Current Perspectives on Protein Supplementation in Athletes: General Guidance and Special Considerations for Diabetes—A Narrative Review
Abstract
1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Study Selection and Flowchart
2.3. Quality Appraisal
3. Protein Supplements: A General Perspective
4. Protein Requirements in Athletes
4.1. General Recommendations for Daily Requirements
4.2. Protein Requirements in Diabetic Athletes
5. Per-Meal and Timing Strategies
5.1. General Recommendations
5.2. Recommendations for Diabetic Athletes
6. Influence of Training Status and Energy Balance on Protein Needs
6.1. General Athletes
6.2. Diabetic Athletes
7. Comparative Effects of Different Protein Sources on Athletic Performance
7.1. Whey Protein
7.1.1. General Characteristics
7.1.2. Whey Protein and Physical Performance
7.1.3. Whey Protein and Diabetic Athletes
7.2. Casein Protein
7.2.1. General Characteristics
7.2.2. Casein Protein and Physical Performance
7.2.3. Casein Protein and Diabetic Athletes
7.3. Soy Protein
7.3.1. General Characteristics
7.3.2. Soy Protein and Physical Performance
7.3.3. Soy Protein and Diabetic Athletes
7.4. Pea Protein
7.4.1. General Characteristics
7.4.2. Pea Protein and Physical Performance
7.4.3. Pea Protein and Diabetic Athletes
7.5. Protein Blends
7.5.1. General Characteristics
7.5.2. Protein Blends and Physical Performance
7.5.3. Protein Blends and Diabetic Athletes
7.6. Other Proteins
7.6.1. Egg Protein
7.6.2. Rice Protein
7.6.3. Collagen Peptides
7.7. Intact Protein vs. Protein Hydrolysate
8. Effects of Protein Supplementation in Resistance Training Athletes
8.1. General Athletes
8.2. Diabetic Athletes
9. Effects of Protein Supplementation in Endurance Athletes
9.1. General Athletes
9.2. Diabetic Athletes
10. Protein Supplementation in High-Intensity Functional Training (HIFT)
10.1. General Athletes
10.2. Diabetic Athletes
11. Aging Athletes and Master Populations
11.1. General Master Athletes
11.2. Diabetic Master Athletes
12. Female Athletes
13. Summary
14. Conclusions
15. Future Directions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phillips, S.M. Dietary Protein Requirements and Adaptive Advantages in Athletes. Br. J. Nutr. 2012, 108, S158–S167. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and Exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A Systematic Review, Meta-Analysis and Meta-Regression of the Effect of Protein Supplementation on Resistance Training-Induced Gains in Muscle Mass and Strength in Healthy Adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Mamerow, M.M.; Mettler, J.A.; English, K.L.; Casperson, S.L.; Arentson-Lantz, E.; Sheffield-Moore, M.; Layman, D.K.; Paddon-Jones, D. Dietary Protein Distribution Positively Influences 24-h Muscle Protein Synthesis in Healthy Adults. J. Nutr. 2014, 144, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.D.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and Distribution of Protein Ingestion during Prolonged Recovery from Resistance Exercise Alters Myofibrillar Protein Synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.R.; Zinn, C.; Rowlands, D.S.; Brown, S.R. A Systematic Review of Dietary Protein During Caloric Restriction in Re-sistance Trained Lean Athletes: A Case for Higher Intakes. Int. J. Sport. Nutr. Exerc. Metab. 2014, 24, 127–138. [Google Scholar] [CrossRef]
- Aagaard, P.; Andersen, J.L.; Bennekou, M.; Larsson, B.; Olesen, J.L.; Crameri, R.; Magnusson, S.P.; Kjær, M. Effects of Resistance Training on Endurance Capacity and Muscle Fiber Composition in Young Top-level Cyclists. Scand. J. Med. Sci. Sports 2011, 21, e298–e307. [Google Scholar] [CrossRef] [PubMed]
- Møller, N.; Nair, K.S. Diabetes and Protein Metabolism. Diabetes 2008, 57, 3–4. [Google Scholar] [CrossRef]
- Kouw, I.W.K.; Gorissen, S.H.M.; Burd, N.A.; Cermak, N.M.; Gijsen, A.P.; van Kranenburg, J.; van Loon, L.J.C. Postprandial Protein Handling Is Not Impaired in Type 2 Diabetes Patients When Compared With Normoglycemic Controls. J. Clin. Endocrinol. Metab. 2015, 100, 3103–3111. [Google Scholar] [CrossRef]
- Robertson, K.; Adolfsson, P.; Scheiner, G.; Hanas, R.; Riddell, M.C. Exercise in Children and Adolescents with Diabetes. Pediatr. Diabetes 2009, 10, 154–168. [Google Scholar] [CrossRef]
- Smith, K.; Taylor, G.S.; Brunsgaard, L.H.; Walker, M.; Bowden Davies, K.A.; Stevenson, E.J.; West, D.J. Thrice Daily Consump-tion of a Novel, Premeal Shot Containing a Low Dose of Whey Protein Increases Time in Euglycemia during 7 Days of Free-Living in Individuals with Type 2 Diabetes. BMJ Open Diabetes Res. Care 2022, 10, e002820. [Google Scholar] [CrossRef] [PubMed]
- Saracino, P.G.; Saylor, H.E.; Hanna, B.R.; Hickner, R.C.; Kim, J.-S.; Ormsbee, M.J. Effects of Pre-Sleep Whey vs. Plant-Based Protein Consumption on Muscle Recovery Following Damaging Morning Exercise. Nutrients 2020, 12, 2049. [Google Scholar] [CrossRef]
- Nieman, D.C.; Zwetsloot, K.A.; Simonson, A.J.; Hoyle, A.T.; Wang, X.; Nelson, H.K.; Lefranc-Millot, C.; Guérin-Deremaux, L. Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial. Nutrients 2020, 12, 2382. [Google Scholar] [CrossRef] [PubMed]
- Trigueros, R.; Mercader, I.; González-Bernal, J.J.; Aguilar-Parra, J.M.; González-Santos, J.; Navarro-Gómez, N.; Soto-Cámara, R. The Influence of the Trainer’s Social Behaviors on the Resilience, Anxiety, Stress, Depression and Eating Habits of Athletes. Nutrients 2020, 12, 2405. [Google Scholar] [CrossRef]
- Urdampilleta, A.; Arribalzaga, S.; Viribay, A.; Castañeda-Babarro, A.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of 120 vs. 60 and 90 g/h Carbohydrate Intake during a Trail Marathon on Neuromuscular Function and High Intensity Run Capacity Recovery. Nutrients 2020, 12, 2094. [Google Scholar] [CrossRef]
- Jahan-mihan, A.; Magyari, P.O.; Pinkstaff, S. The Effect of Intensity of Exercise on Appetite and Food Intake Regulation in Post-Exercise Period: A Randomized Trial. J. Exerc. Nutr. 2021, 4, 10395. [Google Scholar] [CrossRef]
- Antonio, J.; Ellerbroek, A.; Silver, T.; Orris, S.; Scheiner, M.; Gonzalez, A.; Peacock, C.A. A High Protein Diet (3.4 g/Kg/d) Com-bined with a Heavy Resistance Training Program Improves Body Composition in Healthy Trained Men and Women—A Follow-up Investigation. J. Int. Soc. Sports Nutr. 2015, 12, 39. [Google Scholar] [CrossRef]
- Cintineo, H.P.; Arent, M.A.; Antonio, J.; Arent, S.M. Effects of Protein Supplementation on Performance and Recovery in Resistance and Endurance Training. Front Nutr. 2018, 5, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mielgo-Ayuso, J.; Calleja-González, J.; Refoyo, I.; León-Guereño, P.; Cordova, A.; Del Coso, J. Exercise-Induced Muscle Damage and Cardiac Stress During a Marathon Could Be Associated with Dietary Intake During the Week Before the Race. Nutrients 2020, 12, 316. [Google Scholar] [CrossRef]
- Phillips, S.M.; Van Loon, L.J.C. Dietary Protein for Athletes: From Requirements to Optimum Adaptation. J. Sports Sci. 2011, 29, S29–S38. [Google Scholar] [CrossRef] [PubMed]
- Howarth, K.R.; Moreau, N.A.; Phillips, S.M.; Gibala, M.J. Coingestion of Protein with Carbohydrate during Recovery from En-durance Exercise Stimulates Skeletal Muscle Protein Synthesis in Humans. J. Appl. Physiol. 2009, 106, 1394–1402. [Google Scholar] [CrossRef]
- Moore, D.R. Maximizing Post-Exercise Anabolism: The Case for Relative Protein Intakes. Front. Nutr. 2019, 6, 147. [Google Scholar] [CrossRef]
- Slater, G.J.; Dieter, B.P.; Marsh, D.J.; Helms, E.R.; Shaw, G.; Iraki, J. Is an Energy Surplus Required to Maximize Skeletal Muscle Hypertrophy Associated With Resistance Training. Front. Nutr. 2019, 6, 131. [Google Scholar] [CrossRef] [PubMed]
- Karpouzi, C.; Kosmidis, I.; Petridou, A.; Voulgaridou, G.; Papadopoulou, S.; Bogdanis, G.; Mougios, V. Effects of Protein Sup-plementation During High-Intensity Functional Training on Physical Performance in Recreationally Trained Males and Fe-males: A Randomized Controlled Trial. Nutrients 2025, 17, 1441. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Landa, J.; Fernández-Lázaro, D.; Calleja-González, J.; Caballero-García, A.; Córdova Martínez, A.; León-Guereño, P.; Mielgo-Ayuso, J. Effect of Ten Weeks of Creatine Monohydrate Plus HMB Supplementation on Athletic Performance Tests in Elite Male Endurance Athletes. Nutrients 2020, 12, 193. [Google Scholar] [CrossRef]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of Whey Hydrolysate, Casein, or Soy Protein Isolate: Effects on Mixed Muscle Protein Synthesis at Rest and Following Resistance Exercise in Young Men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef]
- Naderi, A.; Rothschild, J.A.; Santos, H.O.; Hamidvand, A.; Koozehchian, M.S.; Ghazzagh, A.; Berjisian, E.; Podlogar, T. Nutri-tional Strategies to Improve Post-Exercise Recovery and Subsequent Exercise Performance: A Narrative Review. Sports Med. 2025, 55, 1559–1577. [Google Scholar] [CrossRef]
- Koopman, R.; Saris, W.H.M.; Wagenmakers, A.J.M.; van Loon, L.J.C. Nutritional Interventions to Promote Post-Exercise Muscle Protein Synthesis. Sports Med. 2007, 37, 895–906. [Google Scholar] [CrossRef]
- Staples, A.W.; Burd, N.A.; West, D.W.D.; Currie, K.D.; Atherton, P.J.; Moore, D.R.; Rennie, M.J.; Macdonald, M.J.; Baker, S.K.; Phillips, S.M. Carbohydrate Does Not Augment Exercise-Induced Protein Accretion versus Protein Alone. Med. Sci. Sports Exerc. 2011, 43, 1154–1161. [Google Scholar] [CrossRef]
- Margolis, L.M.; Allen, J.T.; Hatch-McChesney, A.; Pasiakos, S.M. Coingestion of Carbohydrate and Protein on Muscle Glycogen Synthesis after Exercise: A Meta-Analysis. Med. Sci. Sports Exerc. 2021, 53, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.E.M.; Evans, M.; O’Connell, S.M.; McElduff, P.; Lopez, P.E.; Jones, T.W.; Davis, E.A.; King, B.R. Both Dietary Protein and Fat Increase Postprandial Glucose Excursions in Children With Type 1 Diabetes, and the Effect Is Additive. Diabetes Care 2013, 36, 3897–3902. [Google Scholar] [CrossRef]
- Paterson, M.A.; King, B.R.; Smart, C.E.M.; Smith, T.; Rafferty, J.; Lopez, P.E. Impact of Dietary Protein on Postprandial Glycae-mic Control and Insulin Requirements in Type 1 Diabetes: A Systematic Review. Diabet. Med. 2019, 36, 1585–1599. [Google Scholar] [CrossRef] [PubMed]
- King, D.G.; Walker, M.; Campbell, M.D.; Breen, L.; Stevenson, E.J.; West, D.J. A Small Dose of Whey Protein Co-Ingested with Mixed-Macronutrient Breakfast and Lunch Meals Improves Postprandial Glycemia and Suppresses Appetite in Men with Type 2 Diabetes: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2018, 107, 550–557. [Google Scholar] [CrossRef]
- Ma, J.; Jesudason, D.R.; Stevens, J.E.; Keogh, J.B.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Sustained Effects of a Protein “preload” on Glycaemia and Gastric Emptying over 4 Weeks in Patients with Type 2 Diabetes: A Randomized Clinical Trial. Diabetes Res. Clin. Pract. 2015, 108, e31–e34. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Aggarwal, K.; Dhawan, A.; Singh, B.; Shah, P.; Sawhney, A.; Jain, R. Protein Supplementation: The Double-Edged Sword. Bayl. Univ. Med. Cent. Proc. 2024, 37, 118–126. [Google Scholar] [CrossRef]
- Giglio, B.M.; Lobo, P.C.B.; Pimentel, G.D. Effects of Whey Protein Supplementation on Adiposity, Body Weight, and Glycemic Parameters: A Synthesis of Evidence. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 258–274. [Google Scholar] [CrossRef]
- Riddell, M.C.; Gallen, I.W.; Smart, C.E.; Taplin, C.E.; Adolfsson, P.; Lumb, A.N.; Kowalski, A.; Rabasa-Lhoret, R.; McCrimmon, R.J.; Hume, C.; et al. Exercise Management in Type 1 Diabetes: A Consensus Statement. Lancet Diabetes Endocrinol. 2017, 5, 377–390. [Google Scholar] [CrossRef]
- Cavallo, M.; De Fano, M.; Barana, L.; Dozzani, I.; Bianchini, E.; Pellegrino, M.; Cisternino, L.; Migliarelli, S.; Giulietti, C.; Pippi, R.; et al. Nutritional Management of Athletes with Type 1 Diabetes: A Narrative Review. Nutrients 2024, 16, 907. [Google Scholar] [CrossRef]
- Watson, L.E.; Phillips, L.K.; Wu, T.; Bound, M.J.; Checklin, H.L.; Grivell, J.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. A Whey/Guar “Preload” Improves Postprandial Glycaemia and Glycated Haemoglobin Levels in Type 2 Diabetes: A 12-Week, Single-Blind, Randomized, Placebo-Controlled Trial. Diabetes Obes. Metab. 2019, 21, 930–938. [Google Scholar] [CrossRef]
- Li, F.; Hsueh, Y.-T.; Hsu, Y.-J.; Lee, M.-C.; Chang, C.-H.; Ho, C.-S.; Huang, C.-C. Effects of Isolated Protein Supplementation Combined with Aerobic Exercise Training on Improving Body Composition, Anthropometric Characteristics and Cardiopulmonary Endurance in Women: A Pilot Study. Int. J. Environ. Res. Public. Health 2021, 18, 11798. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Torres, J.M.; Escalante-Aburto, A.; Villarreal-Arce, M.E.; Caballero-Prado, C.J. Exploring the Impact of Protein Supplement Source on Body Composition in Women Practicing Anaerobic Resistance Exercise: A Pilot Study. Nutrients 2024, 16, 321. [Google Scholar] [CrossRef] [PubMed]
- Witard, O.C.; Hearris, M.; Morgan, P.T. Protein Nutrition for Endurance Athletes: A Metabolic Focus on Promoting Recovery and Training Adaptation. Sports Med. 2025, 55, 1361–1376. [Google Scholar] [CrossRef] [PubMed]
- Longland, T.M.; Oikawa, S.Y.; Mitchell, C.J.; Devries, M.C.; Phillips, S.M. Higher Compared with Lower Dietary Protein during an Energy Deficit Combined with Intense Exercise Promotes Greater Lean Mass Gain and Fat Mass Loss: A Randomized Trial. Am. J. Clin. Nutr. 2016, 103, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.M.; Helms, E.R.; Trexler, E.T.; Fitschen, P.J. Nutritional Recommendations for Physique Athletes. J. Hum. Kinet. 2020, 71, 79–108. [Google Scholar] [CrossRef]
- Amawi, A.; AlKasasbeh, W.; Jaradat, M.; Almasri, A.; Alobaidi, S.; Hammad, A.A.; Bishtawi, T.; Fataftah, B.; Turk, N.; Al Saoud, H.; et al. Athletes’ Nutritional Demands: A Narrative Review of Nutritional Requirements. Front. Nutr. 2023, 10, 1331854. [Google Scholar] [CrossRef]
- McLain, T.A.; Escobar, K.A.; Kerksick, C.M. Protein Applications in Sports Nutrition—Part I. Strength. Cond. J. 2015, 37, 61–71. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Cao, J.J.; Margolis, L.M.; Sauter, E.R.; Whigham, L.D.; McClung, J.P.; Rood, J.C.; Carbone, J.W.; Combs, G.F.; Young, A.J. Effects of High-protein Diets on Fat-free Mass and Muscle Protein Synthesis Following Weight Loss: A Randomized Controlled Trial. Fed. Am. Soc. Exp. Biol. J. 2013, 27, 3837–3847. [Google Scholar] [CrossRef]
- Reid-McCann, R.J.; Brennan, S.F.; Ward, N.A.; Logan, D.; McKinley, M.C.; McEvoy, C.T. Effect of Plant Versus Animal Protein on Muscle Mass, Strength, Physical Performance, and Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Rev. 2025, 83, e1581–e1603. [Google Scholar] [CrossRef]
- Moore, D.R. Protein Requirements for Master Athletes: Just Older Versions of Their Younger Selves. Sports Med. 2021, 51, 13–30. [Google Scholar] [CrossRef]
- Fuhrman, J.; Ferreri, D.M. Fueling the Vegetarian (Vegan) Athlete. Curr. Sports Med. Rep. 2010, 9, 233–241. [Google Scholar] [CrossRef]
- Bassil, M.S.; Gougeon, R. Muscle Protein Anabolism in Type 2 Diabetes. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 83–88. [Google Scholar] [CrossRef]
- Hornsby, W.G.; Chetlin, R.D. Management of Competitive Athletes With Diabetes. Diabetes Spectr. 2005, 18, 102–107. [Google Scholar] [CrossRef]
- Raj, V.M.S.; Sturgeon, K.; Patel, D.R. Protein Intake in Athletes: A Review. Int. J. Disabil. Hum. Dev. 2012, 11, 191–197. [Google Scholar] [CrossRef]
- Teoh, S.L.; Lai, N.M.; Vanichkulpitak, P.; Vuksan, V.; Ho, H.; Chaiyakunapruk, N. Clinical Evidence on Dietary Supplementation with Chia Seed (Salvia hispanica L.): A Systematic Review and Meta-Analysis. Nutr. Rev. 2018, 76, 219–242. [Google Scholar] [CrossRef]
- Mensink, M. Dietary Protein, Amino Acids and Type 2 Diabetes Mellitus: A Short Review. Front. Nutr. 2024, 11, 1445981. [Google Scholar] [CrossRef] [PubMed]
- Millward, D.J. Protein and Amino Acid Requirements of Athletes. J. Sports Sci. 2004, 22, 143–144. [Google Scholar] [CrossRef]
- Bell, J.A.; Volpi, E.; Fujita, S.; Cadenas, J.G.; Sheffield-Moore, M.; Rasmussen, B.B. Skeletal Muscle Protein Anabolic Response to Increased Energy and Insulin Is Preserved in Poorly Controlled Type 2 Diabetes. J. Nutr. 2006, 136, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Tipton, K.D.; Wolfe, R.R. Exercise, Protein Metabolism, and Muscle Growth. Int. J. Sport. Nutr. Exerc. Metab. 2001, 11, 109–132. [Google Scholar] [CrossRef] [PubMed]
- Esmarck, B.; Andersen, J.L.; Olsen, S.; Richter, E.A.; Mizuno, M.; Kjaer, M. Timing of Postexercise Protein Intake Is Important for Muscle Hypertrophy with Resistance Training in Elderly Humans. J. Physiol. 2001, 535, 301–311. [Google Scholar] [CrossRef]
- Phillips, S.M.; Tipton, K.D.; Aarsland, A.; Wolf, S.E.; Wolfe, R.R. Mixed Muscle Protein Synthesis and Breakdown after Re-sistance Exercise in Humans. Am. J. Physiol. Endocrinol. Metab. 1997, 273, E99–E107. [Google Scholar] [CrossRef]
- Cribb, P.J.; Hayes, A. Effects of Supplement Timing and Resistance Exercise on Skeletal Muscle Hypertrophy. Med. Sci. Sports Exerc. 2006, 38, 1918–1925. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Stokes, T.; Hector, A.J.; Morton, R.W.; McGlory, C.; Phillips, S.M. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients 2018, 10, 180. [Google Scholar] [CrossRef]
- Hector, A.J.; Phillips, S.M. Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.H.; Churchward-Venne, T.A.; Mitchell, C.J.; Kolar, N.M.; Kassis, A.; Karagounis, L.G.; Burke, L.M.; Hawley, J.A.; Phillips, S.M. Hypoenergetic Diet-Induced Reductions in Myofibrillar Protein Synthesis Are Restored with Resistance Training and Balanced Daily Protein Ingestion in Older Men. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E734–E743. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Moore, D.R.; Tang, J.E. A Critical Examination of Dietary Protein Requirements, Benefits, and Excesses in Athletes. Int. J. Sport. Nutr. Exerc. Metab. 2007, 17, S58–S76. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; McLellan, T.M.; Lieberman, H.R. The Effects of Protein Supplements on Muscle Mass, Strength, and Aerobic and Anaerobic Power in Healthy Adults: A Systematic Review. Sports Med. 2015, 45, 111–131. [Google Scholar] [CrossRef]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein Ingestion to Stim-ulate Myofibrillar Protein Synthesis Requires Greater Relative Protein Intakes in Healthy Older Versus Younger Men. J. Gerontol. Ser. A 2015, 70, 57–62. [Google Scholar] [CrossRef]
- Res, P.T.; Groen, B.; Pennings, B.; Beelen, M.; Wallis, G.A.; Gijsen, A.P.; Senden, J.M.G.; van Loon, L.J.C. Protein Ingestion before Sleep Improves Postexercise Overnight Recovery. Med. Sci. Sports Exerc. 2012, 44, 1560–1569. [Google Scholar] [CrossRef]
- Tipton, K.D.; Elliott, T.A.; Cree, M.G.; Wolf, S.E.; Sanford, A.P.; Wolfe, R.R. Ingestion of Casein and Whey Proteins Result in Muscle Anabolism after Resistance Exercise. Med. Sci. Sports Exerc. 2004, 36, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.B.; Tarnopolsky, M.A.; MacDonald, M.J.; MacDonald, J.R.; Armstrong, D.; Phillips, S.M. Consumption of Fluid Skim Milk Promotes Greater Muscle Protein Accretion after Resistance Exercise than Does Consumption of an Isonitrogenous and Isoenergetic Soy-Protein Beverage. Am. J. Clin. Nutr. 2007, 85, 1031–1040. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Roberts, M.D.; Dalbo, V.J.; Sunderland, K.L. Intramuscular Phosphagen Status and the Relationship to Muscle Performance across the Age Spectrum. Eur. J. Appl. Physiol. 2016, 116, 115–127. [Google Scholar] [CrossRef]
- Phillips, S.M. A Brief Review of Higher Dietary Protein Diets in Weight Loss: A Focus on Athletes. Sports Med. 2014, 44, 149–153. [Google Scholar] [CrossRef]
- Van Vliet, S.; Beals, J.W.; Martinez, I.G.; Skinner, S.K.; Burd, N.A. Achieving Optimal Post-Exercise Muscle Protein Remodeling in Physically Active Adults through Whole Food Consumption. Nutrients 2018, 10, 224. [Google Scholar] [CrossRef]
- Campbell, A.P.; Rains, T.M. Dietary Protein Is Important in the Practical Management of Prediabetes and Type 2 Diabetes. J. Nutr. 2015, 145, 164S–169S. [Google Scholar] [CrossRef] [PubMed]
- Guntoju, S.; Pramod, N. When You Eat Is as Important as What You Eat—A Kap Study on Chrono Nutrition in Athletes. Int. J. Sci. Res. 2024, 13, 1120–1125. [Google Scholar] [CrossRef]
- Trommelen, J.; van Lieshout, G.A.A.; Pabla, P.; Nyakayiru, J.; Hendriks, F.K.; Senden, J.M.; Goessens, J.P.B.; van Kranenburg, J.M.X.; Gijsen, A.P.; Verdijk, L.B.; et al. Pre-Sleep Protein Ingestion Increases Mitochondrial Protein Synthesis Rates During Overnight Recovery from Endurance Exercise: A Randomized Controlled Trial. Sports Med. 2023, 53, 1445–1455. [Google Scholar] [CrossRef]
- Muntis, F.R.; Crandell, J.L.; Evenson, K.R.; Maahs, D.M.; Seid, M.; Shaikh, S.R.; Smith-Ryan, A.E.; Mayer-Davis, E. Pre-exercise Protein Intake Is Associated with Reduced Time in Hypoglycaemia among Adolescents with Type 1 Diabetes. Diabetes Obes. Metab. 2024, 26, 1366–1375. [Google Scholar] [CrossRef]
- Zisser, H.; Sueyoshi, M.; Krigstein, K.; Szigiato, A.; Riddell, M.C. Advances in Exercise, Physical Activity and Diabetes Mellitus. Int. J. Clin. Pract. 2012, 66, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Rosenbloom, C. Protein for Athletes. Nutr. Today 2009, 44, 204–210. [Google Scholar] [CrossRef][Green Version]
- Breen, L.; Philp, A.; Shaw, C.S.; Jeukendrup, A.E.; Baar, K.; Tipton, K.D. Beneficial Effects of Resistance Exercise on Glycemic Control Are Not Further Improved by Protein Ingestion. PLoS ONE 2011, 6, e20613. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B.; Krieger, J.; Grgic, J.; Delcastillo, K.; Belliard, R.; Alto, A. Resistance Training Volume Enhances Muscle Hypertrophy but Not Strength in Trained Men. Med. Sci. Sports Exerc. 2019, 51, 94–103. [Google Scholar] [CrossRef]
- Saleh, K.K.; Julien, S.G. Protein Supplement Perceptions, Use, and Associated Performance in Young Lebanese Resistance-Train-ing Athletes. J. Nutr. Metab. 2022, 2022, 4150620. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Gibala, M.J. Physiological Adaptations to Interval Training and the Role of Exercise Intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef]
- Rogerson, D.; Nolan, D.; Korakakis, P.A.; Immonen, V.; Wolf, M.; Bell, L. Deloading Practices in Strength and Physique Sports: A Cross-Sectional Survey. Sports Med. Open 2024, 10, 26. [Google Scholar] [CrossRef]
- Bell, L.; Strafford, B.W.; Coleman, M.; Androulakis Korakakis, P.; Nolan, D. Integrating Deloading into Strength and Physique Sports Training Programmes: An International Delphi Consensus Approach. Sports Med. Open 2023, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Camera, D.M.; Areta, J.L.; Hawley, J.A. Beyond Muscle Hypertrophy: Why Dietary Protein Is Important for Endurance Athletes. Appl. Physiol. Nutr. Metab. 2014, 39, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Yurkewicz, M.; Cordas, M.; Zellers, A.; Sweger, M. Diabetes and Sports. Am. J. Lifestyle Med. 2017, 11, 58–63. [Google Scholar] [CrossRef]
- Carbone, J.W.; Pasiakos, S.M. Dietary Protein and Muscle Mass: Translating Science to Application and Health Benefit. Nutrients 2019, 11, 1136. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.N.; Hayes, C.; Zeuger, T.; Davies, A.P.; Andrews, R.C.; Cocks, M. Clinical Considerations and Practical Advice for People Living With Type 2 Diabetes Who Undertake Regular Exercise or Aim to Exercise Competitively. Diabetes Spectr. 2023, 36, 114–126. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Kulovitz, M. Requirements of Energy, Carbohydrates, Proteins and Fats for Athletes. In Nutrition and Enhanced Sports Performance; Elsevier: Amsterdam, The Netherlands, 2013; pp. 355–366. [Google Scholar]
- Barve, S.; Joshi, S.; Saraf, A. Association between Chronotype and Type 2 Diabetes: A Literature Review. J. Pharm. Res. Int. 2021, 33, 165–172. [Google Scholar] [CrossRef]
- Vetter, C.; Dashti, H.S.; Lane, J.M.; Anderson, S.G.; Schernhammer, E.S.; Rutter, M.K.; Saxena, R.; Scheer, F.A.J.L. Night Shift Work, Genetic Risk, and Type 2 Diabetes in the UK Biobank. Diabetes Care 2018, 41, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Mishima, T.; Takenaka, Y.; Hashimoto-Hachiya, A.; Tanigawa, Y.; Suzuki, N.; Oishi, K.; Ogasawara, R. Time-of-Day Effect of High-Intensity Muscle Contraction on MTOR Signaling and Protein Synthesis in Mice. Sci. Rep. 2025, 15, 23702. [Google Scholar] [CrossRef]
- Reutrakul, S.; Hood, M.M.; Crowley, S.J.; Morgan, M.K.; Teodori, M.; Knutson, K.L.; Van Cauter, E. Chronotype Is Independently Associated with Glycemic Control in Type 2 Diabetes. Diabetes Care 2013, 36, 2523–2529. [Google Scholar] [CrossRef]
- Chiang, S.-W.; Liu, H.-W.; Loh, E.-W.; Tam, K.-W.; Wang, J.-Y.; Huang, W.-L.; Kuan, Y.-C. Whey Protein Supplementation Improves Postprandial Glycemia in Persons with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Res. 2022, 104, 44–54. [Google Scholar] [CrossRef]
- Chen, W.-C.; Huang, W.-C.; Chiu, C.-C.; Chang, Y.-K.; Huang, C.-C. Whey Protein Improves Exercise Performance and Biochemical Profiles in Trained Mice. Med. Sci. Sports Exerc. 2014, 46, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Stearns, R.L.; Emmanuel, H.; Volek, J.S.; Casa, D.J. Effects of Ingesting Protein in Combination With Carbohydrate During Ex-ercise on Endurance Performance: A Systematic Review with Meta-Analysis. J. Strength. Cond. Res. 2010, 24, 2192–2202. [Google Scholar] [CrossRef]
- Zhang, D.; Yuan, Y.; Xiong, J.; Zeng, Q.; Gan, Y.; Jiang, K.; Xie, N. Anti-Breast Cancer Effects of Dairy Protein Active Peptides, Dairy Products, and Dairy Protein-Based Nanoparticles. Front. Pharmacol. 2024, 15, 1486264. [Google Scholar] [CrossRef]
- Zhang, D.; Gan, Y.; Zhao, X.; Rong, Y.; Xiaoling, L.; Xie, N. Gamma-Aminobutyric Acid-Enriched Fermented Camel Whey Protein Ameliorate Breast Cancer-Induced Fatigue in Mice via Reshaping Gut Microbiota and Modulating SCFA Metabolism. Food Sci. Hum. Wellness 2025. [Google Scholar] [CrossRef]
- Tang, C.; Xi, T.; Zheng, J.; Cui, X. Chemical Properties of Whey Protein in Protein Powders and Its Impact on Muscle Growth in Athletes: A Review. Nat. Prod. Commun. 2025, 20, 1934578X251326124. [Google Scholar] [CrossRef]
- Quintieri, L.; Luparelli, A.; Caputo, L.; Schirinzi, W.; De Bellis, F.; Smiriglia, L.; Monaci, L. Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance. Nutrients 2025, 17, 938. [Google Scholar] [CrossRef] [PubMed]
- Hamarsland, H.; Nordengen, A.L.; Nyvik Aas, S.; Holte, K.; Garthe, I.; Paulsen, G.; Cotter, M.; Børsheim, E.; Benestad, H.B.; Raastad, T. Native Whey Protein with High Levels of Leucine Results in Similar Post-Exercise Muscular Anabolic Responses as Regular Whey Protein: A Randomized Controlled Trial. J. Int. Soc. Sports Nutr. 2017, 14, 43. [Google Scholar] [CrossRef]
- Reidy, P.T.; Rasmussen, B.B. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise–Induced Muscle Protein Anabolism. J. Nutr. 2016, 146, 155–183. [Google Scholar] [CrossRef] [PubMed]
- Churchward-Venne, T.A.; Burd, N.A.; Phillips, S.M. Nutritional Regulation of Muscle Protein Synthesis with Resistance Exercise: Strategies to Enhance Anabolism. Nutr. Metab. 2012, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-Y.; Schutzler, S.; Schrader, A.; Spencer, H.J.; Azhar, G.; Ferrando, A.A.; Wolfe, R.R. The Anabolic Response to a Meal Containing Different Amounts of Protein Is Not Limited by the Maximal Stimulation of Protein Synthesis in Healthy Young Adults. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E73–E80. [Google Scholar] [CrossRef]
- Olsen, W.; Liang, N.; Dallas, D.C. Macrophage-Immunomodulatory Actions of Bovine Whey Protein Isolate, Glycomacropep-tide, and Their In Vitro and In Vivo Digests. Nutrients 2023, 15, 4942. [Google Scholar] [CrossRef]
- Sauvé, M.F.; Feldman, F.; Koudoufio, M.; Ould-Chikh, N.-E.-H.; Ahmarani, L.; Sane, A.; N’Timbane, T.; El-Jalbout, R.; Patey, N.; Spahis, S.; et al. Glycomacropeptide for Management of Insulin Resistance and Liver Metabolic Perturbations. Biomedicines 2021, 9, 1140. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Pasiakos, S.M.; Lieberman, H.R. Effects of Protein in Combination with Carbohydrate Supplements on Acute or Repeat Endurance Exercise Performance: A Systematic Review. Sports Med. 2014, 44, 535–550. [Google Scholar] [CrossRef]
- West, D.; Abou Sawan, S.; Mazzulla, M.; Williamson, E.; Moore, D. Whey Protein Supplementation Enhances Whole Body Pro-tein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients 2017, 9, 735. [Google Scholar] [CrossRef]
- Devries, M.C.; McGlory, C.; Bolster, D.R.; Kamil, A.; Rahn, M.; Harkness, L.; Baker, S.K.; Phillips, S.M. Protein Leucine Content Is a Determinant of Shorter-and Longer-Term Muscle Protein Synthetic Responses at Rest and Following Resistance Exercise in Healthy Older Women: A Randomized, Controlled Trial. Am. J. Clin. Nutr. 2018, 107, 217–226. [Google Scholar] [CrossRef]
- Mignone, L.E. Whey Protein: The “Whey” Forward for Treatment of Type 2 Diabetes? World J. Diabetes 2015, 6, 1. [Google Scholar] [CrossRef]
- Amirani, E.; Milajerdi, A.; Reiner, Ž.; Mirzaei, H.; Mansournia, M.A.; Asemi, Z. Effects of Whey Protein on Glycemic Control and Serum Lipoproteins in Patients with Metabolic Syndrome and Related Conditions: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Lipids Health Dis. 2020, 19, 209. [Google Scholar] [CrossRef]
- Connolly, G.; Wang, Y.; Bergia, R.E.; Davis, E.M.; Byers, A.W.; Reed, J.B.; Campbell, W.W. Whey Protein Supplementation and Type 2 Diabetes Mellitus Risk Factors: An Umbrella Systematic Review of Randomized Controlled Trials. Curr. Dev. Nutr. 2023, 7, 102017. [Google Scholar] [CrossRef]
- Hebert, S.L.; Nair, K.S. Protein and Energy Metabolism in Type 1 Diabetes. Clin. Nutr. 2010, 29, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Falvo, M.J. Protein—Which Is Best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef]
- Yang, Y.; Churchward-Venne, T.A.; Burd, N.A.; Breen, L.; Tarnopolsky, M.A.; Phillips, S.M. Myofibrillar Protein Synthesis Fol-lowing Ingestion of Soy Protein Isolate at Rest and after Resistance Exercise in Elderly Men. Nutr. Metab. 2012, 9, 57. [Google Scholar] [CrossRef]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.-P.; Maubois, J.-L.; Beaufrère, B. Slow and Fast Dietary Proteins Differently Mod-ulate Postprandial Protein Accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [PubMed]
- Reitelseder, S.; Agergaard, J.; Doessing, S.; Helmark, I.C.; Lund, P.; Kristensen, N.B.; Frystyk, J.; Flyvbjerg, A.; Schjerling, P.; van Hall, G.; et al. Whey and Casein Labeled with L-[1-13 C]Leucine and Muscle Protein Synthesis: Effect of Resistance Exercise and Protein Ingestion. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E231–E242. [Google Scholar] [PubMed]
- Groen, B.B.L.; Res, P.T.; Pennings, B.; Hertle, E.; Senden, J.M.G.; Saris, W.H.M.; van Loon, L.J.C. Intragastric Protein Administra-tion Stimulates Overnight Muscle Protein Synthesis in Elderly Men. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E52–E60. [Google Scholar] [CrossRef]
- Joy, J.M.; Vogel, R.M.; Shane Broughton, K.; Kudla, U.; Kerr, N.Y.; Davison, J.M.; Wildman, R.E.C.; DiMarco, N.M. Daytime and Nighttime Casein Supplements Similarly Increase Muscle Size and Strength in Response to Resistance Training Earlier in the Day: A Preliminary Investigation. J. Int. Soc. Sports Nutr. 2018, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Wilborn, C.D.; Taylor, L.W.; Outlaw, J.; Williams, L.; Campbell, B.; Foster, C.A.; Smith-Ryan, A.; Urbina, S.; Hayward, S. The Effects of Pre-and Post-Exercise Whey vs. Casein Protein Consumption on Body Composition and Performance Measures in Collegiate Female Athletes. J. Sports Sci. Med. 2013, 12, 74–79. [Google Scholar]
- Abbott, W.; Brett, A.; Cockburn, E.; Clifford, T. Presleep Casein Protein Ingestion: Acceleration of Functional Recovery in Pro-fessional Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 385–391. [Google Scholar] [CrossRef]
- Kouw, I.W.; Holwerda, A.M.; Trommelen, J.; Kramer, I.F.; Bastiaanse, J.; Halson, S.L.; Wodzig, W.K.; Verdijk, L.B.; van Loon, L.J. Protein Ingestion before Sleep Increases Overnight Muscle Protein Synthesis Rates in Healthy Older Men: A Randomized Controlled Trial. J. Nutr. 2017, 147, 2252–2261. [Google Scholar] [CrossRef]
- Snijders, T.; Res, P.T.; Smeets, J.S.; van Vliet, S.; van Kranenburg, J.; Maase, K.; Kies, A.K.; Verdijk, L.B.; van Loon, L.J. Protein Ingestion before Sleep Increases Muscle Mass and Strength Gains during Prolonged Resistance-Type Exercise Training in Healthy Young MenNitrogen1–3. J. Nutr. 2015, 145, 1178–1184. [Google Scholar] [CrossRef]
- Campbell, B.; Kreider, R.B.; Ziegenfuss, T.; La Bounty, P.; Roberts, M.; Burke, D.; Landis, J.; Lopez, H.; Antonio, J. International Society of Sports Nutrition Position Stand: Protein and Exercise. J. Int. Soc. Sports Nutr. 2007, 4, 8. [Google Scholar] [CrossRef]
- Sadeghi, R.; Hemmatinafar, M.; Eftekhari, F.; Imanian, B.; Koureshfard, N. Pre-Sleep Casein Ingestion with Probiotic Strains Improves Anaerobic Power and Lower-Body-Specific Strength and Power Performance in Soccer Players. J. Int. Soc. Sports Nutr. 2025, 22, 2505184. [Google Scholar] [CrossRef] [PubMed]
- Tessari, P.; Kiwanuka, E.; Cristini, M.; Zaramella, M.; Enslen, M.; Zurlo, C.; Garcia-Rodenas, C. Slow versus Fast Proteins in the Stimulation of Beta-cell Response and the Activation of the Entero-insular Axis in Type 2 Diabetes. Diabetes Metab. Res. Rev. 2007, 23, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xu, R.; McDonald, J.D.; Bruno, R.S.; Choueiry, F.; Zhu, J. Dairy Milk Casein and Whey Proteins Differentially Alter the Postprandial Lipidome in Persons with Prediabetes: A Comparative Lipidomics Study. J. Agric. Food Chem. 2022, 70, 10209–10220. [Google Scholar] [CrossRef]
- Pasin, G.; Comerford, K.B. Dairy Foods and Dairy Proteins in the Management of Type 2 Diabetes: A Systematic Review of the Clinical Evidence. Adv. Nutr. 2015, 6, 245–259. [Google Scholar] [CrossRef]
- Wu, D.-T.; Li, W.-X.; Wan, J.-J.; Hu, Y.-C.; Gan, R.-Y.; Zou, L. A Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023, 12, 2527. [Google Scholar] [CrossRef]
- Wegrzyn, T.F.; Acevedo-Fani, A.; Loveday, S.M.; Singh, H. In Vitro Dynamic Gastric Digestion of Soya Protein/Milk Protein Blended Beverages: Influence of Protein Composition and Co-Processing. Food Funct. 2021, 12, 2605–2616. [Google Scholar] [CrossRef]
- van den Berg, L.A.; Mes, J.J.; Mensink, M.; Wanders, A.J. Protein quality of soy and the effect of processing: A quantitative review. Front Nutr. 2022, 9, 1004754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, S.; Zhang, H.; Xu, Y.; Li, J.; Du, S.; Ning, Z. The effect of protein intake on athletic performance: A systematic review and meta-analysis. Front Nutr. 2024, 11, 1455728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, J.; Bi, X.; Yu, B.; Chen, D. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats. Nutrients 2016, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef]
- Sayyaf, A.; Ghaedi, E.; Haidari, F.; Rajaei, E.; Ahmadi-engali, K.; Helli, B. Effects of Soy Bread on Cardiovascular Risk Factor, Inflammation and Oxidative Stress in Women With Active Rheumatoid Arthritis: A Randomized Double-Blind Controlled Trial. Clin. Nutr. Res. 2024, 13, 22. [Google Scholar] [CrossRef]
- Wójciak, M.; Drozdowski, P.; Skalska-Kamińska, A.; Zagórska-Dziok, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Latalska, M. Protective, Anti-Inflammatory, and Anti-Aging Effects of Soy Isoflavones on Skin Cells: An Overview of In Vitro and In Vivo Studies. Molecules 2024, 29, 5790. [Google Scholar] [CrossRef]
- Messina, M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [PubMed]
- Candow, D.G.; Burke, N.C.; Smith-Palmer, T.; Burke, D.G. Effect of Whey and Soy Protein Supplementation Combined with Resistance Training in Young Adults. Int. J. Sport. Nutr. Exerc. Metab. 2006, 16, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.M.; Buman, M.P.; Dickinson, J.M.; Ransdell, L.B.; Johnston, C.S.; Wharton, C.M. No Significant Differences in Muscle Growth and Strength Development When Consuming Soy and Whey Protein Supplements Matched for Leucine Following a 12 Week Resistance Training Program in Men and Women: A Randomized Trial. Int. J. Environ. Res. Public. Health 2020, 17, 3871. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.L.; Blostein-Fujii, A.; Disilvestro, R.A. Soy Beverage Consumption by Young Men. J. Nutraceuticals Funct. Med. Foods 2001, 3, 33–44. [Google Scholar] [CrossRef]
- Brown, E.C.; DiSilvestro, R.A.; Babaknia, A.; Devor, S.T. Soy versus Whey Protein Bars: Effects on Exercise Training Impact on Lean Body Mass and Antioxidant Status. Nutr. J. 2004, 3, 22. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, S. Vegetable Soybean (Glycine max (L.) Merr.) Leaf Extracts: Functional Components and Antioxidant and Anti-inflammatory Activities. J. Food Sci. 2021, 86, 2468–2480. [Google Scholar] [CrossRef] [PubMed]
- Kritikos, S.; Papanikolaou, K.; Draganidis, D.; Poulios, A.; Georgakouli, K.; Tsimeas, P.; Tzatzakis, T.; Batsilas, D.; Batrakoulis, A.; Deli, C.K.; et al. Effect of Whey vs. Soy Protein Supplementation on Recovery Kinetics Following Speed Endurance Training in Competitive Male Soccer Players: A Randomized Controlled Trial. J. Int. Soc. Sports Nutr. 2021, 18, 23. [Google Scholar] [CrossRef]
- Messina, M.; Lynch, H.; Dickinson, J.M.; Reed, K.E. No Difference Between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 674–685. [Google Scholar] [CrossRef]
- Barańska, A.; Błaszczuk, A.; Polz-Dacewicz, M.; Kanadys, W.; Malm, M.; Janiszewska, M.; Jędrych, M. Effects of Soy Isoflavones on Glycemic Control and Lipid Profile in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Random-ized Controlled Trials. Nutrients 2021, 13, 1886. [Google Scholar] [CrossRef]
- Asbaghi, O.; Ashtary-Larky, D.; Mousa, A.; Rezaei Kelishadi, M.; Moosavian, S.P. The Effects of Soy Products on Cardiovascular Risk Factors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Clinical Trials. Adv. Nutr. 2022, 13, 455–473. [Google Scholar] [CrossRef]
- Teixeira, S.R.; Tappenden, K.A.; Carson, L.; Erdman, J.W.; Jones, R.; Prabhudesai, M.; Marshall, W.P. Isolated Soy Protein Con-sumption Reduces Urinary Albumin Excretion and Improves the Serum Lipid Profile in Men with Type 2 Diabetes Mellitus and Nephropathy. J. Nutr. 2004, 134, 1874–1880. [Google Scholar] [CrossRef]
- Anderson, J.W.; Blake, J.E.; Turner, J.; Smith, B.M. Effects of Soy Protein on Renal Function and Proteinuria in Patients with Type 2 Diabetes. Am. J. Clin. Nutr. 1998, 68, 1347S–1353S. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Rigby, A.S.; Bhasin, S.; Thatcher, N.J.; Kilpatrick, E.S.; Atkin, S.L. Effect of Soy in Men With Type 2 Diabetes Mellitus and Subclinical Hypogonadism—A Randomized Controlled Study. J. Clin. Endocrinol. Metab. 2016, 102, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Asen, N.D.; Aluko, R.E.; Martynenko, A.; Utioh, A.; Bhowmik, P. Yellow Field Pea Protein (Pisum sativum L.): Extraction Technologies, Functionalities, and Applications. Foods 2023, 12, 3978. [Google Scholar] [CrossRef]
- Roelofs, J.J.M.; van Eijnatten, E.J.M.; Prathumars, P.; de Jong, J.; Wehrens, R.; Esser, D.; Janssen, A.E.M.; Smeets, P.A.M. Gastric Emptying and Nutrient Absorption of Pea Protein Products Differing in Heat Treatment and Texture: A Randomized in Vivo Crossover Trial and in Vitro Digestion Study. Food Hydrocoll. 2024, 149, 109596. [Google Scholar] [CrossRef]
- Guillin, F.; Calvez, J.; Guérin-Deremaux, L.; Lefranc-Millot, C.; Khodorova, N.; Tomé, D.; Gaudichon, C. Nutritional Quality Evaluation of a Pea Protein Isolate in Rats with or Without Amino Acid Supplementation (P08-064-19). Curr. Dev. Nutr. 2019, 3, nzz044.P08-064-19. [Google Scholar] [CrossRef]
- Golovko, T.; Golovko, M.; Vasilenko, O.; Pertsevoi, F.; Bolgova, N.; Tischenko, V.; Prymenko, V. Technology of Protein Isolate from Peas (Pisum sativum Var. Arvense). Technol. Audit Prod. Reserv. 2023, 2, 37–40. [Google Scholar] [CrossRef]
- Rozhdestvenskaya, L.; Bikbulatov, P.; Chugunova, O.; Zavorokhina, N. Potential Possibilities of Industrial Pea Protein Isolate Production. Bull. KSAU 2024, 8, 130–139. [Google Scholar] [CrossRef]
- He, T.; Spelbrink, R.E.J.; Witteman, B.J.; Giuseppin, M.L.F. Digestion Kinetics of Potato Protein Isolates in Vitro and in Vivo. Int. J. Food Sci. Nutr. 2013, 64, 787–793. [Google Scholar] [CrossRef]
- Overduin, J.; Guérin-Deremaux, L.; Wils, D.; Lambers, T.T. NUTRALYS ® Pea Protein: Characterization of in Vitro Gastric Di-gestion and in Vivo Gastrointestinal Peptide Responses Relevant to Satiety. Food Nutr. Res. 2015, 59, 25622. [Google Scholar] [CrossRef]
- Babault, N.; Païzis, C.; Deley, G.; Guérin-Deremaux, L.; Saniez, M.-H.; Lefranc-Millot, C.; Allaert, F.A. Pea Proteins Oral Sup-plementation Promotes Muscle Thickness Gains during Resistance Training: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial vs. Whey Protein. J. Int. Soc. Sports Nutr. 2015, 12, 3–9. [Google Scholar] [CrossRef]
- Phillips, S.M. The Impact of Protein Quality on the Promotion of Resistance Exercise-Induced Changes in Muscle Mass. Nutr. Metab. 2016, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.G.; Guérin-Deremaux, L.; Lefranc-Millot, C.; Perreau, C.; Crowley, D.C.; Lewis, E.D.; Evans, M.; Moulin, M. Efficacy of Pea Protein Supplementation in Combination with a Resistance Training Program on Muscle Performance in a Sedentary Adult Population: A Randomized, Comparator-Controlled, Parallel Clinical Trial. Nutrients 2024, 16, 2017. [Google Scholar] [CrossRef]
- Kravets, K. Comparison of Whey and Pea Protein Consumption on Muscle Performance. Grail Sci. 2023, 30, 390–391. [Google Scholar] [CrossRef]
- Banaszek, A.; Townsend, J.R.; Bender, D.; Vantrease, W.C.; Marshall, A.C.; Johnson, K.D. The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports 2019, 7, 12. [Google Scholar] [CrossRef]
- Loureiro, L.L.; Ferreira, T.J.; Cahuê, F.L.C.; Bittencourt, V.Z.; Valente, A.P.; Pierucci, A.P.T.R. Comparison of the Effects of Pea Protein and Whey Protein on the Metabolic Profile of Soccer Athletes: A Randomized, Double-Blind, Crossover Trial. Front. Nutr. 2023, 10, 1210215. [Google Scholar] [CrossRef]
- Doering, T.M.; Reaburn, P.R.; Borges, N.R.; Cox, G.R.; Jenkins, D.G. The Effect of Higher Than Recommended Protein Feedings Post-Exercise on Recovery Following Downhill Running in Masters Triathletes. Int. J. Sport. Nutr. Exerc. Metab. 2017, 27, 76–82. [Google Scholar] [CrossRef]
- Larsen, M.S.; Clausen, D.; Jørgensen, A.A.; Mikkelsen, U.R.; Hansen, M. Presleep Protein Supplementation Does Not Improve Recovery During Consecutive Days of Intense Endurance Training: A Randomized Controlled Trial. Int. J. Sport. Nutr. Exerc. Metab. 2019, 29, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Saunders, M. Does the Coingestion of Carbohydrate and Amino Acids Improve Recovery From Endurance Exercise? Phys. Sport 2009, 37, 157–159. [Google Scholar] [CrossRef]
- Moore, D.R.; Gillen, J.B.; West, D.W.D.; Kato, H.; Volterman, K.A. Protein Requirements May Be Lower on a Training Compared to Rest Day but Are Not Influenced by Moderate Training Volumes in Endurance Trained Males. Appl. Physiol. Nutr. Metab. 2024, 49, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, L.; Zhang, H.; Wang, X.; Wu, G.; Qi, X. Evaluating the In Situ Insulinotropic Effects of Pea Protein Hydrolysates Mediated by Active GLP-1 via a 2D and Dual-Layered Coculture Cell Model. J. Agric. Food Chem. 2023, 71, 14038–14045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, L.; Zhang, H.; Wang, X.; Wu, G. Pea Protein Hydrolysate Stimulates GLP-1 Secretion in NCI-H716 Cells via Simultaneously Activating the Sensing Receptors CaSR and PepT1. Food Funct. 2024, 15, 10316–10322. [Google Scholar] [CrossRef]
- Liao, W.; Cao, X.; Xia, H.; Wang, S.; Sun, G. Pea Protein-Derived Peptides Inhibit Hepatic Glucose Production via the Gluconeogenic Signaling in the AML-12 Cells. Int. J. Environ. Res. Public. Health 2022, 19, 10254. [Google Scholar] [CrossRef]
- Liao, W.; Cao, X.; Xia, H.; Wang, S.; Chen, L.; Sun, G. Pea Protein Hydrolysate Reduces Blood Glucose in High-Fat Diet and Streptozotocin-Induced Diabetic Mice. Front. Nutr. 2023, 10, 1298046. [Google Scholar] [CrossRef]
- Johnston, A.J.; Mollard, R.C.; Dandeneau, D.; MacKay, D.S.; Ames, N.; Curran, J.; Bouchard, D.R.; Jones, P.J. Acute Effects of Extruded Pea Fractions on Glycemic Response, Insulin, Appetite, and Food Intake in Healthy Young Adults, Results of a Dou-ble-Blind, Randomized Crossover Trial. Appl. Physiol. Nutr. Metab. 2021, 46, 1126–1132. [Google Scholar] [CrossRef]
- Mollard, R.C.; Luhovyy, B.L.; Smith, C.; Anderson, G.H. Acute Effects of Pea Protein and Hull Fibre Alone and Combined on Blood Glucose, Appetite, and Food Intake in Healthy Young Men—A Randomized Crossover Trial. Appl. Physiol. Nutr. Metab. 2014, 39, 1360–1365. [Google Scholar] [CrossRef]
- Abou-Samra, R.; Keersmaekers, L.; Brienza, D.; Mukherjee, R.; Macé, K. Effect of Different Protein Sources on Satiation and Short-Term Satiety When Consumed as a Starter. Nutr. J. 2011, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Viguiliouk, E.; Stewart, S.; Jayalath, V.; Ng, A.; Mirrahimi, A.; De Souza, R.; Hanley, A.; Bazinet, R.; Blanco Mejia, S.; Leiter, L.; et al. Effect of Replacing Animal Protein with Plant Protein on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2015, 7, 9804–9824. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Montain, S.J.; Anderson, D.; Young, A.J. Plasma Amino Acid Responses after Consumption of Beverages with Varying Protein Type. Int. J. Sport. Nutr. Exerc. Metab. 2009, 19, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.M.S.C.C.; Moughan, P.J.; Awati, A.; Morton, H.R. The Influence of Whey Protein and Glycomacropeptide on Satiety in Adult Humans. Physiol. Behav. 2009, 96, 162–168. [Google Scholar] [CrossRef]
- Kanda, A.; Nakayama, K.; Sanbongi, C.; Nagata, M.; Ikegami, S.; Itoh, H. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise. Nutrients 2016, 8, 339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reidy, P.; Walker, D.K.; Dickinson, J.M.; Gundermann, D.M.; Drummond, M.J.; Timmerman, K.L.; Fry, C.S.; Cope, M.; Mukherkea, R.; Volpi, E.; et al. Effect of Protein Blend vs. Whey Protein Ingestion on Muscle Protein Synthesis Following Resistance Exercise. Fed. Am. Soc. Exp. Biol. J. 2012, 26. [Google Scholar] [CrossRef]
- Reidy, P.; Borack, M.; Markofski, M.; Dickinson, J.; Deer, R.; Husaini, S.; Walker, W.; Igbinigie, S.; Cope, M.; Mukherjea, R.; et al. The Effect of Soy-Dairy Protein Blend Supplementation during Resistance Exercise Training. Fed. Am. Soc. Exp. Biol. J. 2015, 29, 129.5. [Google Scholar] [CrossRef]
- Dimina, L.; Rémond, D.; Huneau, J.-F.; Mariotti, F. Combining Plant Proteins to Achieve Amino Acid Profiles Adapted to Vari-ous Nutritional Objectives—An Exploratory Analysis Using Linear Programming. Front. Nutr. 2022, 8, 809685. [Google Scholar] [CrossRef]
- van der Heijden, I.; Monteyne, A.J.; West, S.; Morton, J.P.; Langan-Evans, C.; Hearris, M.A.; Abdelrah Man, D.R.; Murton, A.J.; Stephens, F.B.; Wall, B.T. Plant Protein Blend Ingestion Stimulates Postexercise Myofibrillar Protein Synthesis Rates Equivalently to Whey in Resistance-Trained Adults. Med. Sci. Sports Exerc. 2024, 56, 1467–1479. [Google Scholar] [CrossRef]
- Manus, J.; Millette, M.; Dridi, C.; Salmieri, S.; Aguilar Uscanga, B.R.; Lacroix, M. Protein Quality of a Probiotic Beverage Enriched with Pea and Rice Protein. J. Food Sci. 2021, 86, 3698–3706. [Google Scholar] [CrossRef]
- Dijk, F.J.; Hofman, Z.; Luiking, Y.C.; Furber, M.J.W.; Roberts, J.D.; van Helvoort, A.; van Dijk, M. Muscle Protein Synthesis with a Hybrid Dairy and Plant-Based Protein Blend (P4) Is Equal to Whey Protein in a Murine Ageing Model after Fasting. Nutrients 2023, 15, 2569. [Google Scholar] [CrossRef] [PubMed]
- Traylor, D.A.; Gorissen, S.H.M.; Hopper, H.; Prior, T.; McGlory, C.; Phillips, S.M. Aminoacidemia Following Ingestion of Native Whey Protein, Micellar Casein, and a Whey-Casein Blend in Young Men. Appl. Physiol. Nutr. Metab. 2019, 44, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Wegrzyn, T.F.; Henare, S.; Ahlborn, N.; Ahmed Nasef, N.; Samuelsson, L.M.; Loveday, S.M. The Plasma Amino Acid Response to Blended Protein Beverages: A Randomised Crossover Trial. Br. J. Nutr. 2022, 128, 1555–1564. [Google Scholar] [CrossRef]
- van Dam, L.; Kardinaal, A.; Troupin, J.; Boulier, A.; Hiolle, M.; Wehrens, R.; Mensink, M. Postprandial Amino Acid Response after the Ingestion of Pea Protein, Milk Protein, Casein and a Casein–Pea Blend, in Healthy Older Adults. Int. J. Food Sci. Nutr. 2024, 75, 70–80. [Google Scholar] [CrossRef]
- Reidy, P.T.; Walker, D.K.; Dickinson, J.M.; Gundermann, D.M.; Drummond, M.J.; Timmerman, K.L.; Fry, C.S.; Borack, M.S.; Cope, M.B.; Mukherjea, R.; et al. Protein Blend Ingestion Following Resistance Exercise Promotes Human Muscle Protein Syn-thesis. J. Nutr. 2013, 143, 410–416. [Google Scholar] [CrossRef]
- Borack, M.S.; Reidy, P.T.; Husaini, S.H.; Markofski, M.M.; Deer, R.R.; Richison, A.B.; Lambert, B.S.; Cope, M.B.; Mukherjea, R.; Jennings, K.; et al. Soy-Dairy Protein Blend or Whey Protein Isolate Ingestion Induces Similar Postexercise Muscle Mechanistic Target of Rapamycin Complex 1 Signaling and Protein Synthesis Responses in Older Men. J. Nutr. 2016, 146, 2468–2475. [Google Scholar] [CrossRef] [PubMed]
- Aussieker, T.; Kaiser, J.; Hermans, W.J.H.; Hendriks, F.K.; Holwerda, A.M.; Senden, J.M.; VAN Kranenburg, J.M.X.; Goessens, J.P.B.; Braun, U.; Baar, K.; et al. Ingestion of a Whey Plus Collagen Protein Blend Increases Myofibrillar and Muscle Connective Protein Synthesis Rates. Med. Sci. Sports Exerc. 2025, 57, 544–554. [Google Scholar] [CrossRef]
- O’Bryan, K.R.; Doering, T.M.; Morton, R.W.; Coffey, V.G.; Phillips, S.M.; Cox, G.R. Do Multi-Ingredient Protein Supplements Augment Resistance Training-Induced Gains in Skeletal Muscle Mass and Strength? A Systematic Review and Meta-Analysis of 35 Trials. Br. J. Sports Med. 2020, 54, 573–581. [Google Scholar] [CrossRef]
- Labata-Lezaun, N.; Llurda-Almuzara, L.; López-de-Celis, C.; Rodríguez-Sanz, J.; González-Rueda, V.; Hidalgo-García, C.; Mu-niz-Pardos, B.; Pérez-Bellmunt, A. Effectiveness of Protein Supplementation Combined with Resistance Training on Muscle Strength and Physical Performance in Elderly: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2607. [Google Scholar] [CrossRef]
- Reidy, P.T.; Walker, D.K.; Dickinson, J.M.; Gundermann, D.M.; Drummond, M.J.; Timmerman, K.L.; Cope, M.B.; Mukherjea, R.; Jennings, K.; Volpi, E.; et al. Soy-Dairy Protein Blend and Whey Protein Ingestion after Resistance Exercise Increases Amino Acid Transport and Transporter Expression in Human Skeletal Muscle. J. Appl. Physiol. 2014, 116, 1353–1364. [Google Scholar] [CrossRef]
- Mohammadi, S.; Asbaghi, O.; Dolatshahi, S.; Omran, H.S.; Amirani, N.; Koozehkanani, F.J.; Garmjani, H.B.; Goudarzi, K.; Ash-tary-Larky, D. Effects of Supplementation with Milk Protein on Glycemic Parameters: A GRADE-Assessed Systematic Review and Dose–Response Meta-Analysis. Nutr. J. 2023, 22, 49. [Google Scholar] [CrossRef]
- Mortensen, L.S.; Hartvigsen, M.L.; Brader, L.J.; Astrup, A.; Schrezenmeir, J.; Holst, J.J.; Thomsen, C.; Hermansen, K. Differential Effects of Protein Quality on Postprandial Lipemia in Response to a Fat-Rich Meal in Type 2 Diabetes: Comparison of Whey, Casein, Gluten, and Cod Protein. Am. J. Clin. Nutr. 2009, 90, 41–48. [Google Scholar] [CrossRef]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef] [PubMed]
- Pinckaers, P.J.; Kouw, I.W.; Gorissen, S.H.; Houben, L.H.; Senden, J.M.; Wodzig, W.K.; de Groot, L.C.; Verdijk, L.B.; Snijders, T.; van Loon, L.J. The Muscle Protein Synthetic Response to the Ingestion of a Plant-Derived Protein Blend Does Not Differ from an Equivalent Amount of Milk Protein in Healthy Young Males. J. Nutr. 2022, 152, 2734–2743. [Google Scholar] [CrossRef] [PubMed]
- Dijk, F.J.; van Dijk, M.; Roberts, J.; van Helvoort, A.; Furber, M.J.W. Pea and Soy Fortified with Leucine Stimulates Muscle Protein Synthesis Comparable to Whey in a Murine Ageing Model. Eur. J. Nutr. 2025, 64, 12. [Google Scholar] [CrossRef]
- Scott, S.; Kempf, P.; Bally, L.; Stettler, C. Carbohydrate Intake in the Context of Exercise in People with Type 1 Diabetes. Nutrients 2019, 11, 3017. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, S.; Shy, E.L.; Abou Sawan, S.; Beals, J.W.; West, D.W.; Skinner, S.K.; Ulanov, A.V.; Li, Z.; Paluska, S.A.; Parsons, C.M.; et al. Consumption of Whole Eggs Promotes Greater Stimulation of Postexercise Muscle Protein Synthesis than Consumption of Isonitrogenous Amounts of Egg Whites in Young Men. Am. J. Clin. Nutr. 2017, 106, 1401–1412. [Google Scholar] [CrossRef]
- Kouwenhoven, S.M.P.; Muts, J.; Finken, M.J.J.; Goudoever, J.B. van Low-Protein Infant Formula and Obesity Risk. Nutrients 2022, 14, 2728. [Google Scholar] [CrossRef]
- Njike, V.Y.; Ayettey, R.G.; Rajebi, H.; Treu, J.A.; Katz, D.L. Egg Ingestion in Adults with Type 2 Diabetes: Effects on Glycemic Control, Anthropometry, and Diet Quality—A Randomized, Controlled, Crossover Trial. BMJ Open Diabetes Res. Care 2016, 4, e000281. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Furutani, A.; Sasaki, H.; Takahashi, M.; Shibata, S. Effect of a High Protein Diet at Breakfast on Postprandial Glucose Level at Dinner Time in Healthy Adults. Nutrients 2022, 15, 85. [Google Scholar] [CrossRef]
- Wang, X.; Son, M.; Meram, C.; Wu, J. Mechanism and Potential of Egg Consumption and Egg Bioactive Components on Type-2 Diabetes. Nutrients 2019, 11, 357. [Google Scholar] [CrossRef]
- Kristensen, M.; Knudsen, K.; Jørgensen, H.; Oomah, D.; Bügel, S.; Toubro, S.; Tetens, I.; Astrup, A. Linseed Dietary Fibers Reduce Apparent Digestibility of Energy and Fat and Weight Gain in Growing Rats. Nutrients 2013, 5, 3287–3298. [Google Scholar] [CrossRef]
- Igarashi, M.; Takeda, Y.; Ishibashi, N.; Takahashi, K.; Mori, S.; Tominaga, M.; Saito, Y. Pioglitazone Reduces Smooth Muscle Cell Density of Rat Carotid Arterial Intima Induced by Balloon Catheterization. Horm. Metab. Res. 1997, 29, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Joy, J.M.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; De Souza, E.O.; Wilson, S.M.; Kalman, D.S.; Dudeck, J.E.; Jäger, R. The Effects of 8 Weeks of Whey or Rice Protein Supplementation on Body Composition and Exercise Performance. Nutr. J. 2013, 12, 86. [Google Scholar] [CrossRef]
- Phillips, S.M. Current Concepts and Unresolved Questions in Dietary Protein Requirements and Supplements in Adults. Front. Nutr. 2017, 4, 13. [Google Scholar] [CrossRef]
- Tiekou Lorinczova, H.; Deb, S.; Begum, G.; Renshaw, D.; Zariwala, M.G. Comparative Assessment of the Acute Effects of Whey, Rice and Potato Protein Isolate Intake on Markers of Glycaemic Regulation and Appetite in Healthy Males Using a Randomized Study Design. Nutrients 2021, 13, 2157. [Google Scholar] [CrossRef] [PubMed]
- Hosojima, M.; Kaseda, R.; Kondo, H.; Fujii, M.; Kubota, M.; Watanabe, R.; Tanabe, N.; Kadowaki, M.; Suzuki, Y.; Saito, A. Beneficial Effects of Rice Endosperm Protein Intake in Japanese Men with Risk Factors for Metabolic Syndrome: A Randomized, Crossover Clinical Trial. BMC Nutr. 2016, 2, 25. [Google Scholar] [CrossRef][Green Version]
- Jiao, A.; Zhao, Y.; Chu, L.; Yang, Y.; Jin, Z. A review on animal and plant proteins in reg-ulating diabetic kidney disease: Mechanism of action and future perspectives. J. Funct. Foods 2024, 119, 106353. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Ding, H.; Hu, C.; Feng, J. Ferroptosis Altered MicroRNAs Expression in HT-1080 Fibrosarcoma Cells Based on Small RNA Sequencing and Bioinformatics Analysis. Nutrients 2024, 16, 873. [Google Scholar] [CrossRef]
- Paterna, A.; Alcaraz-Ibáñez, M.; Sicilia, A. Psychometric Examination of the Body, Eating, and Exercise Comparison Orientation Measure (BEECOM) among Spanish Adolescents and Young Adults. Nutrients 2023, 15, 626. [Google Scholar] [CrossRef]
- Karp, R.J. Corrigendum to “Functional Significance of Mild-to-Moderate Malnutrition” [Am J Clin Nutr 53(2) (1991) 576-577]. Am. J. Clin. Nutr. 2024, 119, 1094. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, R.; Lake, S.P.; Zellers, J.A. Effect of Diabetes on Tendon Structure and Function: Not Limited to Collagen Crosslinking. J. Diabetes Sci. Technol. 2023, 17, 89–98. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Ji, Y.; Liu, Y.; Jiang, J.; Wang, Y.; Cui, X.; Wan, Y.; Guo, B.; Yu, H. The Impact of Diabetes Mellitus on Tendon Pathology: A Review. Front. Pharmacol. 2024, 15, 1491633. [Google Scholar] [CrossRef] [PubMed]
- Khatri, M.; Naughton, R.J.; Clifford, T.; Harper, L.D.; Corr, L. The Effects of Collagen Peptide Supplementation on Body Composition, Collagen Synthesis, and Recovery from Joint Injury and Exercise: A Systematic Review. Amino Acids 2021, 53, 1493–1506. [Google Scholar] [CrossRef]
- Zhu, C.-F.; Li, G.-Z.; Peng, H.-B.; Zhang, F.; Chen, Y.; Li, Y. Treatment with Marine Collagen Peptides Modulates Glucose and Lipid Metabolism in Chinese Patients with Type 2 Diabetes Mellitus. Appl. Physiol. Nutr. Metab. 2010, 35, 797–804. [Google Scholar] [CrossRef]
- Manninen, A.H. Protein Hydrolysates in Sports Nutrition. Nutr. Metab. 2009, 6, 38. [Google Scholar] [CrossRef]
- Nakayama, K.; Sanbongi, C.; Ikegami, S. Effects of Whey Protein Hydrolysate Ingestion on Postprandial Aminoacidemia Compared with a Free Amino Acid Mixture in Young Men. Nutrients 2018, 10, 507. [Google Scholar] [CrossRef]
- Morgan, P.T.; Breen, L. The Role of Protein Hydrolysates for Exercise-Induced Skeletal Muscle Recovery and Adaptation: A Current Perspective. Nutr. Metab. 2021, 18, 44. [Google Scholar] [CrossRef]
- Witard, O.C.; Wardle, S.L.; Macnaughton, L.S.; Hodgson, A.B.; Tipton, K.D. Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults. Nutrients 2016, 8, 181. [Google Scholar] [CrossRef]
- Atherton, P.J.; Smith, K. Muscle Protein Synthesis in Response to Nutrition and Exercise. J. Physiol. 2012, 590, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Cerullo, G.; Bianco, A.; Neri, M.; Gennaro, F.; Charrier, D.; Moro, T. Not Only Protein: Dietary Supplements to Opti-mize the Skeletal Muscle Growth Response to Resistance Training: The Current State of Knowledge. J. Hum. Kinet. 2024, 91, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Hulmi, J.J.; Lockwood, C.M.; Stout, J.R. Effect of Protein/Essential Amino Acids and Resistance Training on Skeletal Muscle Hypertrophy: A Case for Whey Protein. Nutr. Metab. 2010, 7, 51. [Google Scholar] [CrossRef]
- Naclerio, F.; Seijo, M. Whey Protein Supplementation and Muscle Mass: Current Perspectives. Nutr. Diet. Suppl. 2019, 11, 37–48. [Google Scholar] [CrossRef]
- Davies, R.; Carson, B.; Jakeman, P. The Effect of Whey Protein Supplementation on the Temporal Recovery of Muscle Function Following Resistance Training: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 221. [Google Scholar] [CrossRef]
- Stark, M.; Lukaszuk, J.; Prawitz, A.; Salacinski, A. Protein Timing and Its Effects on Muscular Hypertrophy and Strength in Individuals Engaged in Weight-Training. J. Int. Soc. Sports Nutr. 2012, 9, 54. [Google Scholar] [CrossRef]
- Jansson, A.K.; Chan, L.X.; Lubans, D.R.; Duncan, M.J.; Plotnikoff, R.C. Effect of Resistance Training on HbA1c in Adults with Type 2 Diabetes Mellitus and the Moderating Effect of Changes in Muscular Strength: A Systematic Review and Meta-Analysis. BMJ Open Diabetes Res. Care 2022, 10, e002595. [Google Scholar] [CrossRef] [PubMed]
- Manders, R.J.; Koopman, R.; Beelen, M.; Gijsen, A.P.; Wodzig, W.K.; Saris, W.H.; van Loon, L.J. The Muscle Protein Synthetic Response to Carbohydrate and Protein Ingestion Is Not Impaired in Men with Longstanding Type 2 Diabetes3. J. Nutr. 2008, 138, 1079–1085. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fujita, S.; Rasmussen, B.B.; Cadenas, J.G.; Grady, J.J.; Volpi, E. Effect of Insulin on Human Skeletal Muscle Protein Synthesis Is Modulated by Insulin-Induced Changes in Muscle Blood Flow and Amino Acid Availability. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E745–E754. [Google Scholar] [CrossRef]
- Miller, E.G.; Nowson, C.A.; Dunstan, D.W.; Kerr, D.A.; Menzies, D.; Daly, R.M. Effects of Whey Protein plus Vitamin D Supple-mentation Combined with Progressive Resistance Training on Glycaemic Control, Body Composition, Muscle Function and Cardiometabolic Risk Factors in Middle-aged and Older Overweight/Obese Adults with Type 2 Diabetes: A 24-week Random-ized Controlled Trial. Diabetes Obes. Metab. 2021, 23, 938–949. [Google Scholar] [CrossRef]
- Soares, A.L.d.S.; Machado-Lima, A.; Brech, G.C.; Greve, J.M.D.; dos Santos, J.R.; Inojossa, T.R.; Rogero, M.M.; Salles, J.E.N.; Santarem-Sobrinho, J.M.; Davis, C.L.; et al. The Influence of Whey Protein on Muscle Strength, Glycemic Control and Functional Tasks in Older Adults with Type 2 Diabetes Mellitus in a Resistance Exercise Program: Randomized and Triple Blind Clinical Trial. Int. J. Environ. Res. Public. Health 2023, 20, 5891. [Google Scholar] [CrossRef]
- Furtado, C.d.C.; Jamar, G.; Barbosa, A.C.B.; Dourado, V.Z.; do Nascimento, J.R.; de Oliveira, G.C.A.F.; Hi, E.M.B.; Souza, T.d.A.; Parada, M.J.G.; de Souza, F.G.; et al. Whey Protein Supplementation in Older Adults With Type 2 Diabetes Undergoing a Resistance Training Program: A Double-Blind Randomized Controlled Trial. J. Aging Phys. Act. 2025, 33, 101–113. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nagai, Y.; Kawanabe, S.; Hishida, Y.; Hiraki, K.; Sone, M.; Tanaka, Y. Effects of Resistance Training Using Elastic Bands on Muscle Strength with or without a Leucine Supplement for 48 Weeks in Elderly Patients with Type 2 Diabetes. Endocr. J. 2021, 68, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Manders, R.J.; Koopman, R.; Sluijsmans, W.E.; van den Berg, R.; Verbeek, K.; Saris, W.H.; Wagenmakers, A.J.; van Loon, L.J. Co-Ingestion of a Protein Hydrolysate with or without Additional Leucine Effectively Reduces Postprandial Blood Glucose Excur-sions in Type 2 Diabetic Men. J. Nutr. 2006, 136, 1294–1299. [Google Scholar] [CrossRef]
- Manders, R.J.F.; Praet, S.F.E.; Meex, R.C.R.; Koopman, R.; de Roos, A.L.; Wagenmakers, A.J.M.; Saris, W.H.M.; van Loon, L.J.C. Protein Hydrolysate/Leucine Co-Ingestion Reduces the Prevalence of Hyperglycemia in Type 2 Diabetic Patients. Diabetes Care 2006, 29, 2721–2722. [Google Scholar] [CrossRef]
- Manders, R.J.F.; Praet, S.F.E.; Vikström, M.H.; Saris, W.H.M.; van Loon, L.J.C. Protein Hydrolysate Co-Ingestion Does Not Mod-ulate 24 h Glycemic Control in Long-Standing Type 2 Diabetes Patients. Eur. J. Clin. Nutr. 2009, 63, 121–126. [Google Scholar] [CrossRef]
- Manders, R.J.; Little, J.P.; Forbes, S.C.; Candow, D.G. Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia. Nutrients 2012, 4, 1664–1678. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Adams, S.H. Branched-Chain Amino Acids in Metabolic Signalling and Insulin Resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Knuiman, P.; Hopman, M.T.E.; Verbruggen, C.; Mensink, M. Protein and the Adaptive Response With Endurance Training: Wishful Thinking or a Competitive Edge? Front. Physiol. 2018, 9, 598. [Google Scholar] [CrossRef]
- Knuiman, P. Nutritional Impact on Molecular and Physiological Adaptations to Exercise: Nutrition Matters. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2019. [Google Scholar]
- Hill, K.M.; Stathis, C.G.; Grinfeld, E.; Hayes, A.; McAinch, A.J. Co-Ingestion of Carbohydrate and Whey Protein Isolates Enhance PGC-1α MRNA Expression: A Randomised, Single Blind, Cross over Study. J. Int. Soc. Sports Nutr. 2013, 10, 8. [Google Scholar] [CrossRef]
- Wang, L.; Meng, Q.; Su, C.-H. From Food Supplements to Functional Foods: Emerging Perspectives on Post-Exercise Recovery Nutrition. Nutrients 2024, 16, 4081. [Google Scholar] [CrossRef]
- Bell, K.J.; Smart, C.E.; Steil, G.M.; Brand-Miller, J.C.; King, B.; Wolpert, H.A. Impact of Fat, Protein, and Glycemic Index on Postprandial Glucose Control in Type 1 Diabetes: Implications for Intensive Diabetes Management in the Continuous Glucose Monitoring Era. Diabetes Care 2015, 38, 1008–1015. [Google Scholar] [CrossRef]
- van Loon, L.J.C. Application of Protein or Protein Hydrolysates to Improve Postexercise Recovery. Int. J. Sport. Nutr. Exerc. Metab. 2007, 17, S104–S117. [Google Scholar] [CrossRef]
- Margolis, L.M.; Pasiakos, S.M. Optimizing Intramuscular Adaptations to Aerobic Exercise: Effects of Carbohydrate Restriction and Protein Supplementation on Mitochondrial Biogenesis. Adv. Nutr. 2013, 4, 657–664. [Google Scholar] [CrossRef]
- Bunn, J. Preventing Muscle Atrophy with Protein and Amino Acid Supplementation. J. Sports Med. Doping Stud. 2012, 2, e108. [Google Scholar] [CrossRef]
- Ivy, J.L. Regulation of Muscle Glycogen Repletion, Muscle Protein Synthesis and Repair Following Exercise. J. Sports Sci. Med. 2004, 3, 131–138. [Google Scholar] [PubMed]
- de Souza, R.A.S.; da Silva, A.G.; de Souza, M.F.; Souza, L.K.F.; Roschel, H.; da Silva, S.F.; Saunders, B. A Systematic Review of CrossFit® Workouts and Dietary and Supplementation Interventions to Guide Nutritional Strategies and Future Research in CrossFit®. Int. J. Sport. Nutr. Exerc. Metab. 2021, 31, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzade, N.; Rajai GhasemGheshlagi, N.; Tahmasbi, R.; Khorjahani, A.; Ghalavand, M. The Effect of Pea and Whey Protein Isolate Supplementation on Muscle Injury Following a Session of Intense Functional Activity. Jundishapur J. Med. Sci. 2022, 21, 524–535. [Google Scholar] [CrossRef]
- Reljic, D.; Zieseniss, N.; Herrmann, H.J.; Neurath, M.F.; Zopf, Y. Protein Supplementation Increases Adaptations to Low-Vol-ume, Intra-Session Concurrent Training in Untrained Healthy Adults: A Double-Blind, Placebo-Controlled, Randomized Trial. Nutrients 2024, 16, 2713. [Google Scholar] [CrossRef]
- Dideriksen, K.J.; Reitelseder, S.; Petersen, S.G.; Hjort, M.; Helmark, I.C.; Kjaer, M.; Holm, L. Stimulation of Muscle Protein Syn-thesis by Whey and Caseinate Ingestion after Resistance Exercise in Elderly Individuals. Scand. J. Med. Sci. Sports 2011, 21, E372–E383. [Google Scholar] [CrossRef] [PubMed]
- van Loon, L.J.C. Role of Dietary Protein in Post-Exercise Muscle Reconditioning. Nestle Nutr. Inst. Workshop Ser. 2013, 75, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Nieuwoudt, S.; Fealy, C.E.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Rocco, M.; Burguera, B.; Kirwan, J.P. Functional High-Intensity Training Improves Pancreatic β-Cell Function in Adults with Type 2 Diabetes. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E314–E320. [Google Scholar] [CrossRef]
- Fealy, C.E.; Nieuwoudt, S.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Cruz, L.A.; Li, M.; Rocco, M.; Burguera, B.; et al. Functional High-intensity Exercise Training Ameliorates Insulin Resistance and Cardiometabolic Risk Factors in Type 2 Di-abetes. Exp. Physiol. 2018, 103, 985–994. [Google Scholar] [CrossRef]
- Jelleyman, C.; Yates, T.; O’Donovan, G.; Gray, L.J.; King, J.A.; Khunti, K.; Davies, M.J. The Effects of High-intensity Interval Training on Glucose Regulation and Insulin Resistance: A Meta-analysis. Obes. Rev. 2015, 16, 942–961. [Google Scholar] [CrossRef]
- Lee, A.S.; Johnson, N.A.; McGill, M.J.; Overland, J.; Luo, C.; Baker, C.J.; Martinez-Huenchullan, S.; Wong, J.; Flack, J.R.; Twigg, S.M. Effect of High-Intensity Interval Training on Glycemic Control in Adults With Type 1 Diabetes and Overweight or Obesity: A Randomized Controlled Trial With Partial Crossover. Diabetes Care 2020, 43, 2281–2288. [Google Scholar] [CrossRef]
- Maroufi, K.; Razavi, R.; Gaeini, A.A.; Nourshahi, M. The Effects of Acute Consumption of Carbohydrate-Protein Supplement in Varied Ratios on CrossFit Athletes’ Performance in Two CrossFit Exercises: A Randomized Cross-over Trial. J. Sports Med. Phys. Fit. 2021, 61, 1362–1368. [Google Scholar] [CrossRef]
- Magalhães, J.P.; Júdice, P.B.; Ribeiro, R.; Andrade, R.; Raposo, J.; Dores, H.; Bicho, M.; Sardinha, L.B. Effectiveness of High-intensity Interval Training Combined with Resistance Training versus Continuous Moderate-intensity Training Combined with Resistance Training in Patients with Type 2 Diabetes: A One-year Randomized Controlled Trial. Diabetes Obes. Metab. 2019, 21, 550–559. [Google Scholar] [CrossRef]
- Smedegaard, S.; Kampmann, U.; Ovesen, P.G.; Støvring, H.; Rittig, N. Whey Protein Premeal Lowers Postprandial Glucose Concentrations in Adults Compared with Water—The Effect of Timing, Dose, and Metabolic Status: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2023, 118, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.A.; Smart, C.E.M.; Lopez, P.E.; McElduff, P.; Attia, J.; Morbey, C.; King, B.R. Influence of Dietary Protein on Post-prandial Blood Glucose Levels in Individuals with Type 1 Diabetes Mellitus Using Intensive Insulin Therapy. Diabet. Med. 2016, 33, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Franzke, B.; Maierhofer, R.; Putz, P. Protein Intake, Physical Performance and Body Composition in Master Athletes—A Short Scoping Review. Nutrients 2025, 17, 498. [Google Scholar] [CrossRef]
- Koopman, R.; van Loon, L.J.C. Aging, Exercise, and Muscle Protein Metabolism. J. Appl. Physiol. 2009, 106, 2040–2048. [Google Scholar] [CrossRef]
- Doering, T.M.; Reaburn, P.R.; Phillips, S.M.; Jenkins, D.G. Postexercise Dietary Protein Strategies to Maximize Skeletal Muscle Repair and Remodeling in Masters Endurance Athletes: A Review. Int. J. Sport. Nutr. Exerc. Metab. 2016, 26, 168–178. [Google Scholar] [CrossRef]
- Louis, J.; Vercruyssen, F.; Dupuy, O.; Bernard, T. Nutrition for Master Athletes: From Challenges to Optimisation Strategies. Mov. Sport Sci. Sci. Mot. 2019, 104, 45–54. [Google Scholar] [CrossRef]
- de Souza, M.S.; Zaleski Trindade, C.D.; Castro, F.A.d.S.; Buss, C.; Schneider, C.D. Protein Intake by Master Swimmers: Implications for Practice in Sports Nutrition—A Cross-Sectional Study. Nutr. Health 2024, 31, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- McKendry, J.; Stokes, T.; Mcleod, J.C.; Phillips, S.M. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2021; pp. 2249–2278. [Google Scholar]
- Endo, Y.; Nourmahnad, A.; Sinha, I. Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Front. Physiol. 2020, 11, 874. [Google Scholar] [CrossRef]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in Body Composition, Bone Metabolism, Strength, and Skill-Specific Performance Resulting from 16-Weeks of HIFT. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef]
- Sipilä, S.; Törmäkangas, T.; Sillanpää, E.; Aukee, P.; Kujala, U.M.; Kovanen, V.; Laakkonen, E.K. Muscle and Bone Mass in Mid-dle-Aged Women: Role of Menopausal Status and Physical Activity. J. Cachexia Sarcopenia Muscle 2020, 11, 698–709. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Hirsch, K.R.; Cabre, H.E.; Gould, L.M.; Gordon, A.N.; Ferrando, A.A. Menopause Transition: A Cross-Sec-tional Evaluation on Muscle Size and Quality. Med. Sci. Sports Exerc. 2023, 55, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Sale, C.; Elliott-Sale, K.J. Nutrition and Athlete Bone Health. Sports Med. 2019, 49, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Biver, E.; Bonjour, J.-P.; Coxam, V.; Goltzman, D.; Kanis, J.A.; Lappe, J.; Rejnmark, L.; Sahni, S.; Weaver, C.; et al. Benefits and Safety of Dietary Protein for Bone Health-an Expert Consensus Paper Endorsed by the European Society for Clin-ical and Economical Aspects of Osteopororosis, Osteoarthritis, and Musculoskeletal Diseases and by the International Osteopo-rosis Foundation. Osteoporos. Int. 2018, 29, 1933–1948. [Google Scholar] [CrossRef]
- Frost, R.A.; Lang, C.H. Multifaceted Role of Insulin-Like Growth Factors and Mammalian Target of Rapamycin in Skeletal Muscle. Endocrinol. Metab. Clin. N. Am. 2012, 41, 297–322. [Google Scholar] [CrossRef]
- Sims, S.T.; Kerksick, C.M.; Smith-Ryan, A.E.; Janse de Jonge, X.A.K.; Hirsch, K.R.; Arent, S.M.; Hewlings, S.J.; Kleiner, S.M.; Bustillo, E.; Tartar, J.L.; et al. International Society of Sports Nutrition Position Stand: Nutritional Concerns of the Female Ath-lete. J. Int. Soc. Sports Nutr. 2023, 20, 2204066. [Google Scholar] [CrossRef]
- Trommelen, J.; van Lieshout, G.A.A.; Nyakayiru, J.; Holwerda, A.M.; Smeets, J.S.J.; Hendriks, F.K.; van Kranenburg, J.M.X.; Zorenc, A.H.; Senden, J.M.; Goessens, J.P.B.; et al. The Anabolic Response to Protein Ingestion during Recovery from Exercise Has No Upper Limit in Magnitude and Duration in Vivo in Humans. Cell Rep. Med. 2023, 4, 101324. [Google Scholar] [CrossRef]
- Snijders, T.; Trommelen, J.; Kouw, I.W.K.; Holwerda, A.M.; Verdijk, L.B.; van Loon, L.J.C. The Impact of Pre-Sleep Protein In-gestion on the Skeletal Muscle Adaptive Response to Exercise in Humans: An Update. Front. Nutr. 2019, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Corriere, M.; Ferrucci, L. Age-Related and Disease-Related Muscle Loss: The Effect of Diabetes, Obesity, and Other Diseases. Lancet Diabetes Endocrinol. 2014, 2, 819–829. [Google Scholar] [CrossRef]
- Jang, H.C. Diabetes and Muscle Dysfunction in Older Adults. Ann. Geriatr. Med. Res. 2019, 23, 160–164. [Google Scholar] [CrossRef]
- Chung, S.M.; Moon, J.S.; Chang, M.C. Prevalence of Sarcopenia and Its Association With Diabetes: A Meta-Analysis of Commu-nity-Dwelling Asian Population. Front. Med. 2021, 8, 681232. [Google Scholar] [CrossRef]
- Zare, R.; Devrim-Lanpir, A.; Guazzotti, S.; Redha, A.A.; Prokopidis, K.; Spadaccini, D.; Cannataro, R.; Cione, E.; Henselmans, M.; Aragon, A.A. Effect of Soy Protein Supplementation on Muscle Adaptations, Metabolic and Antioxidant Status, Hormonal Response, and Exercise Performance of Active Individuals and Athletes: A Systematic Review of Randomized Controlled Trials. Sports Med. 2023, 53, 2417–2446. [Google Scholar] [CrossRef]
- Livingstone, M.B.E.; Black, A.E. Markers of the Validity of Reported Energy Intake. J. Nutr. 2003, 133, 895S–920S. [Google Scholar] [CrossRef]
- Gemming, L.; Jiang, Y.; Swinburn, B.; Utter, J.; Mhurchu, C.N. Under-Reporting Remains a Key Limitation of Self-Reported Dietary Intake: An Analysis of the 2008/09 New Zealand Adult Nutrition Survey. Eur. J. Clin. Nutr. 2014, 68, 259–264. [Google Scholar] [CrossRef]
- Loucks, A.B.; Kiens, B.; Wright, H.H. Energy Availability in Athletes. J. Sports Sci. 2011, 29, S7–S15. [Google Scholar] [CrossRef]
- De Souza, M.J.; Koltun, K.J.; Williams, N.I. The Role of Energy Availability in Reproductive Function in the Female Athlete Triad and Extension of Its Effects to Men: An Initial Working Model of a Similar Syndrome in Male Athletes. Sports Med. 2019, 49, 125–137. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Barrack, M.T.; Nattiv, A.; Fredericson, M. Parallels with the Female Athlete Triad in Male Athletes. Sports Med. 2016, 46, 171–182. [Google Scholar] [CrossRef]
- Koehler, K.; Achtzehn, S.; Braun, H.; Mester, J.; Schaenzer, W. Comparison of Self-Reported Energy Availability and Metabolic Hormones to Assess Adequacy of Dietary Energy Intake in Young Elite Athletes. Appl. Physiol. Nutr. Metab. 2013, 38, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.K.; Burke, L.M.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.K.; Meyer, N.L.; et al. IOC Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Br. J. Sports Med. 2018, 52, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Breen, L.; Phillips, S.M. Skeletal Muscle Protein Metabolism in the Elderly: Intervention to Counteract the “anabolic Resistance” of Ageing. Nutr. Metab. 2011, 8, 68. [Google Scholar] [CrossRef]
- Moore, D.R. Keeping Older Muscle “Young” through Dietary Protein and Physical Activity. Adv. Nutr. 2014, 5, 599S–607S. [Google Scholar] [CrossRef] [PubMed]
- Churchward-Venne, T.A.; Holwerda, A.M.; Phillips, S.M.; van Loon, L.J.C. What Is the Optimal Amount of Protein to Support Post-Exercise Skeletal Muscle Reconditioning in the Older Adult? Sports Med. 2016, 46, 1205–1212. [Google Scholar] [CrossRef]
- Collins, B.C.; Arpke, R.W.; Larson, A.A.; Baumann, C.W.; Xie, N.; Cabelka, C.A.; Nash, N.L.; Juppi, H.-K.; Laakkonen, E.K.; Sipilä, S.; et al. Estrogen Regulates the Satellite Cell Compartment in Females. Cell Rep. 2019, 28, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Kerstetter, J.E.; O’Brien, K.O.; Insogna, K.L. Low Protein Intake: The Impact on Calcium and Bone Homeostasis in Humans. J. Nutr. 2003, 133, 855S–861S. [Google Scholar] [CrossRef] [PubMed]
- Gillen, J.B.; Trommelen, J.; Wardenaar, F.C.; Brinkmans, N.Y.J.; Versteegen, J.J.; Jonvik, K.L.; Kapp, C.; de Vries, J.; van den Borne, J.J.G.C.; Gibala, M.J.; et al. Dietary Protein Intake and Distribution Patterns of Well-Trained Dutch Athletes. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 105–114. [Google Scholar] [CrossRef] [PubMed]


| Theme | Collective Findings | Representative Studies |
|---|---|---|
| Dose–Response and Optimal Intake | Supplementation improves muscle mass/strength when baseline intake is inadequate. Benefits plateau around ~1.6 g/kg/day. Very high intakes (>3 g/kg/day) tolerated but show diminishing returns. Extra supplementation limited if athlete already meets guidelines. | [3,18,19] |
| Exercise Modality | Endurance: Protein + carbs aid glycogen resynthesis and reduce damage, but performance effects inconsistent. Resistance: Strong evidence for MPS, hypertrophy, and strength up to ~1.6 g/kg/day. Mixed/Functional: Helps recovery, soreness reduction, but performance outcomes inconsistent. | [3,21,22,23,24] |
| Age and Anabolic Resistance | Master athletes have blunted MPS, need higher per-meal doses and high-quality proteins. Whey post-exercise supports lean mass/strength. Effects variable, depending on baseline intake and training. | [12,19] |
| Protein Source | Whey: Fast digestion, leucine-rich → robust acute MPS. Casein: Slow digestion → supports prolonged protein balance. Plant proteins: Lower leucine/digestibility but effective if consumed in higher doses or blends. | [12,26] |
| Protein–Carbohydrate Co-Ingestion | Positive effects: Synergistic increases in MPS, glycogen resynthesis, performance benefits under suboptimal protein or glycogen intake. No added benefit: When protein intake is already adequate, co-ingestion adds little. Best use: During multiple daily sessions or when protein/leucine limited. | [14,21,27,28,29,30] |
| Diabetic Athletes | Type 1: High-protein meals delay glycemia but risk late hyperglycemia. Type 2: Small whey doses (~15 g) improve glycemia, satiety, and HbA1c; soy lowers LDL; whey lowers BP. Effects on lean mass preservation mixed. Consensus: Tailored strategies needed considering protein type, timing, renal health, and glycemic control. | [31,32,33,36,37,38,39] |
| Female athletes | High-quality soy protein supplementation improves body composition and anthropometrics in aerobic training. BCAAs improve BMI in resistance training across protein sources. | [40,41] |
| Theme | Collective Findings | Representative Studies |
|---|---|---|
| Baseline Needs vs. RDA | RDA of 0.8 g/kg/day prevents deficiency but is inadequate for athletes. Consensus: 1.2–2.0 g/kg/day for most athletes. Habitual intake ~1.5 g/kg/day in endurance athletes. | [1,2,42] |
| Resistance Training | Hypertrophy and strength gains plateau ~1.6 g/kg/day under energy balance. Higher intakes (2.2–3.1 g/kg/day, relative to FFM) needed during caloric restriction to preserve lean mass. | [3,6] |
| Endurance Training | Typical needs 1.4–1.8 g/kg/day; may rise under carbohydrate restriction or intensified training due to amino acid oxidation. | [42] |
| Energy Balance Effects | Deficit: Protein turnover increases, lean mass protected at 2.3–3.1 g/kg FFM/day. Surplus: 1.6 g/kg/day sufficient for muscle gain; no added benefit at higher intakes. | [5,43,44] |
| Body Composition/Lean Mass Indexing | Prescriptions based on fat-free mass (FFM) more precise than total body weight, especially in highly muscular or high-fat athletes. | [6,47] |
| Protein Quality | High-quality (whey, dairy, eggs, lean meat) proteins, rich in leucine and EAAs, are most effective. Plant proteins less anabolic unless in higher doses or blended. | [3,45,47] |
| Age (Master Athletes) | Blunted MPS → require higher intakes (≥1.6 g/kg/day) and high-quality protein sources to achieve adaptations similar to younger athletes. | [12] |
| Vegetarian/Vegan Athletes | Higher intakes (~2.0 g/kg/day) or protein blending needed to achieve sufficient leucine/EAA intake. | [50] |
| Type 1 Diabetes (T1D) | Protein offsets muscle catabolism. High-protein meals may delay glycemia but risk late hyperglycemia. Adequate amino acid intake and exercise help overcome insulin resistance. | [8,31,32] |
| Type 2 Diabetes (T2D) | Protein metabolism variable: anabolic response preserved. Pre-meal whey (~15 g) lowers HbA1c, improves satiety and glycemia. Soy lowers LDL, whey lowers BP. | [9,33,34,35,39,57] |
| Diabetic Athlete Risks and Considerations | High protein generally safe, but monitoring required if nephropathy risk. Personalized strategies needed based on diabetes type, glycemic control, renal function, and training. | [51,52,53,56] |
| Innovative Approaches | Novel strategies such as chia seed supplementation show potential for lowering postprandial glucose excursions. | [54] |
| Theme | Collective Findings | Representative Studies |
|---|---|---|
| Daily Distribution (General) | Even distribution (~0.25–0.4 g/kg, ≈20–40 g high-quality protein every 3–4 h) outperforms skewed intake. Enhances 24 h MPS, lean mass, and strength compared to single large meals. | [3,4,5,63] |
| Per-Meal Dose Response | MPS saturates at ~0.25–0.3 g/kg (~20 g) in young adults. Larger doses oxidized. Resistance athletes maximize MPS ~0.3 g/kg; endurance ~0.4–0.5 g/kg. Older adults require ~0.4–0.5 g/kg due to anabolic resistance. | [66,67,68] |
| Pre-Exercise Timing | Protein 1–3 h before exercise increases amino acid availability, supports performance and recovery. | [58] |
| Post-Exercise Timing | Protein within 0–2 h post-training maximizes synergy with exercise-induced sensitivity. Anabolic window may extend up to 24 h, but earlier intake more effective, especially in multiple daily sessions. | [59,60,61] |
| Protein Pacing | Moderate, repeated feedings (~20 g every 3 h) superior to infrequent large boluses or very frequent small doses. Supports recovery and adaptation even under energy restriction. | [5,63,64,65] |
| Pre-Sleep Intake | ~30–40 g casein or blended protein before sleep sustains amino acid release, supports overnight accretion, reduces breakdown. Especially beneficial in resistance and master athletes. | [28,69] |
| Protein Digestion Kinetics | Fast proteins (whey, hydrolysates): rapid MPS, best postexercise. Slow proteins (casein): prolong balance, ideal before sleep or long fasting. Blends (soy + whey/pea): extend anabolic response. | [70,71] |
| Distribution in Energy Deficit | Balanced intake across meals superior for MPS during caloric restriction, especially when combined with resistance training. | [64,65] |
| Diabetic Athletes—Per-Meal Targets | Similar per-meal dose (~0.25–0.4 g/kg). Even pacing improves MPS, body composition, and glycemic control. Low-dose whey preload (≈15 g) before meals reduces hyperglycemia and improves satiety. | [11,72] |
| Diabetic Athletes—Timing | Pre- and post-exercise protein enhances adaptation and metabolic control. Circadian effects: evening intake linked to higher postprandial glucose/lipids → morning protein preferable. | [59,61,76] |
| Diabetic Athletes—Hypoglycemia/Glycemic Variability | Pre-exercise protein reduces hypoglycemia in T1D; bedtime snacks stabilize overnight glycemia. Protein must be integrated with insulin regimen; CGM recommended. | [10,78,79] |
| Co-Ingestion with CHO | Protein + CHO after exercise supports recovery and body composition. In T2D, preload or co-ingestion strategies improve glycemic regulation. | [72,80,81] |
| Protein Source | General Characteristics | Effects on Physical Performance | Effects on Diabetic Athletes | Representative Studies |
|---|---|---|---|---|
| Whey | Fast-digesting; very high leucine (~10–12%); rich in BCAAs; bioactive peptides (β-lactoglobulin, lactoferrin, GMP). | Enhances hypertrophy/strength (esp. <1.6 g/kg baseline intake); supports glycogen resynthesis with carbs; reduces soreness/damage; best for rapid recovery. | Stimulates insulin and incretins (GLP-1, GIP); reduces postprandial glucose; improves HbA1c, insulin sensitivity, lipids, and BP; GMP shows anti-inflammatory and glycemic effects. | [3,82,98,106] |
| Casein | Slow-digesting; leucine ~8%; coagulates in stomach; sustained AA release (6–8 h); strong anti-catabolic effect. | Supports long-term hypertrophy/strength; pre-sleep 30–40 g enhances overnight MPS and recovery; best for prolonged fasting periods. | Produces gradual insulin response; moderates glycemia; improves lipid metabolism; reduces cardiometabolic risk; helps preserve lean tissue. | [119,120,126,130] |
| Soy | Plant-based; complete protein; leucine ~8%; moderate digestion; contains isoflavones with antioxidant/anti-inflammatory properties. | Comparable hypertrophy/strength to whey when leucine-matched; antioxidant effects aid recovery; requires larger dose (25–40 g) to reach leucine threshold. | Lowers LDL/total cholesterol; inconsistent effects on glucose/HbA1c; protective in nephropathy (reduces albuminuria); may improve endothelial function/CRP. | [26,146,147,152] |
| Pea | Plant-based; leucine ~8%, low methionine; moderate digestion; requires ~38 g to reach MPS leucine threshold. | Supports hypertrophy/strength similar to whey when matched; effective in resistance and functional training; blends with rice/corn improve amino acid profile. | Preclinical: improves GLP-1, insulin signaling, and reduces glucose/inflammation. Human: lowers postprandial glucose, improves satiety; may reduce albuminuria in nephropathy. | [13,160,164,165,174] |
| Blends | Combine fast + slow (whey + casein) or complementary plants (pea + rice); balanced amino acid profile; staggered digestion. | Extend anabolic signaling beyond whey; match whey for hypertrophy/strength; useful for vegan athletes; multi-ingredient blends (creatine, vitamin D) enhance FFM and strength. | Provide smoother postprandial glucose/insulin responses; dairy blends improve lipid/glycemic outcomes in T2D; plant blends fortified with leucine match whey’s anabolic effect. | [181,182,184,191,192] |
| Eggs | Complete, highly digestible; high leucine (~9%); bioactive compounds in yolk (cholesterol, phospholipids). | Whole eggs post-exercise enhance MPS more than egg whites; support skeletal muscle health and recovery. | Provide dual benefits: leucine stimulates mTOR; yolk components improve satiety, modulate postprandial glycemia, and support lipid profiles; moderate intake (≤1/day) safe in T2D. | [202,203,204,205,206] |
| Rice | Plant-based, hypoallergenic; low lysine, but leucine- rich when dose matched; free from lactose/gluten. | Comparable hypertrophy and strength gains to whey when matched for protein dose; supports body composition improvements. | Neutral to beneficial effects on glycemic control; lower postprandial glucose/insulin vs. whey; supports GLP-1 secretion, lipid metabolism, renal protection in T2D. | [207,208,209,210,211,212,213] |
| Collagen | Incomplete protein; very low leucine (~3%), no tryptophan; rich in glycine, proline, hydroxyproline; supports connective tissue. | Improves tendon stiffness, explosive strength (longer- term use); supports connective-tissue adaptation; limited direct effect on MPS unless combined with leucine-rich protein. | Relevant for diabetic athletes: counters impaired connective- tissue integrity from glycation/AGEs; may improve wound healing, tendon health, and glycemic control (HbA1c, fasting glucose); complementary with whey/casein. | [214,215,216,217,218,219,220] |
| Domain | Subpopulation | Key Mechanisms | Effective Intake and Timing | Performance/Body-Comp Outcomes | Recovery Outcomes | Representative Studies |
|---|---|---|---|---|---|---|
| Resistance Training | General | Rapid aminoacidemia → ↑ leucine → mTORC1 → ↑ MPS; ↓ MPB; satellite cell activation | Daily: 1.6–2.2 g/kg/d (up to 2.3–3.1 g/kg FFM/d in deficit); Per meal: 0.3–0.4 g/kg, 3–6 ×/d; Timing: ≥1 dose ≤2 h post-exercise; whey post-workout; casein pre-sleep; blends for extended coverage | ↑ FFM and 1RM; diminishing returns >~1.6 g/kg/d unless in deficit/high volume; plant proteins comparable when leucine-matched or dose ↑ 10–20% | ↓DOMS, ↓ CK/myoglobin; faster functional recovery; +CHO aids glycogen when CHO suboptimal | [3,147,161,225,228,230] |
| Resistance Training | Diabetic (mainly T2D) | Anabolic response to AA + insulin largely preserved | Daily: ~1.4–2.0 g/kg/d; Per meal: 0.3–0.4 g/kg; Pre-meal whey: 10–20 g before carb-rich meals; blends helpful if meals delayed | RT drives most gains; RCTs show little extra benefit of whey/leucine when diet already adequate | Similar to general when intake/timing met | [236,237,238] |
| Endurance | General | Repair/remodeling; ↓ proteolysis; with CHO → ↑ glycogen resynthesis (esp. CHO < 1.0 g/kg/h); leucine supports mitochondrial signaling (mTORC1/PGC-1α) | Daily: ~1.2–1.8 g/kg/d (often 1.4–2.0); Post: 20–40 g protein + ~1.0–1.2 g/kg/h CHO early recovery; whey post, casein pre-sleep; soy/pea effective when leucine-matched; blends extend coverage | Preserves lean mass in high-volume/deficit; VO2max/LT effects mixed; can aid next-day performance when sessions <24 h and CHO limited | ↓DOMS, ↓ CK/myoglobin; better function within 24 h; offsets low-glycogen AA oxidation | [30,42,62,68,243,245,246] |
| Endurance | Diabetic (T1D/T2D) | Anabolic response intact; whey pre-meal improves T2D postprandial control; high protein/fat may cause delayed hyperglycemia in T1D | Daily: ~1.4–2.0 g/kg/d (↑ during heavy blocks/deficit); Per meal: 0.3–0.4 g/kg q3–4 h; Pre-meal whey (T2D): 10–20 g; Pre-sleep casein: 30–40 g (manage T1D insulin) | Similar adaptation potential as non-diabetics when nutrition/insulin managed | Better time-in-range with whey preloads (T2D); manage delayed hyperglycemia in T1D | [11,31,57,96,232] |
| HIFT | General | Addresses concurrent heavy mechanical + metabolic stress; ↓MPB; supports remodeling; with CHO → glycogen | Daily: 1.6–2.0 g/kg/d (↑ to ~2.4 g/kg/d in deficit/very high loads); Post: 0.3–0.4 g/kg ≤1 h; whey post, casein pre-sleep; plant proteins adequate when leucine-matched; blends for long gaps | Training alone often drives gains; supplementation helps most when baseline protein <~1.4 g/kg/d or during energy deficit/high volume; VO2max/anaerobic capacity changes inconsistent beyond training | Whey post reduces soreness; faster neuromuscular recovery; casein/blends aid overnight between multi-sessions | [24,64,164,252,253,255] |
| HIFT | Diabetic (mainly T2D) | HIFT/HIIT improves insulin sensitivity and cardiometabolic risk; whey pre-meal dampens postprandial glycemia (T2D) | Daily: 1.4–2.0 g/kg/d across 3–5 meals; Pre-meal whey: 10–15 g on high-CHO days; Post: 20–40 g with CHO | No diabetes-specific HIFT RCTs with performance; general HIFT shows similar adaptations with whey/pea vs. control when diet adequate | Glycemic benefits from small whey preloads (T2D) | [24,37,164,247,257,258,259,260,261,262,263] |
| Subpopulation | Key Mechanisms | Effective Intake and Timing | Performance/Body-Comp Outcomes | Recovery Outcomes | Representative Studies |
|---|---|---|---|---|---|
| General Master Athletes | Aging → anabolic resistance (↓ mTORC1 signaling, ↓ AA delivery, impaired mitochondrial function); need higher per-meal protein and leucine | Daily: 1.6–1.9 g/kg/d in balance; 2.0–2.4 g/kg/d in deficit/injury; Per meal: 0.4–0.5 g/kg (30–45 g), evenly 3–4 ×/day; Leucine: ≥2.5 g/meal; Timing: post-exercise whey; pre-sleep casein (30–40 g) | Preserves lean mass, muscle quality, bone density, tendon health; resistance training + protein synergistically counteracts sarcopenia; higher doses improve outcomes during deficit or heavy training | Pre-sleep casein enhances both myofibrillar + mitochondrial protein synthesis; protein supports glycogen resynthesis post- endurance when CHO suboptimal | [68,69,125,126,127,161,243] |
| Diabetic Master Athletes | Dual challenge: aging-related anabolic resistance + diabetes-related metabolic limitations; T2D linked to ↑ sarcopenia risk | Daily: 1.4–2.0 g/kg/d, 3–5 meals; Per meal: 0.3–0.4 g/kg (25–40 g) with ≥2–3 g leucine; Pre-sleep: 30–40 g ca- sein; Pre-meal whey: 10–15 g before carb-rich meals | Resistance training drives main gains; whey/AA supplementation adds little when baseline intake sufficient; protein helps preserve lean mass under risk of sarcopenia | Similar recovery benefits as in non-diabetic peers if per-meal thresholds met | [11,31,96,232,234,235,236,237,263] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahan-Mihan, A.; El Khoury, D.; Brewer, G.J.; Chapleau, A. Current Perspectives on Protein Supplementation in Athletes: General Guidance and Special Considerations for Diabetes—A Narrative Review. Nutrients 2025, 17, 3528. https://doi.org/10.3390/nu17223528
Jahan-Mihan A, El Khoury D, Brewer GJ, Chapleau A. Current Perspectives on Protein Supplementation in Athletes: General Guidance and Special Considerations for Diabetes—A Narrative Review. Nutrients. 2025; 17(22):3528. https://doi.org/10.3390/nu17223528
Chicago/Turabian StyleJahan-Mihan, Alireza, Dalia El Khoury, Gabrielle J. Brewer, and Alyssa Chapleau. 2025. "Current Perspectives on Protein Supplementation in Athletes: General Guidance and Special Considerations for Diabetes—A Narrative Review" Nutrients 17, no. 22: 3528. https://doi.org/10.3390/nu17223528
APA StyleJahan-Mihan, A., El Khoury, D., Brewer, G. J., & Chapleau, A. (2025). Current Perspectives on Protein Supplementation in Athletes: General Guidance and Special Considerations for Diabetes—A Narrative Review. Nutrients, 17(22), 3528. https://doi.org/10.3390/nu17223528

