Effects of Acute Caffeine Ingestion on Repeated Sprint Ability: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Data Extraction
2.5. Methodological Quality Assessment
2.6. Certainty Assessment
2.7. Statistical Analysis
3. Results
3.1. Studies Selection
3.2. Characteristics of the Included Studies
3.3. Risk of Bias
3.4. Meta-Analysis
3.5. Subgroup Analysis
3.5.1. Caffeine Dosage
3.5.2. Exercise Modality
3.5.3. Participant Sex
3.6. Publication Bias
3.7. Sensitivity Analysis
3.8. GRADE Summary
4. Discussion
4.1. Main Findings
4.2. Effects of Acute Caffeine Ingestion on Repeated Sprint Ability
4.3. Effects of Caffeine Dosage on Repeated Sprint Ability
4.4. Effects of Exercise Modality on Repeated Sprint Ability
4.5. Effects of Participant Sex on Repeated Sprint Ability
4.6. Practical Implications
4.7. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| RSA | Repeated sprint ability |
| ATP-CP | Adenosine triphosphate-creatine phosphate system |
| PPO | Peak power output |
| MPO | Mean power output |
| BW | Body weight |
| PRISMA | Preferred Reporting Items for Systematic Evaluation and Meta-Analysis |
| PROSPERO | International Prospective Register of Systematic Reviews |
| SD | Standard deviation |
| WMD | Weighted mean difference |
| CI | Confidence interval |
| SE | Standard error |
References
- Li, C.; Wu, S.; Lei, B.; Zang, W.; Tao, X.; Yu, L. Effect of aerobic exercise on endothelial function in hypertensive and prehypertensive patients: A systematic review and meta-analysis of randomized controlled trials. J. Hypertens. 2025, 43, 727–738. [Google Scholar] [CrossRef]
- Yang, C.C.; Hsieh, M.H.; Ho, C.C.; Chang, Y.H.; Shiu, Y.J. Effects of Caffeinated Chewing Gum on Exercise Performance and Physiological Responses: A Systematic Review. Nutrients 2024, 16, 3611. [Google Scholar] [CrossRef]
- Starling-Soares, B.; Pereira, M.; Renke, G. Extrapolating the Coffee and Caffeine (1,3,7-Trimethylxanthine) Effects on Exercise and Metabolism—A Concise Review. Nutrients 2023, 15, 5031. [Google Scholar] [CrossRef] [PubMed]
- Antonio, J.; Pereira, F.; Curtis, J.; Rojas, J.; Evans, C. The Top 5 Can’t-Miss Sport Supplements. Nutrients 2024, 16, 3247. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, L.; Zhang, C.; Hu, Z.; Tang, J.; Xue, J.; Lu, W. Caffeine intake and anxiety: A meta-analysis. Front. Psychol. 2024, 15, 1270246. [Google Scholar] [CrossRef] [PubMed]
- Saimaiti, A.; Zhou, D.D.; Li, J.; Xiong, R.G.; Gan, R.Y.; Huang, S.Y.; Shang, A.; Zhao, C.N.; Li, H.Y.; Li, H.B. Dietary sources, health benefits, and risks of caffeine. Crit. Rev. Food Sci. Nutr. 2023, 63, 9648–9666. [Google Scholar] [CrossRef]
- Brower, J.O.; Swatek, J.L. Beyond the buzz: The fatal consequences of caffeine overconsumption. J. Anal. Toxicol. 2024, 48, 535–540. [Google Scholar] [CrossRef]
- Bruce, C.R.; Anderson, M.E.; Fraser, S.F.; Stepto, N.K.; Klein, R.; Hopkins, W.G.; Hawley, J.A. Enhancement of 2000-m rowing performance after caffeine ingestion. Med. Sci. Sports Exerc. 2000, 32, 1958–1963. [Google Scholar] [CrossRef]
- Silva, H.; Del Coso, J.; Pickering, C. Caffeine and Sports Performance: The Conflict between Caffeine Intake to Enhance Performance and Avoiding Caffeine to Ensure Sleep Quality. Sports Med. 2025, 55, 1579–1592. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Spriet, L.L. Exercise and sport performance with low doses of caffeine. Sports Med. 2014, 44 (Suppl. S2), S175–S184. [Google Scholar] [CrossRef] [PubMed]
- Costantino, A.; Maiese, A.; Lazzari, J.; Casula, C.; Turillazzi, E.; Frati, P.; Fineschi, V. The Dark Side of Energy Drinks: A Comprehensive Review of Their Impact on the Human Body. Nutrients 2023, 15, 3922. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Kammer, L.; Ding, Z.; Wang, B.; Bernard, J.R.; Liao, Y.H.; Hwang, J. Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Kreutzer, A.; Graybeal, A.J.; Moss, K.; Braun-Trocchio, R.; Shah, M. Caffeine Supplementation Strategies Among Endurance Athletes. Front. Sports Act. Living 2022, 4, 821750. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673. [Google Scholar] [CrossRef]
- Castagna, C.; Manzi, V.; D’Ottavio, S.; Annino, G.; Padua, E.; Bishop, D. Relation between maximal aerobic power and the ability to repeat sprints in young basketball players. J. Strength. Cond. Res. 2007, 21, 1172–1176. [Google Scholar]
- Stolen, T.; Chamari, K.; Castagna, C.; Wisloff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Austin, D.J.; Kelly, S.J. Positional differences in professional rugby league match play through the use of global positioning systems. J. Strength. Cond. Res. 2013, 27, 14–19. [Google Scholar] [CrossRef]
- Bougrine, H.; Ammar, A.; Salem, A.; Trabelsi, K.; Zmijewski, P.; Jahrami, H.; Cthourou, H.; Souissi, N. Effects of Different Caffeine Dosages on Maximal Physical Performance and Potential Side Effects in Low-Consumer Female Athletes: Morning vs. Evening Administration. Nutrients 2024, 16, 2223. [Google Scholar] [CrossRef]
- Lee, C.-L.; Cheng, C.-F.; Lin, J.-C.; Huang, H.-W. Caffeine’s effect on intermittent sprint cycling performance with different rest intervals. Eur. J. Appl. Physiol. 2011, 112, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.F.; Enes, A.; Rezende, E.F.; Okuyama, A.R.; Alves, C.R.; Andrade, M.; Macedo, A.C.G.; Barros, M.P.; Candow, D.G.; Forbes, S.C.; et al. Caffeine Does Not Alter Performance, Perceptual Responses, and Oxidative Stress After Short Sprint Interval Training. Nutrients 2024, 34, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Bougrine, H.; Ammar, A.; Salem, A.; Trabelsi, K.; Jahrami, H.; Cthourou, H.; Souissi, N. Optimizing Short-Term Maximal Exercise Performance: The Superior Efficacy of a 6 mg/kg Caffeine Dose over 3 or 9 mg/kg in Young Female Team-Sports Athletes. Nutrients 2024, 16, 640. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Y.; Dong, C.; Zhou, Z.; Zheng, X. Effects of Various Doses of Caffeine Ingestion on Intermittent Exercise Performance and Cognition. Brain Sci. 2020, 10, 595–607. [Google Scholar] [CrossRef]
- Munoz, A.; Lopez-Samanes, A.; Aguilar-Navarro, M.; Varillas-Delgado, D.; Rivilla-Garcia, J.; Moreno-Perez, V.; Del Coso, J. Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players. Genes 2020, 11, 933. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Marin-Puyalto, J.; Muiz-Pardos, B.; Matute-Llorente, A.; Coso, J.D.; Gomez-Cabello, A.; Vicente-Rodriguez, G.; Casajus, J.A.; Lozano-Berges, G. Does Acute Caffeine Supplementation Improve Physical Performance in Female Team-Sport Athletes? Evidence from a Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3663. [Google Scholar] [CrossRef]
- Lopez-Torres, O.; Rodriguez-Longobardo, C.; Capel-Escoriza, R.; Fernandez-Elias, V.E. Ergogenic Aids to Improve Physical Performance in Female Athletes: A Systematic Review with Meta-Analysis. Nutrients 2022, 15, 81. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Choo, H.C.; Franchini, E.; Abbiss, C.R. Isolated ingestion of caffeine and sodium bicarbonate on repeated sprint performance: A systematic review and meta-analysis. J. Sci. Med. Sport 2019, 22, 962–972. [Google Scholar] [CrossRef]
- Diaz-Lara, J.; Nieto-Acevedo, R.; Abian-Vicen, J.; Coso, J.D. Can Caffeine Change the Game? Effects of Acute Caffeine Intake on Specific Performance in Intermittent Sports During Competition: A Systematic Review and Meta-Analysis. Int. J. Sports Physiol. Perform. 2024, 19, 1180–1196. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Zagatto, A.M.; Beck, W.R.; Gobatto, C.A. Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J. Strength. Cond. Res. 2009, 23, 1820–1827. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, R.; Liu, X.; Wang, J.; Wang, L.; Lv, Y.; Yu, L. Effects of Aerobic Exercise on Blood Lipids in People with Overweight or Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Life 2025, 15, 166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhen, K.; Su, Q.; Chen, Y.; Lv, Y.; Yu, L. The Effect of Aerobic Exercise on Cognitive Function in People with Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 15700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, G.; Zhang, S.; Zhou, Y.; Lv, Y.; Feng, L.; Yu, L. Effects of Exercise on Depression and Anxiety in Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cancer Med. 2025, 14, e70671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, G.; Su, H.; Liang, Y.; Lv, Y.; Yu, L. Effects of exercise on balance function in people with multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials. J. Neurol. 2025, 272, 405. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, Z.; Zhang, S.; Wang, Y.; Zhang, C.; Lv, Y.; Yu, L. Effects of Exercise on Cancer-Related Fatigue in Breast Cancer Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Life 2024, 14, 1011. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, H.; Hou, X.; Dong, X.; Zhang, S.; Lv, Y.; Li, C.; Yu, L. The effect of exercise on balance function in stroke patients: A systematic review and meta-analysis of randomized controlled trials. J. Neurol. 2024, 271, 4751–4768. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Santos, J.F.D.S.; Franchini, E. Can caffeine supplementation reverse the effect of time of day on repeated-sprint exercise performance? Appl. Physiol. Nutr. Metab. 2018, 44, 187–193. [Google Scholar] [CrossRef]
- Perez-Lopez, A.; Garriga-Alonso, L.; Montalvo-Alonso, J.J.; del Val-Manzano, M.; Valades, D.; Vila, H.; Ferragut, C. Sex differences in the acute effect of caffeine on repeated sprint performance: A randomized controlled trial. Eur. J. Sport Sci. 2025, 25, e12233. [Google Scholar] [CrossRef]
- Bougrine, H.; Paillard, T.; Jebabli, N.; Ceylan, H.İ.; Maitre, J.; Dergaa, I.; Stefanica, V.; Ben Abderrahman, A.B. Ergogenic Effects of Combined Caffeine Supplementation and Motivational Music on Anaerobic Performance in Female Handball Players: A Randomized Double-Blind Controlled Trial. Nutrients 2025, 17, 1613. [Google Scholar] [CrossRef]
- Buck, C.; Guelfi, K.; Dawson, B.; McNaughton, L.; Wallman, K. Effects of sodium phosphate and caffeine loading on repeated-sprint ability. J. Sports Sci. 2015, 33, 1971–1979. [Google Scholar] [CrossRef]
- Karayigit, R.; Aras, D. One Week of Low or Moderate Doses of Caffeinated Coffee Consumption Does Not Induce Tolerance to The Acute Effects of Caffeine on Sprint Performance. Eur. J. Human. Mov. 2021, 47, 49–60. [Google Scholar]
- Lee, C.-L.; Cheng, C.-F.; Astorino, T.A.; Lee, C.-J.; Huang, H.-W.; Chang, W.-D. Effects of carbohydrate combined with caffeine on repeated sprint cycling and agility performance in female athletes. J. Int. Soc. Sports Nutr. 2014, 11, 17. [Google Scholar] [CrossRef]
- Raya-González, J.; Scanlan, A.T.; Soto-Célix, M.; Rodríguez Fernández, A.; Castillo Alvira, D. Caffeine ingestion improves performance during fitness tests but does not alter activity during simulated games in professional basketball players. Int. J. Sports Physiol. Perform. 2021, 16, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Karayigit, R.; Forbes, S.C.; Osmanov, Z.; Yılmaz, C.; Yasli, B.C.; Naderi, A.; Buyukcelebi, H.; Benesova, D.; Gabrys, T.; Esen, O. Low and Moderate Doses of Caffeinated Coffee Improve Repeated Sprint Performance in Female Team Sport Athletes. Biology 2022, 11, 1498. [Google Scholar] [CrossRef] [PubMed]
- Beaven, C.M.; Maulder, P.; Pooley, A.; Kilduff, L.; Cook, C. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Appl. Physiol. Nutr. Metab. 2013, 38, 633–637. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Battig, K.; Holmen, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar] [CrossRef]
- Smith, A.P. Effects of caffeine in chewing gum on mood and performance at different times of day. World J. Pharm. Med. Res. 2021, 8, 114–118. [Google Scholar]
- Smirmaul, B.P.; de Moraes, A.C.; Angius, L.; Marcora, S.M. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. Eur. J. Appl. Physiol. 2017, 117, 27–38. [Google Scholar] [CrossRef]
- Romdhani, M.; Souissi, N.; Moussa-Chamari, I.; Chaabouni, Y.; Mahdouani, K.; Sahnoun, Z.; Driss, T.; Chamari, K.; Hammouda, O. Caffeine Use or Napping to Enhance Repeated Sprint Performance After Partial Sleep Deprivation: Why Not Both? Int. J. Sports Physiol. Perform. 2021, 16, 711–718. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and exercise: Metabolism, endurance and performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Cao, Y.; He, W.; Ding, L.; Lei, T.H.; Schlader, Z.; Mundel, T.; Wang, R.; Guo, L.; Liu, J.; Girard, O. Dose-response effects of caffeine during repeated cycling sprints in normobaric hypoxia to exhaustion. Eur. J. Appl. Physiol. 2025, 125, 223–236. [Google Scholar] [CrossRef]
- Evans, M.; Tierney, P.; Gray, N.; Hawe, G.; Macken, M.; Egan, B. Acute Ingestion of Caffeinated Chewing Gum Improves Repeated Sprint Performance of Team Sport Athletes with Low Habitual Caffeine Consumption. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 221–227. [Google Scholar] [CrossRef]
- Schneiker, K.T.; Bishop, D.; Dawson, B.; Hackett, L.P. Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Med. Sci. Sports Exerc. 2006, 38, 578–585. [Google Scholar] [CrossRef]
- Glaister, M.; Howatson, G.; Abraham, C.S.; Lockey, R.A.; Goodwin, J.E.; Foley, P.; McInnes, G. Caffeine supplementation and multiple sprint running performance. Med. Sci. Sports Exerc. 2008, 40, 1835–1840. [Google Scholar] [CrossRef]
- Deliceoglu, G. Comparative Analysis of Energy System Demands and Performance Metrics in Professional Soccer Players: Running vs. Cycling Repeated Sprint Tests. Appl. Sci. 2024, 14, 6518. [Google Scholar] [CrossRef]
- Mahdavi, R.; Daneghian, S.; Jafari, A.; Homayouni, A. Effect of Acute Caffeine Supplementation on Anaerobic Power and Blood Lactate Levels in Female Athletes. J. Caffeine Res. 2015, 5, 83–87. [Google Scholar] [CrossRef]
- Fernández-Campos, C.; Dengo, A.L.; Moncada-Jiménez, J. Acute Consumption of an Energy Drink Does Not Improve Physical Performance of Female Volleyball Players. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Kopec, B.J.; Dawson, B.T.; Buck, C.; Wallman, K.E. Effects of sodium phosphate and caffeine ingestion on repeated-sprint ability in male athletes. J. Sci. Med. Sport 2016, 19, 272–276. [Google Scholar] [CrossRef]
- Lara, B.; Gonzalez-Millan, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Munoz, V.; Portillo, L.J.; Gonzalez-Rave, J.M.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef]
- Pollock, B.G.; Wylie, M.; Stack, J.A.; Sorisio, D.A.; Thompson, D.S.; Kirshner, M.A.; Folan, M.M.; Condifer, K.A. Inhibition of caffeine metabolism by estrogen replacement therapy in postmenopausal women. J. Clin. Pharmacol. 1999, 39, 936–940. [Google Scholar] [CrossRef]
- Nabuco, L.L.; Saunders, B.; Sousa da Silva, R.A.; Molina, G.E.; Reis, C.E.G. Caffeine Mouth Rinse Does Not Improve Time to Exhaustion in Male Trained Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 412–419. [Google Scholar] [CrossRef]
- Jiménez, S.L.; Díaz-Lara, J.; Pareja-Galeano, H.; Del Coso, J. Caffeinated Drinks and Physical Performance in Sport: A Systematic Review. Nutrients 2021, 13, 2944. [Google Scholar] [CrossRef]
- Clarke, N.; Baxter, H.; Fajemilua, E.; Jones, V.; Mundy, P. Coffee and Caffeine Ingestion Have Little Effect on Repeated Sprint Cycling in Relatively Untrained Males. Sports 2016, 4, 45. [Google Scholar] [CrossRef]
- Woolf, K.; Bidwell, W.K.; Carlson, A.G. The Effect of Caffeine as an Ergogenic Aid in Anaerobic Exercise. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 412–429. [Google Scholar] [CrossRef]
- Willson, C. The clinical toxicology of caffeine: A review and case study. Toxicol. Rep. 2018, 5, 1140–1152. [Google Scholar] [CrossRef]





| Study | Country | Sample Size | Age (y) | Caffeine Dose (mg/kg BW) | Timing of Caffeine Ingestion (min) | Exercise Mode | Sprint Protocol | Main Outcomes |
|---|---|---|---|---|---|---|---|---|
| Bernardo et al. 2024 [22] | Brazil | 12 M | 26 ± 4 | 6 | 60 | Cycling | 12 × 6 s; 60 s rest | PPO → |
| Bougrine et al. 2024 [20] | Tunisia | 15 F | 18.3 ± 0.5 | 3, 6 | 60 | Running | 6 × (2 × 12.5 m) shuttle sprints; 20 s rest | Morning: FST ↓; Evening: FST → |
| Bougrine et al. 2024 [23] | Tunisia | 16 F | 16.9 ± 0.6 | 3, 6, 9 | 60 | Running | 6 × (2 × 12.5 m) shuttle sprints; 20 s rest | FST ↓ in CAF-6 and -9; FST → in CAF-3 |
| Bougrine et al. 2025 [40] | Tunisia | 17 F | 16.7 ± 0.4 | 6 | 60 | Running | 6 × (2 × 12.5 m) shuttle sprints; 20 s rest | FST ↓ |
| Buck et al. 2015 [41] | Australia | 12 F | 25.5 ± 1.9 | 6 | 60 | Running | 6 × 20 m; 25 s rest (only set 1) | FST → |
| Karayigit et al. 2021 [42] | Turkey | 24 M | 22 ± 1.5 | 6 | 60 | Cycling | 12 × 4 s; 90 s rest | PPO ↑ |
| Karayigit et al. 2022 [45] | Turkey | 13 F | 20 ± 1 | 3, 6 | 60 | Cycling | 12 × 4 s; 20 s rest | PPO ↑ |
| Lee et al. 2011 [21] | China | 14 M | 18.7 ± 0.8 | 6 | 60 | Cycling | 2 sets of 12 × 4 s; 20 s or 90 s rest between sprint, 4 min rest between sets | 20 s recovery interval: PPO →; 90 s recovery interval: PPO ↑ |
| Lee et al. 2014 [43] | China | 11 F | 21.3 ± 1.2 | 6 | 60 | Cycling | 10 sets of 5 × 4 s; 20 s active recovery (60–70 rpm, 50 watts) | PPO → |
| Lopes-Silva et al. 2018 [38] | Brazil | 13 M | 26.4 ± 4 | 5 | 60 | Cycling | 10 × 6 s; 30 s rest | PPO → |
| Perez-Lopez et al. 2025 [39] | Spain | 26 M and 26 F | 24 ± 4.5 | 3 | 60 | Cycling | 4 × 30 s; 90 s rest | PPO: Both sex: Wt1 & 3 & 4 ↑, Wt2 →. Male: Wt1 & 2 ↑, Wt3 & 4 →. Female: contrary to males. |
| Raya-González et al. 2021 [44] | Spain | 14 M | 21 ± 2 | 6 | 60 | Running | 5 × 30 m; 30 s rest | FST ↑ |
| Wang et al. 2020 [24] | China | 10 M | 20.88 ± 2.72 | 3, 6, 9 | 60 | Cycling | 4 × (15 × 5 s); 55 s rest | PPO ↑ in CAF-3; PPO → in CAF-6 and -9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Su, W.; Zhang, S.; Zhao, L.; Lv, Y.; Gu, B.; Yu, L. Effects of Acute Caffeine Ingestion on Repeated Sprint Ability: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 3475. https://doi.org/10.3390/nu17213475
Wang Y, Su W, Zhang S, Zhao L, Lv Y, Gu B, Yu L. Effects of Acute Caffeine Ingestion on Repeated Sprint Ability: A Systematic Review and Meta-Analysis. Nutrients. 2025; 17(21):3475. https://doi.org/10.3390/nu17213475
Chicago/Turabian StyleWang, Yunteng, Wantang Su, Shiyan Zhang, Li Zhao, Yuanyuan Lv, Boya Gu, and Laikang Yu. 2025. "Effects of Acute Caffeine Ingestion on Repeated Sprint Ability: A Systematic Review and Meta-Analysis" Nutrients 17, no. 21: 3475. https://doi.org/10.3390/nu17213475
APA StyleWang, Y., Su, W., Zhang, S., Zhao, L., Lv, Y., Gu, B., & Yu, L. (2025). Effects of Acute Caffeine Ingestion on Repeated Sprint Ability: A Systematic Review and Meta-Analysis. Nutrients, 17(21), 3475. https://doi.org/10.3390/nu17213475

