Clinical Psychology | 39.0 | 94.0 | 66.83 ± 13.28 | |
| Educational Psychology | 24.5 | 100 | 67.23 ± 13.07 | |
| Educational Therapy | 35.0 | 87.0 | 59.28 ± 11.66 | |
| Social and Vocational Pedagogies. and Others | 33.0 | 85.5 | 65.55 ± 12.42 | |
| Year *** | First | 27.5 | 93.0 | 62.0 ± 12.54 |
| Second | 41.0 | 89.5 | 66.31 ± 11.13 | |
| Third | 32.5 | 100 | 61.80 ± 13.17 | |
| Fourth | 24.5 | 94.0 | 67.94 ± 12.52 | |
| Fifth | 32.0 | 89.5 | 63.31 ± 12.63 | |
| Socioeconomic level *** | High | 53.0 | 93.0 | 72.10 ± 9.66 |
| Higher-middle | 33.0 | 94.0 | 64.71 ± 12.02 | |
| Middle | 24.5 | 92.0 | 62.97 ± 13.07 | |
| Lower-middle | 37.5 | 87.0 | 63.71 ± 11.07 | |
| Low | 32.0 | 93.0 | 60.71 ± 13.51 | |
| Don’t know/No response | 35.0 | 100 | 64.17 ± 12.89 | |
| Number of cohabitants * | One (living alone) | 24.5 | 81.0 | 57.00 ± 16.47 |
| Two | 33.0 | 94.0 | 66.33 ± 12.70 | |
| Three | 32.5 | 89.5 | 64.40 ± 11.69 | |
| Four | 32.5 | 93.0 | 62.60 ± 12.15 | |
| Five or more cohabitants | 27.5 | 100 | 64.30 ± 13.03 | |
| Pre- and post-pandemic physical activity level *** | Much more PA now than before the pandemic | 24.5 | 93.0 | 64.01 ± 12.66 |
| More PA now | 32.0 | 94.0 | 66.34 ± 12.04 | |
| Similar PA pre- and post-pandemic | 27.5 | 100 | 64.25 ± 12.59 | |
| Less PA now | 29.0 | 87.5 | 60.16 ± 12.71 | |
| Much less PA in the post-pandemic period | 32.5 | 88.0 | 62.66 ± 12.80 | |
| Habitual physical activity level * | High | 24.5 | 100 | 64.41 ± 13.30 |
| Moderate | 33.0 | 87.5 | 63.70 ± 11.56 | |
| Low | 37.5 | 89.5 | 61.20 ± 11.56 | |
| BMI-based weight status * | Underweight | 35.0 | 89.5 | 64.72 ± 12.11 |
| Normal weight | 27.5 | 100 | 64.11 ± 12.26 | |
| Overweight | 29.0 | 93.0 | 63.75 ± 13.01 | |
| Obese | 24.5 | 86.5 | 57.76 ± 15.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moral-Moreno, L.; Flores-Ferro, E.; Cid, F.M.; Vizcarra, I.; Benítez-Arciniega, A.D.; García, E.G.; Cortés, M.E. Risk Profiles of Poor Diet Quality Among University Students: A Multivariate Segmentation Analysis. Nutrients 2025, 17, 3639. https://doi.org/10.3390/nu17233639
Moral-Moreno L, Flores-Ferro E, Cid FM, Vizcarra I, Benítez-Arciniega AD, García EG, Cortés ME. Risk Profiles of Poor Diet Quality Among University Students: A Multivariate Segmentation Analysis. Nutrients. 2025; 17(23):3639. https://doi.org/10.3390/nu17233639
Chicago/Turabian StyleMoral-Moreno, Luis, Elizabeth Flores-Ferro, Fernando Maureira Cid, Ivonne Vizcarra, Alejandra D. Benítez-Arciniega, Edna Graciela García, and Manuel E. Cortés. 2025. "Risk Profiles of Poor Diet Quality Among University Students: A Multivariate Segmentation Analysis" Nutrients 17, no. 23: 3639. https://doi.org/10.3390/nu17233639
APA StyleMoral-Moreno, L., Flores-Ferro, E., Cid, F. M., Vizcarra, I., Benítez-Arciniega, A. D., García, E. G., & Cortés, M. E. (2025). Risk Profiles of Poor Diet Quality Among University Students: A Multivariate Segmentation Analysis. Nutrients, 17(23), 3639. https://doi.org/10.3390/nu17233639

