Synthetic Food Preservatives Modulate Apoptotic Gene Expression in HepG2 Cells: Divergent Effects of Sodium Benzoate, Potassium Sorbate, and Sodium Metabisulfite
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Preservative Treatments
2.3. RNA Isolation and cDNA Synthesis
2.4. Quantitative PCR (qPCR)
2.5. Statistical Analysis
3. Results
3.1. Effects of Sodium Benzoate on Gene Expression
3.2. Effects of Potassium Sorbate on Gene Expression
3.3. Effects of Sodium Metabisulfite on Gene Expression
3.4. Time-Dependent Changes in Gene Expression
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HepG2 | human hepatocellular carcinoma | 
| CASP3 | caspase-3 | 
| CASP8 | caspase-8 | 
| BAX | BCL2-associated X protein, Apoptosis Regulator | 
| BCL2 | BCL2 Apoptosis Regulator | 
| NF-κB | nuclear Factor kappa-light-chain-enhancer of activated B cells | 
| TNF-α | tumor Necrosis Factor-alpha | 
| SB | sodium benzoate | 
| PS | potassium sorbate | 
| SMB | sodium metabisulfite | 
| BAK | BCL2 Antagonist/Killer | 
| BCL-XL | B-cell lymphoma—extra large | 
| DNA | deoxyribonucleic acid | 
| RNA | ribonucleic acid | 
| ROS | reactive oxygen species | 
| RT-qPCR | quantitative reverse transcription polymerase chain reaction | 
| DMEM | Dulbecco’s modified eagle’s medium | 
| FBS | fetal bovine serum | 
| EDTA | ethylenediaminetetraacetic acid | 
| RNase | ribonucleas | 
| NMDA | N-methyl-D-aspartate receptor | 
| DEPC | diethyl pyrocarbonate-treated | 
| PCR | polymerase chain reaction | 
| cDNA | complementary DNA | 
| HPRT1 | hypoxanthine phosphoribosyltransferase 1 | 
| Ct | Cycle-threshold | 
| ΔCt | delta Cycle-threshold | 
| mRNA | messenger ribonucleic acid | 
References
- Abd-Elhakim, Y.M.; Behairy, A.; Hashem, M.M.M.; Abo-El-Sooud, K.; El-Metwally, A.E.; Hassan, B.A.; Ali, H.A. Toll-like receptors and nuclear factor kappa B signaling pathway involvement in hepatorenal oxidative damage induced by some food preservatives in rats. Sci. Rep. 2023, 13, 5938. [Google Scholar] [CrossRef]
 - Raposa, B.; Pónusz, R.; Gerencsér, G.; Budán, F.; Gyöngyi, Z.; Tibold, A.; Hegyi, D.; Kiss, I.; Koller, Á.; Varjas, T. Food additives: Sodium benzoate, potassium sorbate, azorubine, and tartrazine modify the expression of NFκB, GADD45α, and MAPK8 genes. Physiol. Int. 2016, 103, 334–343. [Google Scholar] [CrossRef]
 - Yilmaz, B.; Karabay, A.Z. Food Additive Sodium Benzoate (NaB) Activates NFκB and Induces Apoptosis in HCT116 Cells. Molecules 2018, 23, 723. [Google Scholar] [CrossRef]
 - Mersch-Sundermann, V.; Knasmüller, S.; Wu, X.J.; Darroudi, F.; Kassie, F. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology 2004, 198, 329–340. [Google Scholar] [CrossRef]
 - Walczak-Nowicka, Ł.J.; Herbet, M. Sodium Benzoate-Harmfulness and Potential Use in Therapies for Disorders Related to the Nervous System: A Review. Nutrients 2022, 14, 1497. [Google Scholar] [CrossRef]
 - Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
 - Abd-Elhakim, Y.M.; Hashem, M.M.M.; Abo-El-Sooud, K.; Ali, H.A.; Anwar, A.; El-Metwally, A.E.; Mahmoud, E.A.; Moustafa, G.G. Involvement of tumor necrosis factor-α, interferon gamma-γ, and interleukins 1β, 6, and 10 in immunosuppression due to long-term exposure to five common food preservatives in rats. Gene 2020, 742, 144590. [Google Scholar] [CrossRef]
 - Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
 - Reculusa, S.; Arbault, S. Scientific Opinion on the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228) as food additives. EFSA J. 2016, 14, 4438. [Google Scholar] [CrossRef]
 - Asejeje, F.O.; Ajayi, B.O.; Abiola, M.A.; Samuel, O.; Asejeje, G.I.; Ajiboye, E.O.; Ajayi, A.M. Sodium benzoate induces neurobehavioral deficits and brain oxido-inflammatory stress in male Wistar rats: Ameliorative role of ascorbic acid. J. Biochem. Mol. Toxicol. 2022, 36, e23010. [Google Scholar] [CrossRef]
 - Pongsavee, M. Effect of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes. Biomed. Res. Int. 2015, 2015, 103512. [Google Scholar] [CrossRef]
 - Saatci, C.; Erdem, Y.; Bayramov, R.; Akalın, H.; Tascioglu, N.; Ozkul, Y. Effect of sodium benzoate on DNA breakage, micronucleus formation and mitotic index in peripheral blood of pregnant rats and their newborns. Biotechnol. Biotechnol. Equip. 2016, 30, 1179–1183. [Google Scholar] [CrossRef]
 - Li, D.; Zhang, L.; Yang, P.; He, Y.; Zhou, T.; Cheng, X.; Jiang, Z.; Long, Y.; Wan, Q.; Yan, P.; et al. Sodium benzoate induces pancreatic inflammation and β cell apoptosis partially via benzoylation. Ecotoxicol. Environ. Saf. 2024, 270, 115877. [Google Scholar] [CrossRef]
 - Zhang, X.; Zhang, Q.; Song, X.; Yang, W.; Cheng, A.; Zhang, J.; Dong, W. Toxicity Evaluation of Potassium Sorbate In Vivo with Drosophila Melanogaster. Insects 2024, 15, 703. [Google Scholar] [CrossRef]
 - Vally, H.; Misso, N.L. Adverse reactions to the sulphite additives. Gastroenterol. Hepatol. Bed Bench 2012, 5, 16–23. [Google Scholar] [PubMed] [PubMed Central]
 - Ercan, S.; Oztürk, N.; Celik-Ozenci, C.; Gungor, N.E.; Yargicoglu, P. Sodium metabisulfite induces lipid peroxidation and apoptosis in rat gastric tissue. Toxicol. Ind. Health 2010, 26, 425–431. [Google Scholar] [CrossRef]
 - Alimohammadi, A.; Moosavy, M.H.; Amin Doustvandi, M.; Baradaran, B.; Amini, M.; Mokhtarzadeh, A.; de la Guardia, M. Sodium metabisulfite as a cytotoxic food additive induces apoptosis in HFFF2 cells. Food Chem. 2021, 358, 129910. [Google Scholar] [CrossRef]
 - Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.J.; Frutos Fernandez, M.J.; Fürst, P.; Gundert-Remy, U.; Gürtler, R.; Husøy, T.; et al. Follow-up of the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228). EFSA J. 2022, 20, e07594. [Google Scholar]
 - Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
 - Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 2008, 9, 231–241. [Google Scholar] [CrossRef]
 - Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008, 9, 47–59. [Google Scholar] [CrossRef]
 - Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014, 15, 49–63. [Google Scholar] [CrossRef]
 - Ashkenazi, A.; Dixit, V.M. Death receptors: Signaling and modulation. Science 1998, 281, 1305–1308. [Google Scholar] [CrossRef]
 - Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
 - El-Hefny, I.M.; Al Senosy, N.K.; Hozayen, W.G.; Ahmed, A.E.; Diab, A.; Basal, W.T. Evaluation of the Cytotoxicity and Apoptotic Induction in Human Liver Cell Lines Exposed to Three Food Additives. Recent. Pat. Food Nutr. Agric. 2020, 11, 193–201. [Google Scholar] [CrossRef] [PubMed]
 - Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef]
 - Qu, D.; Jiang, M.; Huang, D.; Zhang, H.; Feng, L.; Chen, Y.; Zhu, X.; Wang, S.; Han, J. Synergistic Effects of The Enhancements to Mitochondrial ROS, p53 Activation and Apoptosis Generated by Aspartame and Potassium Sorbate in HepG2 Cells. Molecules 2019, 24, 457. [Google Scholar] [CrossRef] [PubMed]
 - Piper, P.W. Potential safety issues surrounding the use of benzoate preservatives. Beverages 2018, 4, 33. [Google Scholar] [CrossRef]
 - Banerjee, T.; Giri, A. Effects of sorbic acid and sorbic acid-nitrite in vivo on bone marrow chromosomes of mice. Toxicol. Lett. 1986, 31, 101–106. [Google Scholar] [CrossRef]
 - Mamur, S.; Yüzbaşıoğlu, D.; Unal, F.; Aksoy, H. Genotoxicity of food preservative sodium sorbate in human lymphocytes in vitro. Cytotechnology 2012, 64, 553–562. [Google Scholar] [CrossRef]
 - Bettermann, K.; Vucur, M.; Haybaeck, J.; Koppe, C.; Janssen, J.; Heymann, F.; Weber, A.; Weiskirchen, R.; Liedtke, C.; Gassler, N. TAK1 suppresses a NEMO-dependent but NF-κB-independent pathway to liver cancer. Cancer Cell 2010, 17, 481–496. [Google Scholar] [CrossRef]
 - McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E.; et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. Lancet 2007, 370, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
 - Bandarian, F.; Razi, F.; Razzaghi, Z.; Nejad, M.R.; Arjmand, B.; Rezaei-Tavirani, M. The effect of sodium benzoate and nisin on human HepG2 cell gene expression. Appl. Food Biotechnol. 2024, 11, e3. [Google Scholar] [CrossRef]
 - Cohen, G.M. Caspases: The executioners of apoptosis. Biochem. J. 1997, 326 Pt 1, 1–16. [Google Scholar] [CrossRef] [PubMed]
 - Nair, B. Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate. Int. J. Toxicol. 2001, 20 (Suppl. S3), 23–50. [Google Scholar] [CrossRef]
 - Zengin, N.; Yüzbaşıoğlu, D.; Unal, F.; Yılmaz, S.; Aksoy, H. The evaluation of the genotoxicity of two food preservatives: Sodium benzoate and potassium benzoate. Food Chem. Toxicol. 2011, 49, 763–769. [Google Scholar] [CrossRef]
 - Mamur, S.; Yüzbaşioğlu, D.; Unal, F.; Yilmaz, S. Does potassium sorbate induce genotoxic or mutagenic effects in lymphocytes? Toxicol. Vitr. 2010, 24, 790–794. [Google Scholar] [CrossRef]
 - Hejazi, L.; Mahboubi-Rabbani, M.; Mahdavi, V.; Alemi, M.; Khanniri, E.; Bayanati, M. A critical review on sodium benzoate from health effects to analytical methods. Results Chem. 2024, 11, 101798. [Google Scholar] [CrossRef]
 - Türkoğlu, S. Genotoxicity of five food preservatives tested on root tips of Allium cepa L. Mutat. Res. 2007, 626, 4–14. [Google Scholar] [CrossRef]
 - Sin, Y.C.; Abernathy, B.; Yuan, Z.F.; Heier, J.L.; Gonzalez, J.E.; Parker, L.L.; Mashek, D.G.; Chen, Y. Sorbate induces lysine sorbylation through noncanonical activities of class I HDACs to regulate the expression of inflammation genes. Sci. Adv. 2025, 11, eadv1071. [Google Scholar] [CrossRef]
 - Mpountoukas, P.; Vantarakis, A.; Sivridis, E.; Lialiaris, T. Cytogenetic study in cultured human lymphocytes treated with three commonly used preservatives. Food Chem. Toxicol. 2008, 46, 2390–2393. [Google Scholar] [CrossRef] [PubMed]
 - El-Shennawy, L.; Kamel, M.A.E.; Khalaf, A.H.Y.; Yousef, M.I. Dose-dependent reproductive toxicity of sodium benzoate in male rats: Inflammation, oxidative stress and apoptosis. Reprod. Toxicol. 2020, 98, 92–98. [Google Scholar] [CrossRef] [PubMed]
 - Dehghan, P.; Mohammadi, A.; Mohammadzadeh-Aghdash, H.; Dolatabadi, J.E.N. Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Trends Food Sci. Technol. 2018, 80, 123–130. [Google Scholar] [CrossRef]
 - Piper, J.D.; Piper, P.W. Benzoate and Sorbate Salts: A Systematic Review of the Potential Hazards of These Invaluable Preservatives and the Expanding Spectrum of Clinical Uses for Sodium Benzoate. Compr. Rev. Food Sci. Food Saf. 2017, 16, 868–880. [Google Scholar] [CrossRef]
 - Lee, J.D.; Lee, J.; Vang, J.; Pan, X. Sodium Benzoate Induces Fat Accumulation and Reduces Lifespan via the SKN-1/Nrf2 Signaling Pathway: Evidence from the Caenorhabditis elegans Model. Nutrients 2024, 16, 3753. [Google Scholar] [CrossRef]
 








| Gene Symbol | Full Gene Name | Forward Primer (5′ → 3′) | Reverse Primer (5′ → 3′) | 
|---|---|---|---|
| CASP3 | Caspase-3 | CTG AGC CAT GGT GAA GAA G | CGG CAG GCC TGA ATA ATG | 
| CASP8 | Caspase-8 | CCA GTG GGC AAG AGA ATT AG | CAA GTG ACC AAC TCA AGG G | 
| BAX | BCL2 associated X, apoptosis regulator | GAG CTG CAG AGG ATG ATT G | GCC TTG AGC ACC AGT TT | 
| BCL2 | BCL2 apoptosis regulator | GGC CAG GGT CAG AGT TA | CCT CTC TTG CGG AGT ATT TG | 
| HPRT1 | Hypoxanthine phosphoribosyltransferase 1 (HPRT1) (housekeeping control) | TGC TTC TCC TCA GCT TCA | CTC AGG AGG AGG AAG CC | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintér, M.; Macharia, J.M.; Kövesdi, O.L.; Rozmann, N.; Zand, A.; Szerb, K.; Varjas, T.; Raposa, B.L. Synthetic Food Preservatives Modulate Apoptotic Gene Expression in HepG2 Cells: Divergent Effects of Sodium Benzoate, Potassium Sorbate, and Sodium Metabisulfite. Nutrients 2025, 17, 3466. https://doi.org/10.3390/nu17213466
Pintér M, Macharia JM, Kövesdi OL, Rozmann N, Zand A, Szerb K, Varjas T, Raposa BL. Synthetic Food Preservatives Modulate Apoptotic Gene Expression in HepG2 Cells: Divergent Effects of Sodium Benzoate, Potassium Sorbate, and Sodium Metabisulfite. Nutrients. 2025; 17(21):3466. https://doi.org/10.3390/nu17213466
Chicago/Turabian StylePintér, Márton, John M. Macharia, Orsolya Liza Kövesdi, Nóra Rozmann, Afshin Zand, Katalin Szerb, Tímea Varjas, and Bence László Raposa. 2025. "Synthetic Food Preservatives Modulate Apoptotic Gene Expression in HepG2 Cells: Divergent Effects of Sodium Benzoate, Potassium Sorbate, and Sodium Metabisulfite" Nutrients 17, no. 21: 3466. https://doi.org/10.3390/nu17213466
APA StylePintér, M., Macharia, J. M., Kövesdi, O. L., Rozmann, N., Zand, A., Szerb, K., Varjas, T., & Raposa, B. L. (2025). Synthetic Food Preservatives Modulate Apoptotic Gene Expression in HepG2 Cells: Divergent Effects of Sodium Benzoate, Potassium Sorbate, and Sodium Metabisulfite. Nutrients, 17(21), 3466. https://doi.org/10.3390/nu17213466
        
