Perioperative Nutrition in Pediatric Patients with Congenital Heart Disease and Heart Failure
Abstract
1. Introduction
2. Methods
3. Energy Requirements and Nutritional Evaluation
4. Preoperative Nutritional Support
4.1. Ductal-Dependent Heart Disease
4.2. Presence of Arterial Umbilical Catheter
5. Postoperative Nutritional Support
6. Parenteral Nutrition
7. Special Considerations
7.1. Heart Failure and Ventricular Assist Device
7.2. Extracorporeal Membrane Oxygenation
7.3. Chylothorax
8. Gastrointestinal Complications
8.1. Cardiac Necrotizing Enterocolitis
8.2. Protein-Losing Enteropathy
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| CHD | Congenital heart disease |
| NEC | Necrotizing enterocolitis |
| IC | Indirect calorimetry |
| REE | Resting energy expenditure |
| ECMO | Extracorporeal membrane oxygenation |
| HLHS | Hypoplastic left heart syndrome |
| BMI | Body mass index |
| VAD | Ventricular assist device |
References
- Figueredo, V.M. The Ancient Heart What the Heart Meant to Our Ancestors. J. Am. Coll. Cardiol. 2021, 78, 957–959. [Google Scholar] [CrossRef]
- Tsintoni, A.; Dimitriou, G.; Karatza, A.A. Nutrition of neonates with congenital heart disease: Existing evidence, conflicts and concerns. J. Matern. Fetal Neonatal Med. 2020, 33, 2487–2492. [Google Scholar] [CrossRef]
- Reller, M.D.; Strickland, M.J.; Riehle-Colarusso, T.; Mahle, W.T.; Correa, A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J. Pediatr. 2008, 153, 807–813. [Google Scholar] [CrossRef]
- van der Linde, D.; Konings, E.E.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef]
- Trabulsi, J.C.; Irving, S.Y.; Papas, M.A.; Hollowell, C.; Ravishankar, C.; Marino, B.S.; Medoff-Cooper, B.; Schall, J.I.; Stallings, V.A. Total Energy Expenditure of Infants with Congenital Heart Disease Who Have Undergone Surgical Intervention. Pediatr. Cardiol. 2015, 36, 1670–1679. [Google Scholar] [CrossRef]
- Floh, A.A.; Nakada, M.; La Rotta, G.; Mah, K.; Herridge, J.E.; Van Arsdell, G.; Schwartz, S.M. Systemic inflammation increases energy expenditure following pediatric cardiopulmonary bypass. Pediatr. Crit. Care Med. 2015, 16, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Framson, C.M.; LeLeiko, N.S.; Dallal, G.E.; Roubenoff, R.; Snelling, L.K.; Dwyer, J.T. Energy expenditure in critically ill children. Pediatr. Crit. Care Med. 2007, 8, 264–267. [Google Scholar] [CrossRef]
- del Castillo, S.L.; Moromisato, D.Y.; Dorey, F.; Ludwick, J.; Starnes, V.A.; Wells, W.J.; Jeffries, H.E.; Wong, P.C. Mesenteric blood flow velocities in the newborn with single-ventricle physiology: Modified Blalock-Taussig shunt versus right ventricle-pulmonary artery conduit. Pediatr. Crit. Care Med. 2006, 7, 132–137. [Google Scholar] [CrossRef]
- Daymont, C.; Neal, A.; Prosnitz, A.; Cohen, M.S. Growth in children with congenital heart disease. Pediatrics 2013, 131, e236–e242. [Google Scholar] [CrossRef]
- Mehta, N.M.; Bechard, L.J.; Zurakowski, D.; Duggan, C.P.; Heyland, D.K. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: A multicenter, prospective, cohort study. Am. J. Clin. Nutr. 2015, 102, 199–206. [Google Scholar] [CrossRef]
- Anderson, J.B.; Beekman, R.H., 3rd; Border, W.L.; Kalkwarf, H.J.; Khoury, P.R.; Uzark, K.; Eghtesady, P.; Marino, B.S. Lower weight-for-age z score adversely affects hospital length of stay after the bidirectional Glenn procedure in 100 infants with a single ventricle. J. Thorac. Cardiovasc. Surg. 2009, 138, 397–404.e1. [Google Scholar] [CrossRef] [PubMed]
- Eskedal, L.T.; Hagemo, P.S.; Seem, E.; Eskild, A.; Cvancarova, M.; Seiler, S.; Thaulow, E. Impaired weight gain predicts risk of late death after surgery for congenital heart defects. Arch. Dis. Child. 2008, 93, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Huisenga, D.; La Bastide-Van Gemert, S.; Van Bergen, A.; Sweeney, J.; Hadders-Algra, M. Developmental outcomes after early surgery for complex congenital heart disease: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2021, 63, 29–46. [Google Scholar] [CrossRef]
- Ravishankar, C.; Zak, V.; Williams, I.A.; Bellinger, D.C.; Gaynor, J.W.; Ghanayem, N.S.; Krawczeski, C.D.; Licht, D.J.; Mahony, L.; Newburger, J.W.; et al. Association of impaired linear growth and worse neurodevelopmental outcome in infants with single ventricle physiology: A report from the pediatric heart network infant single ventricle trial. J. Pediatr. 2013, 162, 250–256.e2. [Google Scholar] [CrossRef]
- Alsoufi, B.; Manlhiot, C.; Mahle, W.T.; Kogon, B.; Border, W.L.; Cuadrado, A.; Vincent, R.; McCrindle, B.W.; Kanter, K. Low-weight infants are at increased mortality risk after palliative or corrective cardiac surgery. J. Thorac. Cardiovasc. Surg. 2014, 148, 2508–2514.e1. [Google Scholar] [CrossRef]
- Anderson, J.B.; Kalkwarf, H.J.; Kehl, J.E.; Eghtesady, P.; Marino, B.S. Low weight-for-age z-score and infection risk after the Fontan procedure. Ann. Thorac. Surg. 2011, 91, 1460–1466. [Google Scholar] [CrossRef]
- Evans, C.F.; Sorkin, J.D.; Abraham, D.S.; Wehman, B.; Kaushal, S.; Rosenthal, G.L. Interstage Weight Gain is Associated with Survival After First-Stage Single-Ventricle Palliation. Ann. Thorac. Surg. 2017, 104, 674–680. [Google Scholar] [CrossRef]
- Mitting, R.; Marino, L.; Macrae, D.; Shastri, N.; Meyer, R.; Pathan, N. Nutritional status and clinical outcome in postterm neonates undergoing surgery for congenital heart disease. Pediatr. Crit. Care Med. 2015, 16, 448–452. [Google Scholar] [CrossRef]
- Alten, J.A.; Rhodes, L.A.; Tabbutt, S.; Cooper, D.S.; Graham, E.M.; Ghanayem, N.; Marino, B.S.; Figueroa, M.I.; Chanani, N.K.; Jacobs, J.P.; et al. Perioperative feeding management of neonates with CHD: Analysis of the Pediatric Cardiac Critical Care Consortium (PC4) registry. Cardiol. Young 2015, 25, 1593–1601. [Google Scholar] [CrossRef]
- Kim, J.Y.; Sarnaik, A.; Farooqi, A.; Cashen, K. Contemporary feeding practices in postoperative patients with Congenital Heart Disease. Cardiol. Young 2022, 32, 1938–1943. [Google Scholar] [CrossRef] [PubMed]
- Elgersma, K.M.; McKechnie, A.C.; Gallagher, T.; Trebilcock, A.L.; Pridham, K.F.; Spatz, D.L. Feeding infants with complex congenital heart disease: A modified Delphi survey to examine potential research and practice gaps. Cardiol. Young 2021, 31, 577–588. [Google Scholar] [CrossRef]
- Howley, L.W.; Kaufman, J.; Wymore, E.; Thureen, P.; Magouirk, J.K.; McNair, B.; da Cruz, E.M. Enteral feeding in neonates with prostaglandin-dependent congenital cardiac disease: International survey on current trends and variations in practice. Cardiol. Young 2012, 22, 121–127. [Google Scholar] [CrossRef]
- Braudis, N.J.; Curley, M.A.; Beaupre, K.; Thomas, K.C.; Hardiman, G.; Laussen, P.; Gauvreau, K.; Thiagarajan, R.R. Enteral feeding algorithm for infants with hypoplastic left heart syndrome poststage I palliation. Pediatr. Crit. Care Med. 2009, 10, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, J.; Fry-Bowers, E. A Post-operative Feeding Protocol to Improve Outcomes for Neonates with Critical Congenital Heart Disease. J. Pediatr. Nurs. 2017, 35, 139–143. [Google Scholar] [CrossRef]
- Simsic, J.M.; Carpenito, K.R.; Kirchner, K.; Peters, S.; Miller-Tate, H.; Joy, B.; Galantowicz, M. Reducing variation in feeding newborns with congenital heart disease. Congenit. Heart Dis. 2017, 12, 275–281. [Google Scholar] [CrossRef] [PubMed]
- del Castillo, S.L.; McCulley, M.E.; Khemani, R.G.; Jeffries, H.E.; Thomas, D.W.; Peregrine, J.; Wells, W.J.; Starnes, V.A.; Moromisato, D.Y. Reducing the incidence of necrotizing enterocolitis in neonates with hypoplastic left heart syndrome with the introduction of an enteral feed protocol. Pediatr. Crit. Care Med. 2010, 11, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.; McAleer, D.M.; Ariagno, K.; Barrett, M.; Stenquist, N.; Duggan, C.P.; Mehta, N.M. A stepwise enteral nutrition algorithm for critically ill children helps achieve nutrient delivery goals. Pediatr. Crit. Care Med. 2014, 15, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Avitzur, Y.; Singer, P.; Dagan, O.; Kozer, E.; Abramovitch, D.; Dinari, G.; Shamir, R. Resting energy expenditure in children with cyanotic and noncyanotic congenital heart disease before and after open heart surgery. J. Parenter. Enter. Nutr. 2003, 27, 47–51. [Google Scholar] [CrossRef]
- Gebara, B.M.; Gelmini, M.; Sarnaik, A. Oxygen-Consumption, Energy-Expenditure, and Substrate Utilization after Cardiac-Surgery in Children. Crit. Care Med. 1992, 20, 1550–1554. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Herridge, J.; Holtby, H.; Humpl, T.; Redington, A.N.; Van Arsdell, G.S. Energy expenditure and caloric and protein intake in infants following the Norwood procedure. Pediatr. Crit. Care Med. 2008, 9, 55–61. [Google Scholar] [CrossRef]
- Tume, L.N.; Valla, F.V.; Joosten, K.; Chaparro, C.J.; Latten, L.; Marino, L.V.; Macleod, I.; Moullet, C.; Pathan, N.; Rooze, S.; et al. Nutritional support for children during critical illness. European Society of Pediatric and Neonatal Intensive Care (ESPNIC) metabolism, endocrine and nutrition section position statement and clinical recommendations. Intensive Care Med. 2020, 46, 411–425. [Google Scholar] [CrossRef]
- Mehta, N.M.; Skillman, H.E.; Irving, S.Y.; Coss-Bu, J.A.; Vermilyea, S.; Farrington, E.A.; McKeever, L.; Hall, A.M.; Goday, P.S.; Braunschweig, C. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr. Crit. Care Med. 2017, 18, 675–715. [Google Scholar] [CrossRef]
- Delsoglio, M.; Achamrah, N.; Berger, M.M.; Pichard, C. Indirect Calorimetry in Clinical Practice. J. Clin. Med. 2019, 8, 1387. [Google Scholar] [CrossRef] [PubMed]
- Roebuck, N.; Fan, C.P.S.; Floh, A.; Harris, Z.L.; Mazwi, M.L. A Comparative Analysis of Equations to Estimate Patient Energy Requirements Following Cardiopulmonary Bypass for Correction of Congenital Heart Disease. J. Parenter. Enter. Nutr. 2020, 44, 444–453. [Google Scholar] [CrossRef]
- Radman, M.; Mack, R.; Barnoya, J.; Castaneda, A.; Rosales, M.; Azakie, A.; Mehta, N.; Keller, R.; Datar, S.; Oishi, P.; et al. The effect of preoperative nutritional status on postoperative outcomes in children undergoing surgery for congenital heart defects in San Francisco (UCSF) and Guatemala City (UNICAR). J. Thorac. Cardiovasc. Surg. 2014, 147, 442–450. [Google Scholar] [CrossRef]
- Mehta, N.M.; Compher, C.; Directors, A.B. ASPEN Clinical Guidelines: Nutrition Support of the Critically Ill Child. J. Parenter. Enter. Nutr. 2009, 33, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Paparella, D.; Yau, T.M.; Young, E. Cardiopulmonary bypass induced inflammation: Pathophysiology and treatment. An update. Eur. J. Cardiothorac. Surg. 2002, 21, 232–244. [Google Scholar] [CrossRef]
- Bechard, L.J.; Earthman, C.P.; Farr, B.; Ariagno, K.A.; Hoffmann, R.M.; Pham, I.V.; Mehta, N.M. Feasibility of bioimpedance spectroscopy and long-term functional assessment in critically ill children. Clin. Nutr. Espen 2022, 47, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.W.; Ng, K.W.P.; Dietz, A.R.; Hartman, M.E.; Baty, J.D.; Hasan, N.; Zaidman, C.M.; Shoykhet, M. Muscle atrophy in mechanically-ventilated critically ill children. PLoS ONE 2018, 13, e0207720. [Google Scholar] [CrossRef]
- Kerstein, J.S.; Klepper, C.M.; Finnan, E.G.; Mills, K.I. Nutrition for critically ill children with congenital heart disease. Nutr. Clin. Pract. 2023, 38 (Suppl. 2), S158–S173. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, L.; Yang, L.; Yan, W.; Yu, Q.; Sheng, J.; Mao, X.; Feng, Y.; Tang, Q.; Cai, W.; et al. Evaluation of a new digital pediatric malnutrition risk screening tool for hospitalized children with congenital heart disease. BMC Pediatr. 2023, 23, 126. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jiang, Y.; Guo, M.; Wang, Y.; Huang, H.; Xie, J.; Liao, D. Efficiency analysis of nutritional screening tools for children with congenital heart disease: A retrospective observational study. Front. Nutr. 2025, 12, 1572805. [Google Scholar] [CrossRef] [PubMed]
- Floh, A.A.; Slicker, J.; Schwartz, S.M. Nutrition and Mesenteric Issues in Pediatric Cardiac Critical Care. Pediatr. Crit. Care Med. 2016, 17 (Suppl. 1), S243–S249. [Google Scholar] [CrossRef]
- van der Kuip, M.; Hoos, M.B.; Forget, P.P.; Westerterp, K.R.; Gemke, R.J.; de Meer, K. Energy expenditure in infants with congenital heart disease, including a meta-analysis. Acta Paediatr. 2003, 92, 921–927. [Google Scholar] [CrossRef]
- Nydegger, A.; Bines, J.E. Energy metabolism in infants with congenital heart disease. Nutrition 2006, 22, 697–704. [Google Scholar] [CrossRef]
- Toole, B.J.; Toole, L.E.; Kyle, U.G.; Cabrera, A.G.; Orellana, R.A.; Coss-Bu, J.A. Perioperative nutritional support and malnutrition in infants and children with congenital heart disease. Congenit. Heart Dis. 2014, 9, 15–25. [Google Scholar] [CrossRef]
- Cameron, J.W.; Rosenthal, A.; Olson, A.D. Malnutrition in hospitalized children with congenital heart disease. Arch. Pediatr. Adolesc. Med. 1995, 149, 1098–1102. [Google Scholar] [CrossRef]
- Silva-Gburek, J.; Marroquin, A.; Flores, S.; Roddy, J.; Ghanayem, N.S.; Shekerdemian, L.S.; Coss-Bu, J.A. Perioperative Nutritional Status and Organ Dysfunction Following Surgery for Congenital Heart Disease. Pediatr. Cardiol. 2023, 44, 1350–1357. [Google Scholar] [CrossRef]
- Toms, R.; Jackson, K.W.; Dabal, R.J.; Reebals, C.H.; Alten, J.A. Preoperative trophic feeds in neonates with hypoplastic left heart syndrome. Congenit. Heart Dis. 2015, 10, 36–42. [Google Scholar] [CrossRef]
- Gephart, S.M.; Weller, M. Colostrum as oral immune therapy to promote neonatal health. Adv. Neonatal Care 2014, 14, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, H.S.; Jung, Y.H.; Choi, K.Y.; Shin, S.H.; Kim, E.K.; Choi, J.H. Oropharyngeal colostrum administration in extremely premature infants: An RCT. Pediatrics 2015, 135, e357–e366. [Google Scholar] [CrossRef]
- Sohn, K.; Kalanetra, K.M.; Mills, D.A.; Underwood, M.A. Buccal administration of human colostrum: Impact on the oral microbiota of premature infants. J. Perinatol. 2016, 36, 106–111. [Google Scholar] [CrossRef]
- Bourgeois-Nicolaos, N.; Raynor, A.; Shankar-Aguilera, S.; Schwartz, E.; Doucet-Populaire, F.; De Luca, D. Breast milk in neonate oral care: Oropharyngeal effects in extremely preterm infants. Eur. J. Pediatr. 2023, 182, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, G.; Reddy Anne, S.; Aggarwal, S. Enteral feeding of neonates with congenital heart disease. Neonatology 2010, 98, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Zyblewski, S.C.; Nietert, P.J.; Graham, E.M.; Taylor, S.N.; Atz, A.M.; Wagner, C.L. Randomized Clinical Trial of Preoperative Feeding to Evaluate Intestinal Barrier Function in Neonates Requiring Cardiac Surgery. J. Pediatr. 2015, 167, 47–51.e1. [Google Scholar] [CrossRef]
- Becker, K.C.; Hornik, C.P.; Cotten, C.M.; Clark, R.H.; Hill, K.D.; Smith, P.B.; Lenfestey, R.W. Necrotizing enterocolitis in infants with ductal-dependent congenital heart disease. Am. J. Perinatol. 2015, 32, 633–638. [Google Scholar] [CrossRef]
- Willis, L.; Thureen, P.; Kaufman, J.; Wymore, E.; Skillman, H.; da Cruz, E. Enteral feeding in prostaglandin-dependent neonates: Is it a safe practice? J. Pediatr. 2008, 153, 867–869. [Google Scholar] [CrossRef]
- Mills, K.I.; Kim, J.H.; Fogg, K.; Goldshtrom, N.; Graham, E.M.; Kataria-Hale, J.; Osborne, S.W.; Figueroa, M. Nutritional Considerations for the Neonate with Congenital Heart Disease. Pediatrics 2022, 150 (Suppl. 2), e2022056415G. [Google Scholar] [CrossRef] [PubMed]
- Kort, E.J. Patent Ductus Arteriosus in the Preterm Infant: An Update on Morbidity and Mortality. Curr. Pediatr. Rev. 2016, 12, 98–105. [Google Scholar] [CrossRef]
- Pasquali, S.K.; Ohye, R.G.; Lu, M.; Kaltman, J.; Caldarone, C.A.; Pizarro, C.; Dunbar-Masterson, C.; Gaynor, J.W.; Jacobs, J.P.; Kaza, A.K.; et al. Variation in perioperative care across centers for infants undergoing the Norwood procedure. J. Thorac. Cardiovasc. Surg. 2012, 144, 915–921. [Google Scholar] [CrossRef]
- Slicker, J.; Hehir, D.A.; Horsley, M.; Monczka, J.; Stern, K.W.; Roman, B.; Ocampo, E.C.; Flanagan, L.; Keenan, E.; Lambert, L.M.; et al. Nutrition algorithms for infants with hypoplastic left heart syndrome; birth through the first interstage period. Congenit. Heart Dis. 2013, 8, 89–102. [Google Scholar] [CrossRef]
- Scahill, C.J.; Graham, E.M.; Atz, A.M.; Bradley, S.M.; Kavarana, M.N.; Zyblewski, S.C. Preoperative Feeding Neonates with Cardiac Disease. World J. Pediatr. Congenit. Heart Surg. 2017, 8, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Day, T.G.; Dionisio, D.; Zannino, D.; Brizard, C.; Cheung, M.M.H. Enteral feeding in duct-dependent congenital heart disease. J. Neonatal Perinat. Med. 2019, 12, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Kataria-Hale, J.; Osborne, S.W.; Hair, A.; Hagan, J.; Pammi, M. Preoperative Feeds in Ductal-Dependent Cardiac Disease: A Systematic Review and Meta-analysis. Hosp. Pediatr. 2019, 9, 998–1006. [Google Scholar] [CrossRef]
- Sahu, M.K.; Singal, A.; Menon, R.; Singh, S.P.; Mohan, A.; Manral, M.; Singh, D.; Devagouru, V.; Talwar, S.; Choudhary, S.K. Early enteral nutrition therapy in congenital cardiac repair postoperatively: A randomized, controlled pilot study. Ann. Card. Anaesth. 2016, 19, 653–661. [Google Scholar] [CrossRef]
- Havranek, T.; Johanboeke, P.; Madramootoo, C.; Carver, J.D. Umbilical artery catheters do not affect intestinal blood flow responses to minimal enteral feedings. J. Perinatol. 2007, 27, 375–379. [Google Scholar] [CrossRef]
- McElhinney, D.B.; Hedrick, H.L.; Bush, D.M.; Pereira, G.R.; Stafford, P.W.; Gaynor, J.W.; Spray, T.L.; Wernovsky, G. Necrotizing enterocolitis in neonates with congenital heart disease: Risk factors and outcomes. Pediatrics 2000, 106, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, H.E.; Wells, W.J.; Starnes, V.A.; Wetzel, R.C.; Moromisato, D.Y. Gastrointestinal morbidity after Norwood palliation for hypoplastic left heart syndrome. Ann. Thorac. Surg. 2006, 81, 982–987. [Google Scholar] [CrossRef]
- Kelleher, D.K.; Laussen, P.; Teixeira-Pinto, A.; Duggan, C. Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition 2006, 22, 237–244. [Google Scholar] [CrossRef]
- Schwalbe-Terilli, C.R.; Hartman, D.H.; Nagle, M.L.; Gallagher, P.R.; Ittenbach, R.F.; Burnham, N.B.; Gaynor, J.W.; Ravishankar, C. Enteral feeding and caloric intake in neonates after cardiac surgery. Am. J. Crit. Care 2009, 18, 52–57. [Google Scholar] [CrossRef]
- Kaufman, J.; Vichayavilas, P.; Rannie, M.; Peyton, C.; Carpenter, E.; Hull, D.; Alpern, J.; Barrett, C.; da Cruz, E.M.; Roosevelt, G. Improved nutrition delivery and nutrition status in critically ill children with heart disease. Pediatrics 2015, 135, e717–e725. [Google Scholar] [CrossRef]
- Yoshimura, S.; Miyazu, M.; Yoshizawa, S.; So, M.; Kusama, N.; Hirate, H.; Sobue, K. Efficacy of an enteral feeding protocol for providing nutritional support after paediatric cardiac surgery. Anaesth. Intensive Care 2015, 43, 587–593. [Google Scholar] [CrossRef]
- Manuri, L.; Morelli, S.; Agati, S.; Saitta, M.B.; Oreto, L.; Mandraffino, G.; Iannace, E.; Iorio, F.S.; Guccione, P. Early hybrid approach and enteral feeding algorithm could reduce the incidence of necrotising enterocolitis in neonates with ductus-dependent systemic circulation. Cardiol. Young 2017, 27, 154–160. [Google Scholar] [CrossRef]
- Hernandez, G.; Velasco, N.; Wainstein, C.; Castillo, L.; Bugedo, G.; Maiz, A.; Lopez, F.; Guzman, S.; Vargas, C. Gut mucosal atrophy after a short enteral fasting period in critically ill patients. J. Crit. Care 1999, 14, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Deitch, E.A. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch. Surg. 1990, 125, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Kalra, R.; Vohra, R.; Negi, M.; Joshi, R.; Aggarwal, N.; Aggarwal, M.; Joshi, R. Feasibility of initiating early enteral nutrition after congenital heart surgery in neonates and infants. Clin. Nutr. ESPEN 2018, 25, 100–102. [Google Scholar] [CrossRef]
- Wong, J.J.; Ong, C.; Han, W.M.; Lee, J.H. Protocol-driven enteral nutrition in critically ill children: A systematic review. J. Parenter. Enter. Nutr. 2014, 38, 29–39. [Google Scholar] [CrossRef]
- Joffe, A.; Anton, N.; Lequier, L.; Vandermeer, B.; Tjosvold, L.; Larsen, B.; Hartling, L. Nutritional support for critically ill children. Cochrane Database Syst. Rev. 2009, 2, CD005144. [Google Scholar] [CrossRef]
- Herridge, J.; Tedesco-Bruce, A.; Gray, S.; Floh, A.A. Feeding the child with congenital heart disease: A narrative review. Pediatr. Med. 2021, 4, 7. [Google Scholar] [CrossRef]
- Davis, T.A.; Fiorotto, M.L.; Suryawan, A. Bolus vs. continuous feeding to optimize anabolism in neonates. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 102–108. [Google Scholar] [CrossRef]
- Sanchez, C.; Lopez-Herce, J.; Carrillo, A.; Bustinza, A.; Sancho, L.; Vigil, D. Transpyloric enteral feeding in the postoperative of cardiac surgery in children. J. Pediatr. Surg. 2006, 41, 1096–1102. [Google Scholar] [CrossRef]
- Lyons, K.A.; Brilli, R.J.; Wieman, R.A.; Jacobs, B.R. Continuation of transpyloric feeding during weaning of mechanical ventilation and tracheal extubation in children: A randomized controlled trial. J. Parenter. Enter. Nutr. 2002, 26, 209–213. [Google Scholar] [CrossRef]
- Meert, K.L.; Daphtary, K.M.; Metheny, N.A. Gastric vs. small-bowel feeding in critically ill children receiving mechanical ventilation: A randomized controlled trial. Chest 2004, 126, 872–878. [Google Scholar] [CrossRef]
- Panchal, A.K.; Manzi, J.; Connolly, S.; Christensen, M.; Wakeham, M.; Goday, P.S.; Mikhailov, T.A. Safety of Enteral Feedings in Critically Ill Children Receiving Vasoactive Agents. J. Parenter. Enter. Nutr. 2016, 40, 236–241. [Google Scholar] [CrossRef]
- Wei, D.; Azen, C.; Bhombal, S.; Hastings, L.; Paquette, L. Congenital heart disease in low-birth-weight infants: Effects of small for gestational age (SGA) status and maturity on postoperative outcomes. Pediatr. Cardiol. 2015, 36, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.G.Y.; Millar, J.; Rose, E.; Jones, A.; Wood, D.; Luitingh, T.L.; Zannino, D.; Brink, J.; Konstantinov, I.E.; Brizard, C.P.; et al. Laryngeal ultrasound detects a high incidence of vocal cord paresis after aortic arch repair in neonates and young children. J. Thorac. Cardiovasc. Surg. 2018, 155, 2579–2587. [Google Scholar] [CrossRef] [PubMed]
- Ongkasuwan, J.; Ocampo, E.; Tran, B. Laryngeal ultrasound and vocal fold movement in the pediatric cardiovascular intensive care unit. Laryngoscope 2017, 127, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Goulet, O.; Hunt, J.; Krohn, K.; Shamir, R.; Parenteral Nutrition Guidelines Working Group 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J. Pediatr. Gastroenterol. Nutr. 2005, 41 (Suppl. 2), S1–S87. [Google Scholar] [CrossRef]
- Nydegger, A.; Walsh, A.; Penny, D.J.; Henning, R.; Bines, J.E. Changes in resting energy expenditure in children with congenital heart disease. Eur. J. Clin. Nutr. 2009, 63, 392–397. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.C.; et al. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef]
- Fivez, T.; Kerklaan, D.; Mesotten, D.; Verbruggen, S.; Wouters, P.J.; Vanhorebeek, I.; Debaveye, Y.; Vlasselaers, D.; Desmet, L.; Casaer, M.P.; et al. Early versus Late Parenteral Nutrition in Critically Ill Children. N. Engl. J. Med. 2016, 374, 1111–1122. [Google Scholar] [CrossRef]
- Boullata, J.I.; Gilbert, K.; Sacks, G.; Labossiere, R.J.; Crill, C.; Goday, P.; Kumpf, V.J.; Mattox, T.W.; Plogsted, S.; Holcombe, B.; et al. A.S.P.E.N. clinical guidelines: Parenteral nutrition ordering, order review, compounding, labeling, and dispensing. J. Parenter. Enter. Nutr. 2014, 38, 334–377. [Google Scholar] [CrossRef]
- Castleberry, C.D.; Jefferies, J.L.; Shi, L.; Wilkinson, J.D.; Towbin, J.A.; Harrison, R.W.; Rossano, J.W.; Pahl, E.; Lee, T.M.; Addonizio, L.J.; et al. No Obesity Paradox in Pediatric Patients with Dilated Cardiomyopathy. JACC Heart Fail. 2018, 6, 222–230. [Google Scholar] [CrossRef]
- Godown, J.; Donohue, J.E.; Yu, S.; Friedland-Little, J.M.; Gajarski, R.J.; Schumacher, K.R. Differential effect of body mass index on pediatric heart transplant outcomes based on diagnosis. Pediatr. Transplant. 2014, 18, 771–776. [Google Scholar] [CrossRef]
- Rossano, J.W.; Grenier, M.A.; Dreyer, W.J.; Kim, J.J.; Price, J.F.; Jefferies, J.L.; Smith, E.O.; Clunie, S.K.; Moulik, M.; Decker, J.A.; et al. Effect of body mass index on outcome in pediatric heart transplant patients. J. Heart Lung Transplant. 2007, 26, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Godown, J.; Friedland-Little, J.M.; Gajarski, R.J.; Yu, S.; Donohue, J.E.; Schumacher, K.R. Abnormal nutrition affects waitlist mortality in infants awaiting heart transplant. J. Heart Lung Transplant. 2014, 33, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Zook, N.; Schultz, L.; Rizzuto, S.; Aufdermauer, A.; Hollander, A.M.; Almond, C.S.; Hollander, S.A. Supplemental nutrition, feeding disorders, and renourishment in pediatric heart failure through transplantation. Pediatr. Transplant. 2023, 27, e14601. [Google Scholar] [CrossRef]
- Amdani, S.; Conway, J.; George, K.; Martinez, H.R.; Asante-Korang, A.; Goldberg, C.S.; Davies, R.R.; Miyamoto, S.D.; Hsu, D.T.; American Heart Association Council on Lifelong Congenital Heart, D.; et al. Evaluation and Management of Chronic Heart Failure in Children and Adolescents with Congenital Heart Disease: A Scientific Statement from the American Heart Association. Circulation 2024, 150, e33–e50. [Google Scholar] [CrossRef]
- Bearl, D.W. The importance of mechanical circulatory support on pediatric waitlist and post heart transplant survival: A narrative review. Pediatr. Med. 2022, 5, 25. [Google Scholar] [CrossRef]
- Greenberg, J.W.; Kulshrestha, K.; Guzman-Gomez, A.; Fields, K.; Lehenbauer, D.G.; Winlaw, D.S.; Perry, T.; Villa, C.; Lorts, A.; Zafar, F.; et al. Modifiable risk factor reduction for pediatric ventricular assist devices and the influence of persistent modifiable risk factors at transplant. J. Thorac. Cardiovasc. Surg. 2024, 167, 1556–1563.e2. [Google Scholar] [CrossRef] [PubMed]
- Horsley, M.; Pathak, S.; Morales, D.; Lorts, A.; Mouzaki, M. Nutritional outcomes of patients with pediatric and congenital heart disease requiring ventricular assist devices. J. Parenter. Enter. Nutr. 2022, 46, 1553–1558. [Google Scholar] [CrossRef]
- Hollander, S.A.; Schultz, L.M.; Dennis, K.; Hollander, A.M.; Rizzuto, S.; Murray, J.M.; Rosenthal, D.N.; Almond, C.S. Impact of ventricular assist device implantation on the nutritional status of children awaiting heart transplantation. Pediatr. Transplant. 2019, 23, e13351. [Google Scholar] [CrossRef]
- Ubeda Tikkanen, A.; Berry, E.; LeCount, E.; Engstler, K.; Sager, M.; Esteso, P. Rehabilitation in Pediatric Heart Failure and Heart Transplant. Front. Pediatr. 2021, 9, 674156. [Google Scholar] [CrossRef]
- Puri, K.; Adachi, I.; Bocchini, C.E.; Spinner, J.A.; Denfield, S.W.; Sisley, S.; Elias, B.A.; Jimenez-Gomez, A.; Price, J.F.; Dreyer, W.J.; et al. Trends in Body Mass Index and Association with Outcomes in Pediatric Patients on Continuous Flow Ventricular Assist Device Support. Asaio J. 2022, 68, 1182–1190. [Google Scholar] [CrossRef]
- Modir, R.; Hadhazy, E.; Teuteberg, J.; Hiesinger, W.; Tulu, Z.; Hill, C. Improving nutrition practices for postoperative high-risk heart transplant and ventricular assist device implant patients in circulatory compromise: A quality improvement pre- and post-protocol intervention outcome study. Nutr. Clin. Pract. 2022, 37, 677–697. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, M.A.; Gaynor, J.W.; Retzloff, L.B.; Lehrich, J.L.; Banerjee, M.; Amula, V.; Bailly, D.; Klugman, D.; Koch, J.; Lasa, J.; et al. Characteristics, Risk Factors, and Outcomes of Extracorporeal Membrane Oxygenation Use in Pediatric Cardiac ICUs: A Report from the Pediatric Cardiac Critical Care Consortium Registry. Pediatr. Crit. Care Med. 2018, 19, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Perez, G.; Gonzalez, E.; Zamora, L.; Fernandez, S.N.; Sanchez, A.; Bellon, J.M.; Santiago, M.J.; Solana, M.J. Early Enteral Nutrition and Gastrointestinal Complications in Pediatric Patients on Extracorporeal Membrane Oxygenation. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Toh, T.S.W.; Ong, C.; Mok, Y.H.; Mallory, P.; Cheifetz, I.M.; Lee, J.H. Nutrition in Pediatric Extracorporeal Membrane Oxygenation: A Narrative Review. Front. Nutr. 2021, 8, 666464. [Google Scholar] [CrossRef]
- De Waele, E.; Jonckheer, J.; Pen, J.J.; Demol, J.; Staessens, K.; Puis, L.; La Meir, M.; Honore, P.M.; Mlngm; Spapen, H.D. Energy expenditure of patients on ECMO: A prospective pilot study. Acta Anaesthesiol. Scand. 2019, 63, 360–364. [Google Scholar] [CrossRef]
- Ewing, L.J.; Domico, M.B.; Ramirez, R.; Starr, J.P.; Lam, D.R.; Mink, R.B. Measuring the Resting Energy Expenditure in Children on Extracorporeal Membrane Oxygenation: A Prospective Pilot Study. ASAIO J. 2023, 69, 122–126. [Google Scholar] [CrossRef]
- Mehta, N.M.; Costello, J.M.; Bechard, L.J.; Johnson, V.M.; Zurakowski, D.; McGowan, F.X.; Laussen, P.C.; Duggan, C.P. Resting energy expenditure after Fontan surgery in children with single-ventricle heart defects. J. Parenter. Enter. Nutr. 2012, 36, 685–692. [Google Scholar] [CrossRef] [PubMed]
- FAO Joint. Human energy requirements: Report of a joint FAO/WHO/UNU Expert Consultation. Food Nutr. Bull. 2005, 26, 166. [Google Scholar]
- Farr, B.J.; Rice-Townsend, S.E.; Mehta, N.M. Nutrition Support During Pediatric Extracorporeal Membrane Oxygenation. Nutr. Clin. Pract. 2018, 33, 747–753. [Google Scholar] [CrossRef]
- Greathouse, K.C.; Sakellaris, K.T.; Tumin, D.; Katsnelson, J.; Tobias, J.D.; Hayes, D., Jr.; Yates, A.R. Impact of Early Initiation of Enteral Nutrition on Survival During Pediatric Extracorporeal Membrane Oxygenation. J. Parenter. Enter. Nutr. 2018, 42, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Muszynski, J.A.; Bembea, M.M.; Gehred, A.; Lyman, E.; Cashen, K.; Cheifetz, I.M.; Dalton, H.J.; Himebauch, A.S.; Karam, O.; Moynihan, K.M.; et al. Priorities for Clinical Research in Pediatric Extracorporeal Membrane Oxygenation Anticoagulation from the Pediatric Extracorporeal Membrane Oxygenation Anticoagulation CollaborativE Consensus Conference. Pediatr. Crit. Care Med. 2024, 25 (Suppl. 1), e78–e89. [Google Scholar] [CrossRef]
- Brackmann, M.; Lintvedt, A.; Kogelschatz, B.; Heinze, E.; Parker, J.L.; Ferguson, K.; Rosner, E.; Boville, B.; Leimanis-Laurens, M.L. Daily Nutritional Intake of Pediatric Patients (N = 64) on Extracorporeal Membrane Oxygenation from 2018 to 2022: A Single-Center Report. Nutrients 2023, 15, 3221. [Google Scholar] [CrossRef]
- Ohman, K.; Zhu, H.; Maizlin, I.; Williams, R.F.; Guner, Y.S.; Russell, R.T.; Harting, M.T.; Vogel, A.M.; Starr, J.P.; Johnson, D.; et al. A Multicenter Study of Nutritional Adequacy in Neonatal and Pediatric Extracorporeal Life Support. J. Surg. Res. 2020, 249, 67–73. [Google Scholar] [CrossRef]
- Neumann, L.; Springer, T.; Nieschke, K.; Kostelka, M.; Dahnert, I. ChyloBEST: Chylothorax in Infants and Nutrition with Low-Fat Breast Milk. Pediatr. Cardiol. 2020, 41, 108–113. [Google Scholar] [CrossRef]
- Milonakis, M.; Chatzis, A.C.; Giannopoulos, N.M.; Contrafouris, C.; Bobos, D.; Kirvassilis, G.V.; Sarris, G.E. Etiology and management of chylothorax following pediatric heart surgery. J. Card. Surg. 2009, 24, 369–373. [Google Scholar] [CrossRef]
- Buckley, J.R.; Graham, E.M.; Gaies, M.; Alten, J.A.; Cooper, D.S.; Costello, J.M.; Domnina, Y.; Klugman, D.; Pasquali, S.K.; Donohue, J.E.; et al. Clinical epidemiology and centre variation in chylothorax rates after cardiac surgery in children: A report from the Pediatric Cardiac Critical Care Consortium. Cardiol. Young 2017, 27, 1678–1685. [Google Scholar] [CrossRef]
- Savla, J.J.; Itkin, M.; Rossano, J.W.; Dori, Y. Post-Operative Chylothorax in Patients with Congenital Heart Disease. J. Am. Coll. Cardiol. 2017, 69, 2410–2422. [Google Scholar] [CrossRef] [PubMed]
- Mery, C.M.; Moffett, B.S.; Khan, M.S.; Zhang, W.; Guzman-Pruneda, F.A.; Fraser, C.D., Jr.; Cabrera, A.G. Incidence and treatment of chylothorax after cardiac surgery in children: Analysis of a large multi-institution database. J. Thorac. Cardiovasc. Surg. 2014, 147, 678–686.e1; discussion 685–686. [Google Scholar] [CrossRef]
- Lion, R.P.; Winder, M.M.; Amirnovin, R.; Fogg, K.; Bertrandt, R.; Bhaskar, P.; Kasmai, C.; Holmes, K.W.; Moza, R.; Vichayavilas, P.; et al. Development of consensus recommendations for the management of post-operative chylothorax in paediatric CHD. Cardiol. Young 2022, 32, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Karpen, H.E. Nutrition in the Cardiac Newborns: Evidence-based Nutrition Guidelines for Cardiac Newborns. Clin. Perinatol. 2016, 43, 131–145. [Google Scholar] [CrossRef]
- Fisher, J.G.; Bairdain, S.; Sparks, E.A.; Khan, F.A.; Archer, J.M.; Kenny, M.; Edwards, E.M.; Soll, R.F.; Modi, B.P.; Yeager, S.; et al. Serious Congenital Heart Disease and Necrotizing Enterocolitis in Very Low Birth Weight Neonates. J. Am. Coll. Surg. 2015, 220, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Asztalos, I.B.; Hill, S.N.; Nash, D.B.; Schachtner, S.K.; Palm, K.J. Cardiogenic Necrotizing Enterocolitis in Infants with Congenital Heart Disease: A Systematic Review and Meta-analysis. Pediatr. Cardiol. 2025, 46, 2429–2442. [Google Scholar] [CrossRef]
- El Louali, F.; Prom, C.; Myriem, B.A.; Gran, C.; Fouilloux, V.; Lenoir, M.; Ligi, I.; Ovaert, C.; Michel, F. Necrotising enterocolitis suspicion in newborns with duct-dependent congenital heart disease: Prognosis and risk factor. BMJ Paediatr. Open 2024, 8, e002520. [Google Scholar] [CrossRef]
- Davies, R.R.; Carver, S.W.; Schmidt, R.; Keskeny, H.; Hoch, J.; Pizarro, C. Gastrointestinal Complications After Stage I Norwood Versus Hybrid Procedures. Ann. Thorac. Surg. 2013, 95, 189–196. [Google Scholar] [CrossRef]
- Golbus, J.R.; Wojcik, B.M.; Charpie, J.R.; Hirsch, J.C. Feeding Complications in Hypoplastic Left Heart Syndrome After the Norwood Procedure: A Systematic Review of the Literature. Pediatr. Cardiol. 2011, 32, 539–552. [Google Scholar] [CrossRef]
- Iannucci, G.J.; Oster, M.E.; Mahle, W.T. Necrotising enterocolitis in infants with congenital heart disease: The role of enteral feeds. Cardiol. Young 2013, 23, 553–559. [Google Scholar] [CrossRef]
- Bubberman, J.M.; van Zoonen, A.; Bruggink, J.L.M.; van der Heide, M.; Berger, R.M.F.; Bos, A.F.; Kooi, E.M.W.; Hulscher, J.B.F. Necrotizing Enterocolitis Associated with Congenital Heart Disease: A Different Entity? J. Pediatr. Surg. 2019, 54, 1755–1760. [Google Scholar] [CrossRef]
- Elsayed, Y.; Seshia, M. A new intestinal ultrasound integrated approach for the management of neonatal gut injury. Eur. J. Pediatr. 2022, 181, 1739–1749. [Google Scholar] [CrossRef]
- Lazow, S.P.; Tracy, S.A.; Estroff, J.A.; Parad, R.B.; Castro-Aragon, I.M.; Fujii, A.M.; Staffa, S.J.; Zurakowski, D.; Chen, C. A role for abdominal ultrasound in discriminating suspected necrotizing enterocolitis in congenital heart disease patients. Pediatr. Surg. Int. 2022, 38, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Slicker, J.; Sables-Baus, S.; Lambert, L.M.; Peterson, L.E.; Woodard, F.K.; Ocampo, E.C.; National Pediatric Cardiology-Quality Improvement Collaborative Feeding Work Group. Perioperative Feeding Approaches in Single Ventricle Infants: A Survey of 46 Centers. Congenit. Heart Dis. 2016, 11, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Nordenstrom, K.; Lannering, K.; Mellander, M.; Elfvin, A. Low risk of necrotising enterocolitis in enterally fed neonates with critical heart disease: An observational study. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 609–614. [Google Scholar] [CrossRef]
- O’Neal Maynord, P.; Johnson, M.; Xu, M.; Slaughter, J.C.; Killen, S.A.S. A Multi-Interventional Nutrition Program for Newborns with Congenital Heart Disease. J. Pediatr. 2021, 228, 66–73.e62. [Google Scholar] [CrossRef]
- Bell, D.; Suna, J.; Marathe, S.P.; Perumal, G.; Betts, K.S.; Venugopal, P.; Alphonso, N.; Qpcr, G. Feeding Neonates and Infants Prior to Surgery for Congenital Heart Defects: Systematic Review and Meta-Analysis. Children 2022, 9, 1856. [Google Scholar] [CrossRef]
- Palm, K.; Trauth, A.; Gao, Z.; Pradhan, S.; Schachtner, S.; Strohacker, C.; Nash, D.; Marcuccio, E. Feeding Practices in Infants with Hematochezia and Necrotizing Enterocolitis on Acute Care Cardiology Units. Pediatr. Cardiol. 2025, 46, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Mangili, G.; Garzoli, E.; Sadou, Y. Feeding dysfunctions and failure to thrive in neonates with congenital heart diseases. Pediatr. Medica Chir. 2018, 40, 1–4. [Google Scholar] [CrossRef]
- Blanco, C.L.; Hair, A.; Justice, L.B.; Roddy, D.; Bonagurio, K.; Williams, P.K.; Machado, D.; Marino, B.S.; Chi, A.; Takao, C.; et al. A Randomized Trial of an Exclusive Human Milk Diet in Neonates with Single Ventricle Physiology. J. Pediatr. 2023, 256, 105–112.e4. [Google Scholar] [CrossRef]
- Gao, R.; Huang, Y.; Li, B.; Zhang, R.; Lee, C.; Alganabi, M.; Yamoto, M.; Peng, X.; He, W.; Cao, Y.; et al. Exosomes derived from colostrum and mature human breast milk protect against experimental necrotizing enterocolitis. Pediatr. Surg. Int. 2025, 41, 218. [Google Scholar] [CrossRef]
- Cotten, C.M.; Taylor, S.; Stoll, B.; Goldberg, R.N.; Hansen, N.I.; Sanchez, P.J.; Ambalavanan, N.; Benjamin, D.K., Jr. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 2009, 123, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Alsaied, T.; Lubert, A.M.; Goldberg, D.J.; Schumacher, K.; Rathod, R.; Katz, D.A.; Opotowsky, A.R.; Jenkins, M.; Smith, C.; Rychik, J.; et al. Protein losing enteropathy after the Fontan operation. Int. J. Cardiol. Congenit. Heart Dis. 2022, 7, 100338. [Google Scholar] [CrossRef] [PubMed]
- Braamskamp, M.J.; Dolman, K.M.; Tabbers, M.M. Clinical practice. Protein-losing enteropathy in children. Eur. J. Pediatr. 2010, 169, 1179–1185. [Google Scholar] [CrossRef]
- Mertens, L.; Hagler, D.J.; Sauer, U.; Somerville, J.; Gewillig, M. Protein-losing enteropathy after the Fontan operation: An international multicenter study. PLE study group. J. Thorac. Cardiovasc. Surg. 1998, 115, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Umar, S.B.; DiBaise, J.K. Protein-losing enteropathy: Case illustrations and clinical review. Am. J. Gastroenterol. 2010, 105, 43–49; quiz 50. [Google Scholar] [CrossRef]
- Baldini, L.; Librandi, K.; D’Eusebio, C.; Lezo, A. Nutritional Management of Patients with Fontan Circulation: A Potential for Improved Outcomes from Birth to Adulthood. Nutrients 2022, 14, 4055. [Google Scholar] [CrossRef]



| Physical Exam |
|
|
| Imaging | Chest X-ray:
| Abdominal ultrasound:
|
| Laboratory Studies |
| |
| Treatment | Negative laboratory studies:
| Positive laboratory studies:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Gburek, J.; May, K.; Walvoord, B.; Lozano, C.; Coss-Bu, J.A. Perioperative Nutrition in Pediatric Patients with Congenital Heart Disease and Heart Failure. Nutrients 2025, 17, 3609. https://doi.org/10.3390/nu17223609
Silva-Gburek J, May K, Walvoord B, Lozano C, Coss-Bu JA. Perioperative Nutrition in Pediatric Patients with Congenital Heart Disease and Heart Failure. Nutrients. 2025; 17(22):3609. https://doi.org/10.3390/nu17223609
Chicago/Turabian StyleSilva-Gburek, Jaime, Kelsey May, Bailey Walvoord, Catalina Lozano, and Jorge A. Coss-Bu. 2025. "Perioperative Nutrition in Pediatric Patients with Congenital Heart Disease and Heart Failure" Nutrients 17, no. 22: 3609. https://doi.org/10.3390/nu17223609
APA StyleSilva-Gburek, J., May, K., Walvoord, B., Lozano, C., & Coss-Bu, J. A. (2025). Perioperative Nutrition in Pediatric Patients with Congenital Heart Disease and Heart Failure. Nutrients, 17(22), 3609. https://doi.org/10.3390/nu17223609

