Day-to-Day Variability in Meal Timing and Its Association with Body Mass Index: A Study Using Data from a Japanese Food-Logging Mobile Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.4. Day-to-Day Irregularity in Mealtime
2.5. Visualization and Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Visualization of Daily Mealtime Trends
3.2.1. Line Plots of Individual Breakfast Timing Trends
3.2.2. Proportional Symbol Plots of Individual Mealtime and Energy Intake Patterns
3.3. Chronotype, Sleep–Wake Timing, Mealtime, and Energy Intake Variability Across Mealtime Irregularity Groups
3.4. Association Between BMI and Breakfast Irregularity in Older Women
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BMI | Body mass index |
| CPD | Composite phase deviation |
| Hb | Hemoglobin |
| MET | Metabolic Equivalent of Task |
| EI | Energy intake |
| CV | Coefficient of variation |
| MSFsc | Corrected sleep midpoint on free days |
| PA | Physical activity |
| CI | Confidence interval |
Appendix A
| Mean BMI [kg/m2] (n) | ||||
|---|---|---|---|---|
| Women | Men | |||
| The Present Study | NHNS Japan in 2019 | The Present Study | NHNS Japan in 2019 | |
| age < 30 | 21.5 (116) | 20.7 (216) | 23.6 (27) | 22.2 (226) |
| 30 ≤ age < 40 | 22.2 (227) | 21.7 (214) | 23.9 (69) | 23.7 (177) |
| 40 ≤ age < 50 | 22.4 (199) | 22.3 (356) | 23.5 (110) | 24.7 (295) |
| 50 ≤ age < 60 | 22.3 (161) | 22.4 (377) | 23.3 (105) | 24.6 (286) |
| 60 ≤ age | 22.6 (39) | 23 (1235) | 23.9 (49) | 23.7 (1064) |
| Breakfast | Women | Men | |||
|---|---|---|---|---|---|
| The Present Study | MAFF Survey in 2023 | The Present Study | MAFF Survey in 2023 | ||
| 20 ≤ age < 40 | n = 336 | n = 267 | n = 95 | n = 167 | |
| almost every day (%) | 91.4 | 64.0 | 92.6 | 58.1 | |
| 4–5 days a week (%) | 5.4 | 10.1 | 5.3 | 8.4 | |
| 2–3 days a week (%) | 2.1 | 9.7 | 2.1 | 9.6 | |
| rarely eat (%) | 1.2 | 16.1 | 0.0 | 22.8 | |
| no response (%) | 0.0 | 0.0 | 0.0 | 1.2 | |
| 40 ≤ age < 60 | n = 360 | n = 425 | n = 215 | n = 348 | |
| almost every day (%) | 95.0 | 77.4 | 93.0 | 71.0 | |
| 4–5 days a week (%) | 3.1 | 6.6 | 3.3 | 4.9 | |
| 2–3 days a week (%) | 1.7 | 6.6 | 2.3 | 4.9 | |
| rarely eat (%) | 0.3 | 8.9 | 1.4 | 18.7 | |
| no response (%) | 0.0 | 0.5 | 0.0 | 0.6 | |
| 60 ≤ age | n = 39 | n = 607 | n = 49 | n = 495 | |
| almost every day (%) | 89.7 | 89.0 | 100.0 | 86.9 | |
| 4–5 days a week (%) | 5.1 | 2.5 | 0.0 | 4.2 | |
| 2–3 days a week (%) | 2.6 | 2.6 | 0.0 | 2.2 | |
| rarely eat (%) | 2.6 | 4.0 | 0.0 | 5.3 | |
| no response (%) | 0.0 | 2.0 | 0.0 | 1.4 | |
| Women | Men | |||
|---|---|---|---|---|
| The Present Study | 2021 Survey (Statistics Bureau of Japan) | The Present Study | 2021 Survey (Statistics Bureau of Japan) | |
| Breakfast (Weekdays) | 7:50 | 7:18 | 7:20 | 7:05 |
| Dinner (Weekdays) | 19:08 | 18:49 | 19:25 | 19:07 |
| Breakfast (Saturday) | 8:01 | 7:36 | 7:33 | 7:28 |
| Dinner (Saturday) | 19:05 | 18:37 | 19:18 | 18:44 |
| Breakfast (Sunday) | 7:58 | 7:46 | 7:29 | 7:40 |
| Dinner (Sunday) | 19:07 | 18:33 | 19:21 | 18:40 |
| Women | Men | |||
|---|---|---|---|---|
| The Present Study | NHNS 2019 | The Present Study | NHNS 2019 | |
| 20 ≤ age < 30 | 1492 | 1600 | 2234 | 2199 |
| 30 ≤ age < 40 | 1543 | 1673 | 2156 | 2081 |
| 40 ≤ age < 50 | 1561 | 1729 | 2093 | 2172 |
| 50 ≤ age < 60 | 1539 | 1695 | 2081 | 2188 |
| 60 ≤ age < 70 | 1546 | 1784 | 1992 | 2177 |
| Women | Men | |||
|---|---|---|---|---|
| The Present Study | National Survey 2020 | The Present Study | National Survey 2020 | |
| age < 30 | 37.7 (116) | 29.8 (215) | 41.4 (27) | 64.7 (227) |
| 30 ≤ age < 40 | 33.9 (227) | 24.1 (219) | 50.8 (69) | 60.7 (234) |
| 40 ≤ age < 50 | 29.2 (199) | 23.7 (287) | 50.4 (110) | 51.6 (299) |
| 50 ≤ age < 60 | 32.5 (161) | 24.7 (248) | 46.7 (105) | 39.8 (249) |
| 60 ≤ age | 33 (39) | 18.3 (521) | 40.6 (49) | 31.4 (468) |
| Women | Men | |||
|---|---|---|---|---|
| The Present Study % (n) | NHNS 2019 % (n) | The Present Study % (n) | NHNS 2019 % (n) | |
| Sleep duration (h) < 5 | 2.2 (16) | 9.1 (276) | 3.1 (11) | 8.5 (227) |
| 5 ≤ Sleep duration (h) < 6 | 11.6 (86) | 31.5 (955) | 13.3 (48) | 29 (773) |
| 6 ≤ Sleep duration (h) < 7 | 35.0 (260) | 36.2 (1098) | 37.8 (136) | 32.7 (873) |
| 7 ≤ Sleep duration (h) < 8 | 37.1 (275) | 16.8 (510) | 36.7 (132) | 20.1 (536) |
| 8 ≤ Sleep duration (h) < 9 | 11.2 (83) | 4.8 (145) | 6.9 (25) | 7.1 (190) |
| 9 ≤ Sleep duration (h) | 3.0 (22) | 1.6 (49) | 2.2 (8) | 2.6 (69) |
| Age < 35 (n = 224) | 35 ≤ Age < 50 (n = 318) | 50 ≤ Age (n = 200) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Risk Factor | Coefficients | 95% CI | p-Value | Coefficients | 95% CI | p-Value | Coefficients | 95% CI | p-Value |
| Age | 1.943 | [0.58, 3.3] | 0.006 | 0.324 | [−0.77, 1.41] | 0.560 | 0.797 | [−0.53, 2.12] | 0.240 |
| PA | −0.020 | [−0.45, 0.41] | 0.926 | −0.328 | [−0.84, 0.19] | 0.212 | −0.398 | [−0.98, 0.19] | 0.184 |
| EI | 0.120 | [−0.39, 0.63] | 0.646 | 0.350 | [−0.07, 0.77] | 0.101 | 0.435 | [−0.19, 1.06] | 0.174 |
| Chronotype | 0.852 | [0.2, 1.51] | 0.011 | 0.588 | [0.05, 1.13] | 0.033 | 0.378 | [−0.38, 1.14] | 0.332 |
| Breakfast time irregularity | −0.399 | [−1.03, 0.23] | 0.216 | −0.090 | [−0.63, 0.45] | 0.744 | 1.098 | [0.27, 1.93] | 0.010 |
References
- Tahara, Y.; Shibata, S. Chronobiology and Nutrition. Neuroscience 2013, 253, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, A.; Bechtold, D.A.; Pot, G.K.; Johnston, J.D. Chrono-nutrition: From Molecular and Neuronal Mechanisms to Human Epidemiology and Timed Feeding Patterns. J. Neurochem. 2021, 157, 53–72. [Google Scholar] [CrossRef]
- Zerón-Rugerio, M.F.; Hernáez, Á.; Porras-Loaiza, A.P.; Cambras, T.; Izquierdo-Pulido, M. Eating Jet Lag: A Marker of the Variability in Meal Timing and Its Association with Body Mass Index. Nutrients 2019, 11, 2980. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, G.P.; da Cunha, N.B.; Azeredo, C.M.; Rinaldi, A.E.M.; Crispim, C.A. Eating Time Variation from Weekdays to Weekends and Its Association with Dietary Intake and BMI in Different Chronotypes: Findings from National Health and Nutrition Examination Survey (NHANES) 2017-2018. Br. J. Nutr. 2023, 131, 1281–1288. [Google Scholar] [CrossRef]
- Nishimura, K.; Tamari, Y.; Nose, Y.; Yamaguchi, H.; Onodera, S.; Nagasaki, K. Effects of Irregular Mealtimes on Social and Eating Jet Lags among Japanese College Students. Nutrients 2023, 15, 2128. [Google Scholar] [CrossRef]
- Makarem, N.; Sears, D.D.; St-Onge, M.-P.; Zuraikat, F.M.; Gallo, L.C.; Talavera, G.A.; Castaneda, S.F.; Lai, Y.; Aggarwal, B. Variability in Daily Eating Patterns and Eating Jetlag Are Associated With Worsened Cardiometabolic Risk Profiles in the American Heart Association Go Red for Women Strategically Focused Research Network. J. Am. Heart Assoc. 2021, 10, e022024. [Google Scholar] [CrossRef]
- Raji, O.E.; Kyeremah, E.B.; Sears, D.D.; St-Onge, M.-P.; Makarem, N. Chrononutrition and Cardiometabolic Health: An Overview of Epidemiological Evidence and Key Future Research Directions. Nutrients 2024, 16, 2332. [Google Scholar] [CrossRef]
- Horikawa, C.; Kodama, S.; Yachi, Y.; Heianza, Y.; Hirasawa, R.; Ibe, Y.; Saito, K.; Shimano, H.; Yamada, N.; Sone, H. Skipping Breakfast and Prevalence of Overweight and Obesity in Asian and Pacific Regions: A Meta-Analysis. Prev. Med. 2011, 53, 260–267. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Q.; Pu, Y.; Guo, M.; Jiang, Z.; Huang, W.; Long, Y.; Xu, Y. Skipping Breakfast Is Associated with Overweight and Obesity: A Systematic Review and Meta-Analysis. Obes. Res. Clin. Pract. 2020, 14, 1–8. [Google Scholar] [CrossRef]
- Asken Inc. Available online: https://en.asken.inc (accessed on 6 September 2025).
- Matsuzaki, E.; Michie, M.; Kawabata, T. Validity of Nutrient Intakes Derived from an Internet Website Dish-Based Dietary Record for Self-Management of Weight among Japanese Women. Nutrients 2017, 9, 1058. [Google Scholar] [CrossRef]
- Shinozaki, N.; Murakami, K. Evaluation of the Ability of Diet-Tracking Mobile Applications to Estimate Energy and Nutrient Intake in Japan. Nutrients 2020, 12, 3327. [Google Scholar] [CrossRef]
- Nitta, L.; Tahara, Y.; Shinto, T.; Makino, S.; Kuwahara, M.; Tada, A.; Abe, N.; Michie, M.; Shibata, S. Association of Eating Pattern, Chronotype, and Social Jetlag: A Cross-Sectional Study Using Data Accumulated in a Japanese Food-Logging Mobile Health Application. Nutrients 2023, 15, 2165. [Google Scholar] [CrossRef]
- Imamura, M.; Sasaki, H.; Shinto, T.; Tahara, Y.; Makino, S.; Kuwahara, M.; Tada, A.; Abe, N.; Michie, M.; Shibata, S. Association Between Na, K, and Lipid Intake in Each Meal and Blood Pressure. Front. Nutr. 2022, 9, 853118. [Google Scholar] [CrossRef]
- Seol, J.; Iwagami, M.; Kayamare, M.C.T.; Yanagisawa, M. Relationship Among Macronutrients, Dietary Components, and Objective Sleep Variables Measured by Smartphone Apps: Real-World Cross-Sectional Study. J. Med. Internet Res. 2025, 27, e64749. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B.E.; Masayasu, S.; Sasaki, S. Eating Patterns in a Nationwide Sample of Japanese Aged 1–79 Years from MINNADE Study: Eating Frequency, Clock Time for Eating, Time Spent on Eating and Variability of Eating Patterns. Public. Health Nutr. 2022, 25, 1515–1527. [Google Scholar] [CrossRef]
- Ministry of Education, Culture, Sports, Science and Technology-Japan (MEXT) Standard Tables of Food Composition in Japan 2020 (8th Edition). Available online: https://www.mext.go.jp/a_menu/syokuhinseibun/mext_01110.html (accessed on 7 September 2025).
- Kitamura, S.; Hida, A.; Aritake, S.; Higuchi, S.; Enomoto, M.; Kato, M.; Vetter, C.; Roenneberg, T.; Mishima, K. Validity of the Japanese Version of the Munich ChronoType Questionnaire. Chronobiol. Int. 2014, 31, 845–850. [Google Scholar] [CrossRef] [PubMed]
- National Center of Neurology and Psychiatry How to Use MCTQ. Available online: https://mctq.jp/use/index_para.html (accessed on 7 September 2025).
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- McHill, A.W.; Hilditch, C.J.; Fischer, D.; Czeisler, C.A.; Garaulet, M.; Scheer, F.A.J.L.; Klerman, E.B. Stability of the Timing of Food Intake at Daily and Monthly Timescales in Young Adults. Sci. Rep. 2020, 10, 20849. [Google Scholar] [CrossRef]
- Fischer, D.; Vetter, C.; Roenneberg, T. A Novel Method to Visualise and Quantify Circadian Misalignment. Sci. Rep. 2016, 6, 38601. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.; Amir, S. The Aging Clock: Circadian Rhythms and Later Life. J. Clin. Investig. 2017, 127, 437–446. [Google Scholar] [CrossRef]
- Komada, Y.; Okajima, I.; Kitamura, S.; Inoue, Y. A Survey on Social Jetlag in Japan: A Nationwide, Cross-Sectional Internet Survey. Sleep. Biol. Rhythm. 2019, 17, 417–422. [Google Scholar] [CrossRef]
- Pot, G.K.; Hardy, R.; Stephen, A.M. Irregular Consumption of Energy Intake in Meals Is Associated with a Higher Cardiometabolic Risk in Adults of a British Birth Cohort. Int. J. Obes. 2014, 38, 1518–1524. [Google Scholar] [CrossRef]
- Seki, T.; Takeuchi, M.; Kawakami, K. Eating and Drinking Habits and Its Association with Obesity in Japanese Healthy Adults: Retrospective Longitudinal Big Data Analysis Using a Health Check-up Database. Br. J. Nutr. 2021, 126, 1585–1591. [Google Scholar] [CrossRef]
- Katsuura-Kamano, S.; Arisawa, K.; Uemura, H.; Van Nguyen, T.; Takezaki, T.; Ibusuki, R.; Suzuki, S.; Otani, T.; Okada, R.; Kubo, Y.; et al. Association of Skipping Breakfast and Short Sleep Duration with the Prevalence of Metabolic Syndrome in the General Japanese Population: Baseline Data from the Japan Multi-Institutional Collaborative Cohort Study. Prev. Med. Rep. 2021, 24, 101613. [Google Scholar] [CrossRef]
- Okada, C.; Imano, H.; Muraki, I.; Yamada, K.; Iso, H. The Association of Having a Late Dinner or Bedtime Snack and Skipping Breakfast with Overweight in Japanese Women. J. Obes. 2019, 2019, 2439571. [Google Scholar] [CrossRef] [PubMed]
- Ballon, A.; Neuenschwander, M.; Schlesinger, S. Breakfast Skipping Is Associated with Increased Risk of Type 2 Diabetes among Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Nutr. 2019, 149, 106–113. [Google Scholar] [CrossRef]
- Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of Sleep Timing in Caloric Intake and BMI. Obesity 2011, 19, 1374–1381. [Google Scholar] [CrossRef]
- Maukonen, M.; Kanerva, N.; Partonen, T.; Männistö, S. Chronotype and Energy Intake Timing in Relation to Changes in Anthropometrics: A 7-Year Follow-up Study in Adults. Chronobiol. Int. 2019, 36, 27–41. [Google Scholar] [CrossRef]
- Männistö, S.; Harald, K.; Kontto, J.; Lahti-Koski, M.; Kaartinen, N.E.; Saarni, S.E.; Kanerva, N.; Jousilahti, P. Dietary and Lifestyle Characteristics Associated with Normal-Weight Obesity: The National FINRISK 2007 Study. Br. J. Nutr. 2014, 111, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Falbová, D.; Sulis, S.; Oravská, P.; Hozaková, A.; Švábová, P.; Beňuš, R.; Vorobeľová, L. The Prevalence of Normal Weight Obesity in Slovak Young Adults and Its Relationship with Body Composition and Lifestyle Habits. Bratisl. Med. J. 2025, 126, 2698–2707. [Google Scholar] [CrossRef]
- Kobayashi, M.; Pattarathitwat, P.; Pongprajakand, A.; Kongkaew, S. Association of Normal Weight Obesity with Lifestyle and Dietary Habits in Young Thai Women: A Cross-Sectional Study. Obes. Pillars 2023, 5, 100055. [Google Scholar] [CrossRef]
- Yasuda, T. Anthropometric, Body Composition, and Somatotype Characteristics of Japanese Young Women: Implications for Normal-Weight Obesity Syndrome and Sarcopenia Diagnosis Criteria. Interv. Med. Appl. Sci. 2019, 11, 117–121. [Google Scholar] [CrossRef]
- Palomar-Cros, A.; Andreeva, V.A.; Fezeu, L.K.; Julia, C.; Bellicha, A.; Kesse-Guyot, E.; Hercberg, S.; Romaguera, D.; Kogevinas, M.; Touvier, M.; et al. Dietary Circadian Rhythms and Cardiovascular Disease Risk in the Prospective NutriNet-Santé Cohort. Nat. Commun. 2023, 14, 7899. [Google Scholar] [CrossRef]
- Yoshida, J.; Eguchi, E.; Nagaoka, K.; Ito, T.; Ogino, K. Association of Night Eating Habits with Metabolic Syndrome and Its Components: A Longitudinal Study. BMC Public. Health 2018, 18, 1366. [Google Scholar] [CrossRef]
- Nicolaides, N.C.; Chrousos, G.P. Sex Differences in Circadian Endocrine Rhythms: Clinical Implications. Eur. J. Neurosci. 2020, 52, 2575–2585. [Google Scholar] [CrossRef]
- Skvortsova, A.; Veldhuijzen, D.S.; Kloosterman, I.E.M.; Pacheco-López, G.; Evers, A.W.M. Food Anticipatory Hormonal Responses: A Systematic Review of Animal and Human Studies. Neurosci. Biobehav. Rev. 2021, 126, 447–464. [Google Scholar] [CrossRef]
- Isherwood, C.M.; Van Der Veen, D.R.; Hassanin, H.; Skene, D.J.; Johnston, J.D. Human Glucose Rhythms and Subjective Hunger Anticipate Meal Timing. Curr. Biol. 2023, 33, 1321–1326.e3. [Google Scholar] [CrossRef]
- Natalucci, G.; Riedl, S.; Gleiss, A.; Zidek, T.; Frisch, H. Spontaneous 24-h Ghrelin Secretion Pattern in Fasting Subjects. Eur. J. Endocrinol. 2005, 152, 845–850. [Google Scholar] [CrossRef]
- Sugino, T.; Yamaura, J.; Yamagishi, M.; Ogura, A.; Hayashi, R.; Kurose, Y.; Kojima, M.; Kangawa, K.; Hasegawa, Y.; Terashima, Y. A Transient Surge of Ghrelin Secretion before Feeding Is Modified by Different Feeding Regimens in Sheep. Biochem. Biophys. Res. Commun. 2002, 298, 785–788. [Google Scholar] [CrossRef]
- Drazen, D.L.; Vahl, T.P.; D’Alessio, D.A.; Seeley, R.J.; Woods, S.C. Effects of a Fixed Meal Pattern on Ghrelin Secretion: Evidence for a Learned Response Independent of Nutrient Status. Endocrinology 2006, 147, 23–30. [Google Scholar] [CrossRef]
- Walker, R.J.; Christopher, A.N. Time-of-Day Preference Mediates the Relationship between Personality and Breakfast Attitudes. Personal. Individ. Differ. 2016, 91, 138–143. [Google Scholar] [CrossRef]
- Allen, M.S.; Mishra, M.; Tashjian, S.M.; Laborde, S. Linking Big Five Personality Traits to Components of Diet: A Meta-Analytic Review. J. Personal. Soc. Psychol. 2025, 128, 905–929. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare National Health and Nutrition Survey 2019. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html (accessed on 8 September 2025).
- Ministry of Agriculture, Forestry and Fisheries Survey Report on Awareness of Food Education. Available online: https://www.maff.go.jp/j/press/syouan/hyoji/240607_7.html (accessed on 17 September 2025).
- Statistics Bureau, Ministry of Internal Affairs and Communications National Survey on Time Use and Leisure Activities 2021. Available online: https://www.e-stat.go.jp/stat-search/database?page=1&query=%E6%9C%9D%E9%A3%9F%E9%96%8B%E5%A7%8B%E3%80%80%E5%B9%B4%E9%BD%A2&layout=dataset&metadata=1&data=1 (accessed on 8 September 2025).
- Sasagawa Sports Foundation Global Physical Activity Questionnaire Result. Available online: https://www.ssf.or.jp/thinktank/sports_life/gpaq/01.html (accessed on 8 September 2025).



| Women (n = 742) | Men (n = 360) | |||
|---|---|---|---|---|
| Mean | SD | Mean | SD | |
| Age (years old) | 41.5 | 11.1 | 46.7 | 11.0 |
| Height (cm) | 158.3 | 5.3 | 171.6 | 5.9 |
| Weight (kg) | 55.6 | 10.4 | 69.5 | 9.7 |
| BMI (kg/m2) | 22.2 | 4.0 | 23.6 | 3.0 |
| Wake time (hh:mm) | 6:40 | 1:16 | 6:17 | 1:20 |
| Sleep onset time (hh:mm) | 23:45 | 1:11 | 23:32 | 1:14 |
| Sleep duration (hh:mm) | 6:55 | 0:58 | 6:46 | 0:57 |
| MSFsc (hh:mm) | 3:21 | 1:12 | 2:55 | 1:20 |
| SJL (hh:mm) | 0:40 | 0:38 | 0:30 | 0:36 |
| Physical activity (MET-h/week) | 32.9 | 30.3 | 47.4 | 43.0 |
| Breakfast time (hh:mm) | 7:53 | 1:15 | 7:24 | 1:12 |
| Lunch time (hh:mm) | 12:39 | 0:56 | 12:31 | 0:45 |
| Dinner time (hh:mm) | 19:08 | 1:12 | 19:24 | 1:11 |
| Breakfast time CPD (h) | 0.43 | 0.71 | 0.42 | 0.62 |
| Lunch time CPD (h) | 0.41 | 0.65 | 0.31 | 0.49 |
| Dinner time CPD (h) | 0.37 | 0.62 | 0.42 | 0.66 |
| Rate of breakfast skipping (%) | 5.5 | 13.5 | 4.5 | 13.3 |
| Daily energy intake (EI) (kcal/day) | 1536 | 241 | 2098 | 345 |
| (a) | ||||||||||||
| Lower Age Tertile Age < 36 [n = 245] | Intermediate Age Tertile # 36 ≤ Age < 47 [n = 240] | Upper Age Tertile 47 ≤ Age [n = 257] | ||||||||||
| Group [n] | Regular [162] | Slightly Irregular [31] | Irregular [52] | p for Trend | Regular [161] | Slightly Irregular [38] | Irregular [40] | p for Trend | Regular [182] | Slightly Irregular [38] | Irregular [37] | p for Trend |
| Age (years old) | 29.2 | 29.2 | 28.8 | 0.3762 | 40.8 | 41.0 | 40.7 | 0.5737 | 54.3 | 53.6 | 51.9 | 0.0076 * |
| (4.2) | (4.9) | (4.7) | (3.3) | (3.3) | (3.1) | (5.5) | (5.3) | (4.5) | ||||
| BMI (kg/m2) | 21.9 | 22.8 | 21.0 | 0.8281 | 22.3 | 23.2 | 22.0 | 0.5917 | 21.9 | 23.9 | 22.9 | 0.0050 |
| (3.6) | (6.3) | (2.0) | (3.7) | (5.2) | (3.6) | (4.0) | (3.8) | (4.7) | ||||
| MSFsc (hh:mm) | 3:39 | 3.26 | 4:06 | 0.0787 | 3:17 | 3:19 | 3:32 | 0.134 | 2:52 | 3:11 | 3:34 | 0.0007 |
| (1:10) | (1:14) | (1:17) | (1:07) | (1:13) | (1:16) | (1:03) | (1:07) | (1:21) | ||||
| Wake time (hh:mm) | 6:59 | 7:00 | 7:23 | 0.1615 | 6:38 | 6:39 | 6:56 | 0.1276 | 6:06 | 6:23 | 6:59 | 0.0015 |
| (1:11) | (1:17) | (1:32) | (1:13) | (1:15) | (1:10) | (1:02) | (1:05) | (1:29) | ||||
| Sleep onset time (hh:mm) | 23:58 | 23:44 | 24:10 | 0.3427 | 23:38 | 23:36 | 24:03 | 0.0559 | 23:23 | 23:53 | 24:05 | 0.0001 |
| (1:11) | (1:25) | (1:08) | (1:08) | (1:04) | (1:10) | (1:05) | (1:09) | (1:18) | ||||
| Sleep duration (h) | 7.0 | 7.3 | 7.2 | 0.0621 | 7.0 | 7.1 | 6.9 | 0.6042 | 6.7 | 6.5 | 6.9 | 0.2225 |
| (0.9) | (1.1) | (1.0) | (0.9) | (1.0) | (1.0) | (0.9) | (1.0) | (1.2) | ||||
| Breakfast time (hh:mm) | 7:56 | 8:08 | 8:27 | 0.0053 | 7:44 | 8:04 | 8:19 | <0.0001 | 7:29 | 7:48 | 8:44 | <0.0001 |
| (1:22) | (1:03) | (1:19) | (1:05) | (1:04) | (1:01) | (1:09) | (1:05) | (1:43) | ||||
| Lunch time (hh:mm) | 12:28 | 12:49 | 13:07 | <0.0001 | 12:32 | 12:46 | 12:52 | 0.0007 | 12:29 | 12:45 | 13:23 | <0.0001 |
| (0:51) | (0:37) | (1:11) | (0:46) | (0:39) | (0:58) | (0:55) | (0:41) | (1:25) | ||||
| Dinner time (hh:mm) | 19:08 | 19:23 | 19:25 | 0.1010 | 18:59 | 19:04 | 19:18 | 0.0857 | 19:01 | 19:04 | 19:41 | 0.0039 |
| (1:17) | (1:37) | (1:23) | (0:55) | (1:01) | (1:22) | (1:11) | (1:00) | (1:14) | ||||
| Daily EI (kcal/d) | 1508 | 1512 | 1486 | 0.5461 | 1576 | 1546 | 1550 | 0.8469 | 1536 | 1587 | 1510 | 0.672 |
| (240) | (191) | (271) | (254) | (267) | (268) | (196) | (298) | (249) | ||||
| Daily EI CV | 0.16 | 0.20 | 0.24 | <0.0001 | 0.15 | 0.15 | 0.18 | 0.0255 | 0.13 | 0.14 | 0.17 | 0.0016 |
| (0.09) | (0.11) | (0.13) | (0.08) | (0.07) | (0.09) | (0.07) | (0.07) | (0.06) | ||||
| PA (MET- hour/week) | 34.8 | 37.0 | 42.9 | 0.5119 | 30.0 | 29.0 | 29.1 | 0.411 | 32.4 | 28.3 | 35.9 | 0.5442 |
| (31.2) | (29.0) | (50.6) | (26.0) | (29.7) | (16.2) | (28.6) | (21.3) | (34.4) | ||||
| (b) | ||||||||||||
| Lower Age Tertile Age < 42 [n = 112] | Intermediate Age Tertile # 42 ≤ Age < 53 [n = 128] | Upper Age Tertile 53 ≤ Age [n = 120] | ||||||||||
| Group [n] | Regular [79] | Slightly Irregular [15] | Irregular [18] | p for Trend | Regular [77] | Slightly Irregular [19] | Irregular [31] | p for Trend | Regular [87] | Slightly Irregular [16] | Irregular [17] | p for Trend |
| Age (years old) | 33.4 | 33.9 | 33.7 | 0.3266 | 46.6 | 47.1 | 48.4 | 0.0056 | 59.0 | 57.1 | 58.6 | 0.7849 |
| (5.5) | (6.2) | (5.9) | (3.1) | (3.2) | (3.0) | (4.5) | (3.9) | (3.6) | ||||
| BMI (kg/m2) | 24.0 | 23.6 | 23.3 | 0.7001 | 23.6 | 23.3 | 23.1 | 0.7173 | 23.2 | 24.1 | 24.3 | 0.9494 |
| (3.7) | (3.3) | (2.8) | (3.0) | (2.5) | (2.9) | (2.5) | (3.0) | (2.7) | ||||
| MSFsc (hh:mm) | 3:32 | 2:40 | 4:04 | 0.3850 | 2:57 | 2:56 | 3:03 | 0.3687 | 2:16 | 2:40 | 2:15 | 0.3244 |
| (1:20) | (1:24) | (1:22) | (1:17) | (1:13) | (1:12) | (1:06) | (0:55) | (1:04) | ||||
| Wake time (hh:mm) | 6:56 | 6:21 | 7:21 | 0.3755 | 6:24 | 6:12 | 6:16 | 0.7133 | 5:35 | 5:53 | 5:29 | 0.5058 |
| (1:29) | (1:19) | (1:11) | (1:18) | (1:09) | (1:08) | (1:01) | (0:58) | (0:57) | ||||
| Sleep onset time (hh:mm) | 24:01 | 23:07 | 24:22 | 0.5822 | 23:37 | 23:37 | 23:46 | 0.2795 | 22:58 | 23:26 | 22:35 | 0.6141 |
| (1:12) | (1:22) | (1:24) | (1:14) | (1:08) | (1:03) | (1:04) | (1:00) | (0:50) | ||||
| Sleep duration (h) | 6.9 | 7.2 | 7.0 | 0.2078 | 6.8 | 6.6 | 6.5 | 0.8983 | 6.6 | 6.5 | 6.9 | 0.3948 |
| (1.1) | (0.7) | (1.0) | (0.9) | (1.0) | (0.8) | (0.9) | (0.8) | (0.7) | ||||
| Breakfast time (hh:mm) | 7:35 | 7:38 | 8:05 | 0.0308 | 7:21 | 7:24 | 7:42 | 0.1400 | 7:04 | 7:19 | 7:04 | 0.1820 |
| (1:04) | (1:02) | (1:07) | (1:23) | (0:39) | (1:29) | (1:12) | (0:50) | (0:51) | ||||
| Lunch time (hh:mm) | 12:34 | 12:33 | 12:56 | 0.0020 | 12:20 | 12:36 | 12:48 | 0.0001 | 12:27 | 12:38 | 12:21 | 0.1530 |
| (0:49) | (0:36) | (0:48) | (0:41) | (0:33) | (0:44) | (0:47) | (0:40) | (0:34) | ||||
| Dinner time (hh:mm) | 19:34 | 19:32 | 19:47 | 0.1665 | 19:26 | 19:30 | 19:41 | 0.1065 | 19:08 | 18:58 | 18:49 | 0.7990 |
| (1:18) | (1:06) | (1:13) | (1:11) | (0:58) | (1:07) | (1:12) | (0:48) | (0:58) | ||||
| Daily EI (kcal/d) | 2180 | 2191 | 2021 | 0.8523 | 2083 | 2063 | 2116 | 0.2238 | 2055 | 2067 | 2071 | 0.3915 |
| (396) | (300) | (382) | (336) | (368) | (306) | (305) | (280) | (413) | ||||
| Daily EI CV | 0.15 | 0.14 | 0.18 | 0.2096 | 0.14 | 0.17 | 0.18 | 0.0074 | 0.13 | 0.13 | 0.18 | 0.0160 |
| (0.06) | (0.05) | (0.09) | (0.07) | (0.06) | (0.08) | (0.06) | (0.07) | (0.10) | ||||
| PA (METS hour/week) | 53.4 | 39.1 | 44.9 | 0.7784 | 47.8 | 38.7 | 48.9 | 0.6642 | 47.9 | 41.6 | 38.8 | 0.8110 |
| (46.6) | (20.7) | (35.5) | (57.9) | (19.7) | (48.6) | (34.9) | (22.9) | (30.8) | ||||
| (a) | |||||||||
| Lower Age Tertile Age < 36 | Intermediate Age Tertile 36 ≤ Age < 47 | Upper Age Tertile 47 ≤ Age | |||||||
| Risk Factor | Coefficients | 95% CI | p-Value | Coefficients | 95% CI | p-Value | Coefficients | 95% CI | p-Value |
| Age | 1.345 | [0.136, 2.553] | 0.0302 | 0.019 | [−1.691, 1.728] | 0.9830 | 0.708 | [−0.341, 1.756] | 0.1869 |
| PA | −0.035 | [−0.446, 0.375] | 0.8663 | −0.31 | [−0.911, 0.300] | 0.3240 | −0.366 | [−0.899, 0.166] | 0.1789 |
| EI | 0.178 | [−0.312, 0.668] | 0.4772 | 0.30 | [−0.170, 0.775] | 0.2110 | 0.421 | [−0.126, 0.968] | 0.1330 |
| Chronotype | 0.861 | [0.246, 1.476] | 0.0065 | 0.53 | [−0.107, 1.173] | 0.1040 | 0.478 | [−0.176, 1.131] | 0.1536 |
| Breakfast time irregularity | −0.373 | [−0.956, 0.209] | 0.2101 | −0.07 | [−0.731, 0.583] | 0.8260 | 0.740 | [0.040, 1.440] | 0.0393 |
| (b) | |||||||||
| Lower Age Tertile Age < 42 | Intermediate Age Tertile 42 ≤ Age < 53 | Upper Age Tertile 53 ≤ Age | |||||||
| Risk Factor | Coefficients | 95% CI | p-Value | Coefficients | 95% CI | p-Value | Coefficients | 95% CI | p-Value |
| Age | 0.535 | [−0.674, 1.743] | 0.4238 | −0.788 | [−2.578, 1.002] | 0.3900 | 0.824 | [−0.397, 2.044] | 0.1886 |
| PA | 0.689 | [0.279, 1.100] | 0.0627 | 0.233 | [−0.189, 0.654] | 0.2810 | −0.622 | [−1.241, 0.004] | 0.0511 |
| EI | −0.091 | [−0.581, 0.399] | 0.7789 | −0.352 | [−0.873, 0.170] | 0.1890 | 0.194 | [−0.323, 0.711] | 0.4631 |
| Chronotype | −0.046 | [−0.661, 0.569] | 0.9065 | 0.488 | [−0.125, 1.101] | 0.1210 | 0.386 | [−0.309, 1.080] | 0.2783 |
| Breakfast time irregularity | −0.322 | [−0.904, 0.261] | 0.4703 | −0.179 | [−0.783, 0.426] | 0.5640 | 0.505 | [−0.131, 1.140] | 0.1225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, N.; Terasaki, H.; Tahara, Y.; Michie, M.; Umezawa, A.; Shibata, S. Day-to-Day Variability in Meal Timing and Its Association with Body Mass Index: A Study Using Data from a Japanese Food-Logging Mobile Application. Nutrients 2025, 17, 3504. https://doi.org/10.3390/nu17223504
Sato N, Terasaki H, Tahara Y, Michie M, Umezawa A, Shibata S. Day-to-Day Variability in Meal Timing and Its Association with Body Mass Index: A Study Using Data from a Japanese Food-Logging Mobile Application. Nutrients. 2025; 17(22):3504. https://doi.org/10.3390/nu17223504
Chicago/Turabian StyleSato, Noriko, Hiiro Terasaki, Yu Tahara, Mikiko Michie, Ariko Umezawa, and Shigenobu Shibata. 2025. "Day-to-Day Variability in Meal Timing and Its Association with Body Mass Index: A Study Using Data from a Japanese Food-Logging Mobile Application" Nutrients 17, no. 22: 3504. https://doi.org/10.3390/nu17223504
APA StyleSato, N., Terasaki, H., Tahara, Y., Michie, M., Umezawa, A., & Shibata, S. (2025). Day-to-Day Variability in Meal Timing and Its Association with Body Mass Index: A Study Using Data from a Japanese Food-Logging Mobile Application. Nutrients, 17(22), 3504. https://doi.org/10.3390/nu17223504

