Peptide YY in Type 2 Diabetes: A Complementary Gut Hormone with Therapeutic Potential Beyond GLP-1
Abstract
1. Introduction
2. Physiology of PYY and GLP-1
2.1. Peptide YY (PYY)
2.2. Glucagon-like Peptide-1 (GLP-1)
3. Role of PYY in Glucose Homeostasis
3.1. Preclinical Evidence
3.2. Human Studies
4. Mechanistic Insights of PYY
4.1. Central Appetite Regulation and Energy Balance
4.2. Delayed Gastric Emptying and Glucose Absorption
4.3. Peripheral Insulin Sensitivity
4.4. Insulin and Glucagon Secretion
5. Comparison of PYY and GLP-1 in the Context of Type 2 Diabetes
5.1. Secretion and Postprandial Dynamics
5.2. Therapeutic Implications and Synergistic Potential
5.3. Clinical Positioning and Candidate Populations
6. Therapeutic Potential of Peptide YY: Insights from Bariatric Surgery
6.1. Post-Bariatric Diabetes Remission and Hormonal Modulation
6.2. PYY and the Restoration of Islet Function
| Effect | Description | Mechanism | Comparison to GLP-1 | Refs. |
|---|---|---|---|---|
| Islet Architecture | Improves structural integrity of pancreatic islets | Enhances islet cell composition and cohesion | GLP-1 may preserve β-cell mass but primarily enhances insulin secretion | [25,52] |
| β-cell Stress | Reduces oxidative and metabolic stress on β-cells | Indirect insulin demand reduction via appetite suppression | GLP-1 augments insulin secretion, which may increase β-cell workload | [8,52] |
| Hormone Balance | Restores the insulin-to-glucagon ratio | Regulates intra-islet signaling through Y receptors | GLP-1 suppresses glucagon and promotes insulin secretion via GLP-1R | [25,67] |
| Functional Recovery | Improves both glucose-stimulatedinsulin and glucagon secretory responses | Enhances β-cell responsiveness through paracrine mechanisms | GLP-1 directly promotes GSIS through the cAMP/PKA signaling pathway | [67,87] |
| Islet Preservation | Protect and preserve β-cell function in diabetes models | Chronic PYY exposure associated with improved islet histology | GLP-1 may preserve β-cell mass but primarily enhances secretion | [52,87] |
6.3. PYY in the Context of Bariatric Mimicry and Combination Therapies
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| T1D | Type 1 diabetes |
| T2D | Type 2 diabetes |
| PYY | Peptide YY |
| GLP-1 | Glugagon-like peptide-1 |
| GLP-1R | GLP-1 receptor |
| NPY | Neuropeptide Y |
| AgRP | Agouti-related peptide |
| POMC | Pro-opiomelanocortin |
| DIO | Diet-induced obese |
| IRS | Insulin receptor substrate |
| PEPCK | Phosphoenolpyruvate carboxykinase |
| G6Pase | Glucose-6-phosphatase |
| AMPK | AMP-activated protein kinase |
| RYGB | Roux-en-Y gastric bypass |
| ARC | Arcuate nucleus |
| Y2R | Y2 receptor |
| DPP-4 | Dipeptidyl peptidase-4 |
| GSIS | Glucose-stimulated insulin secretion |
| STZ | Streptozotocin |
References
- Silva, A.D.; Bloom, S.R. Gut Hormones and Appetite Control: A Focus on PYY and GLP-1 as Therapeutic Targets in Obesity. Gut Liver 2012, 6, 10–20. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef] [PubMed]
- Hjerpsted, J.B.; Flint, A.; Brooks, A.; Axelsen, M.B.; Kvist, T.; Blundell, J. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes. Metab. 2018, 20, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Jorsal, T.; Rhee, N.A.; Pedersen, J.; Wahlgren, C.D.; Mortensen, B.; Jepsen, S.L.; Jelsing, J.; Dalbøge, L.S.; Vilmann, P.; Hassan, H.; et al. Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia 2018, 61, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.M.; Richards, P.; Rogers, G.J.; Reimann, F.; Gribble, F.M. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia 2013, 56, 1413–1416. [Google Scholar] [CrossRef]
- Batterham, R.L.; Bloom, S.R. The Gut Hormone Peptide YY Regulates Appetite. Ann. N. Y. Acad. Sci. 2003, 994, 162–168. [Google Scholar] [CrossRef]
- Batterham, R.L.; Cowley, M.A.; Small, C.J.; Herzog, H.; Cohen, M.A.; Dakin, C.L.; Wren, A.M.; Brynes, A.E.; Low, M.J.; Ghatei, M.A.; et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002, 418, 650–654. [Google Scholar] [CrossRef]
- Boey, D.; Lin, S.; Karl, T.; Baldock, P.; Lee, N.; Enriquez, R.; Couzens, M.; Slack, K.; Dallmann, R.; Sainsbury, A.; et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia 2006, 49, 1360–1370. [Google Scholar] [CrossRef]
- van den Hoek, A.M.; Heijboer, A.C.; Corssmit, E.P.; Voshol, P.J.; Romijn, J.A.; Havekes, L.M.; Pijl, H. PYY3-36 reinforces insulin action on glucose disposal in mice fed a high-fat diet. Diabetes 2004, 53, 1949–1952. [Google Scholar] [CrossRef]
- Batterham, R.L.; Heffron, H.; Kapoor, S.; Chivers, J.E.; Chandarana, K.; Herzog, H.; Le Roux, C.W.; Thomas, E.L.; Bell, J.D.; Withers, D.J. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006, 4, 223–233. [Google Scholar] [CrossRef]
- Zhou, J.; Hegsted, M.; McCutcheon, K.L.; Keenan, M.J.; Xi, X.; Raggio, A.M.; Martin, R.J. Peptide YY and proglucagon mRNA expression patterns and regulation in the gut. Obesity 2006, 14, 683–689. [Google Scholar] [CrossRef]
- Moran, T.H.; Smedh, U.; Kinzig, K.P.; Scott, K.A.; Knipp, S.; Ladenheim, E.E. Peptide YY(3-36) inhibits gastric emptying and produces acute reductions in food intake in rhesus monkeys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R384–R388. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.D.; Coffey, T.; Jodka, C.M.; Maier, H.; Athanacio, J.R.; Mack, C.M.; Weyer, C.; Parkes, D.G. Combination therapy with amylin and peptide YY(3–36) in obese rodents: Anorexigenic synergy and weight loss additivity. Endocrinology 2007, 148, 6054–6061. [Google Scholar] [CrossRef] [PubMed]
- Pittner, R.A.; Moore, C.X.; Bhavsar, S.P.; Gedulin, B.R.; Smith, P.A.; Jodka, C.M.; Parkes, D.G.; Paterniti, J.R.; Srivastava, V.P.; Young, A.A. Effects of PYY(3–36) in rodent models of diabetes and obesity. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.P.; Sorrell, J.E.; Haller, A.; Roelofs, K.; Hutch, C.R.; Kim, K.-S.; Gutierrez-Aguilar, R.; Li, B.; Drucker, D.J.; D’Alessio, D.A.; et al. The Role of Pancreatic Preproglucagon in Glucose Homeostasis in Mice. Cell Metab. 2017, 25, 927–934.e923. [Google Scholar] [CrossRef]
- Nauck, M. Incretin therapies: Highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes. Metab. 2016, 18, 203–216. [Google Scholar] [CrossRef]
- Vasu, S.; Moffett, R.C.; Thorens, B.; Flatt, P.R. Role of Endogenous GLP-1 and GIP in Beta Cell Compensatory Responses to Insulin Resistance and Cellular Stress. PLoS ONE 2014, 9, e101005. [Google Scholar] [CrossRef]
- Ellingsgaard, H.; Hauselmann, I.; Schuler, B.; Habib, A.M.; Baggio, L.L.; Meier, D.T.; Eppler, E.; Bouzakri, K.; Wueest, S.; Muller, Y.D.; et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 2011, 17, 1481–1489. [Google Scholar] [CrossRef]
- Riediger, T.; Bothe, C.; Becskei, C.; Lutz, T.A. Peptide YY directly inhibits ghrelin-activated neurons of the arcuate nucleus and reverses fasting-induced c-Fos expression. Neuroendocrinology 2004, 79, 317–326. [Google Scholar] [CrossRef]
- Edelsbrunner, M.E.; Herzog, H.; Holzer, P. Evidence from knockout mice that peptide YY and neuropeptide Y enforce murine locomotion, exploration and ingestive behaviour in a circadian cycle- and gender-dependent manner. Behav. Brain Res. 2009, 203, 97–107. [Google Scholar] [CrossRef]
- Chan, J.L.; Stoyneva, V.; Kelesidis, T.; Raciti, P.; Mantzoros, C.S. Peptide YY levels are decreased by fasting and elevated following caloric intake but are not regulated by leptin. Diabetologia 2006, 49, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Keenan, M.J.; Zhou, J.; McCutcheon, K.L.; Raggio, A.M.; Bateman, H.G.; Todd, E.; Jones, C.K.; Tulley, R.T.; Melton, S.; Martin, R.J.; et al. Effects of Resistant Starch, A Non-digestible Fermentable Fiber, on Reducing Body Fat. Obesity 2006, 14, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Park, C.; Choi, Y.K.; Bae, J.; Kwon, S.; Kim, J.; Choi, C.; Seok, C.; Im, W.; Choi, H.-J. Structural basis for Y2 receptor-mediated neuropeptide Y and peptide YY signaling. Structure 2023, 31, 44–57.e46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Kanoski, S.E.; Yan, J.; Grill, H.J.; Hayes, M.R. Hindbrain leptin and glucagon-like-peptide-1 receptor signaling interact to suppress food intake in an additive manner. Int. J. Obes. 2012, 36, 1522–1528. [Google Scholar] [CrossRef]
- Khan, D.; Vasu, S.; Moffett, R.C.; Irwin, N.; Flatt, P.R. Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immortalised rodent and human beta-cell function and survival. Mol. Cell Endocrinol. 2016, 436, 102–113. [Google Scholar] [CrossRef]
- Tan, T.M.; Minnion, J.; Khoo, B.; Ball, L.J.; Malviya, R.; Day, E.; Fiorentino, F.; Brindley, C.; Bush, J.; Bloom, S.R. Safety and efficacy of an extended-release peptide YY analogue for obesity: A randomized, placebo-controlled, phase 1 trial. Diabetes Obes. Metab. 2021, 23, 1471–1483. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Wang, A.; Wang, A.; Alkhalidy, H.; Helm, R.; Zhang, S.; Ma, H.; Zhang, Y.; Gilbert, E.; et al. An olive-derived elenolic acid stimulates hormone release from L-cells and exerts potent beneficial metabolic effects in obese diabetic mice. Front. Nutr. 2022, 9, 1051452. [Google Scholar] [CrossRef]
- Wong, I.P.L.; Driessler, F.; Khor, E.C.; Shi, Y.-C.; Hörmer, B.; Nguyen, A.D.; Enriquez, R.F.; Eisman, J.A.; Sainsbury, A.; Herzog, H.; et al. Peptide YY Regulates Bone Remodeling in Mice: A Link between Gut and Skeletal Biology. PLoS ONE 2012, 7, e40038. [Google Scholar] [CrossRef]
- Reidelberger, R.; Haver, A.; Chelikani, P.K. Role of peptide YY(3–36) in the satiety produced by gastric delivery of macronutrients in rats. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E944–E950. [Google Scholar] [CrossRef]
- Jones, E.S.; Nunn, N.; Chambers, A.P.; Østergaard, S.; Wulff, B.S.; Luckman, S.M. Modified Peptide YY Molecule Attenuates the Activity of NPY/AgRP Neurons and Reduces Food Intake in Male Mice. Endocrinology 2019, 160, 2737–2747. [Google Scholar] [CrossRef]
- De Solis, A.J.; Del Río-Martín, A.; Radermacher, J.; Chen, W.; Steuernagel, L.; Bauder, C.A.; Eggersmann, F.R.; Morgan, D.A.; Cremer, A.-L.; Sué, M.; et al. Reciprocal activity of AgRP and POMC neurons governs coordinated control of feeding and metabolism. Nat. Metab. 2024, 6, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Nunez, D.J.; Bush, M.A.; Collins, D.A.; McMullen, S.L.; Gillmor, D.; Apseloff, G.; Atiee, G.; Corsino, L.; Morrow, L.; Feldman, P.L. Gut hormone pharmacology of a novel GPR119 agonist (GSK1292263), metformin, and sitagliptin in type 2 diabetes mellitus: Results from two randomized studies. PLoS ONE 2014, 9, e92494. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Hodge, R.J.; O’Connor-Semmes, R.L.; Nunez, D.J. GSK2374697, a long duration glucagon-like peptide-1 (GLP-1) receptor agonist, reduces postprandial circulating endogenous total GLP-1 and peptide YY in healthy subjects. Diabetes Obes. Metab. 2015, 17, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.E.; Holst, J.J.; Jepsen, S.L. Glucose- and Bile Acid-Stimulated Secretion of Gut Hormones in the Isolated Perfused Intestine Is Not Impaired in Diet-Induced Obese Mice. Front. Endocrinol. 2022, 13, 884501. [Google Scholar] [CrossRef]
- Dominique, M.; Lucas, N.; Legrand, R.; Bouleté, I.M.; Bôle-Feysot, C.; Deroissart, C.; Léon, F.; Nobis, S.; do Rego, J.C.; Lambert, G.; et al. Effects of Bacterial CLPB Protein Fragments on Food Intake and PYY Secretion. Nutrients 2021, 13, 2223. [Google Scholar] [CrossRef]
- Tough, I.; Forbes, S.; Tolhurst, R.; Ellis, M.; Herzog, H.; Bornstein, J.; Cox, H. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y1 and Y2 receptors. Br. J. Pharmacol. 2011, 164, 471–484. [Google Scholar] [CrossRef]
- Cooper, J.A. Factors affecting circulating levels of peptide YY in humans: A comprehensive review. Nutr. Res. Rev. 2014, 27, 186–197. [Google Scholar] [CrossRef]
- Brownley, K.A.; Heymen, S.; Hinderliter, A.L.; MacIntosh, B. Effect of glycemic load on peptide-YY levels in a biracial sample of obese and normal weight women. Obesity 2010, 18, 1297–1303. [Google Scholar] [CrossRef]
- Evans, S.; Pamuklar, Z.; Rosko, J.; Mahaney, P.; Jiang, N.; Park, C.; Torquati, A. Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction. Surg. Endosc. 2012, 26, 1086–1094. [Google Scholar] [CrossRef]
- Kowalka, A.M.; Alexiadou, K.; Cuenco, J.; Clarke, R.E.; Minnion, J.; Williams, E.L.; Bech, P.; Purkayastha, S.; Ahmed, A.R.; Takats, Z.; et al. The postprandial secretion of peptide YY(1–36) and (3–36) in obesity is differentially increased after gastric bypass versus sleeve gastrectomy. Clin. Endocrinol. 2023, 99, 272–284. [Google Scholar] [CrossRef]
- Gueugnon, C.; Mougin, F.; Nguyen, N.U.; Bouhaddi, M.; Nicolet-Guénat, M.; Dumoulin, G. Ghrelin and PYY levels in adolescents with severe obesity: Effects of weight loss induced by long-term exercise training and modified food habits. Eur. J. Appl. Physiol. 2012, 112, 1797–1805. [Google Scholar] [CrossRef]
- Cahill, F.; Ji, Y.; Wadden, D.; Amini, P.; Randell, E.; Vasdev, S.; Gulliver, W.; Sun, G. The Association of Serum Total Peptide YY (PYY) with Obesity and Body Fat Measures in the CODING Study. PLoS ONE 2014, 9, e95235. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Polidori, D.; Yieh, L.; Di, J.; Wu, X.; Moreno, V.; Li, L.; Briscoe, C.P.; Shankley, N.; Dohm, G.L.; et al. Effects of Meal Size on the Release of GLP-1 and PYY After Roux-en-Y Gastric Bypass Surgery in Obese Subjects With or Without Type 2 Diabetes. Obes. Surg. 2014, 24, 1969–1974. [Google Scholar] [CrossRef] [PubMed]
- Parvaresh Rizi, E.; Loh, T.P.; Baig, S.; Chhay, V.; Huang, S.; Caleb Quek, J.; Tai, E.S.; Toh, S.-A.; Khoo, C.M. A high carbohydrate, but not fat or protein meal attenuates postprandial ghrelin, PYY and GLP-1 responses in Chinese men. PLoS ONE 2018, 13, e0191609. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, C.; Rigamonti, A.E.; Luce, A.; Cappa, M.; Cella, S.G.; Berini, J.; Sartorio, A.; Müller, E.E.; Salvatoni, A. Children with Prader-Willi syndrome exhibit more evident meal-induced responses in plasma ghrelin and peptide YY levels than obese and lean children. Eur. J. Endocrinol. 2010, 162, 499–505. [Google Scholar] [CrossRef]
- Heden, T.D.; Liu, Y.; Sims, L.; Kearney, M.L.; Whaley-Connell, A.T.; Chockalingam, A.; Dellsperger, K.C.; Fairchild, T.J.; Kanaley, J.A. Liquid meal composition, postprandial satiety hormones, and perceived appetite and satiety in obese women during acute caloric restriction. Eur. J. Endocrinol. 2013, 168, 593–600. [Google Scholar] [CrossRef]
- Peterli, R.; Steinert, R.E.; Woelnerhanssen, B.; Peters, T.; Christoffel-Courtin, C.; Gass, M.; Kern, B.; von Fluee, M.; Beglinger, C. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: A randomized, prospective trial. Obes. Surg. 2012, 22, 740–748. [Google Scholar] [CrossRef]
- Kanaley, J.A.; Heden, T.D.; Liu, Y.; Whaley-Connell, A.T.; Chockalingam, A.; Dellsperger, K.C.; Fairchild, T.J. Short-term aerobic exercise training increases postprandial pancreatic polypeptide but not peptide YY concentrations in obese individuals. Int. J. Obes. 2014, 38, 266–271. [Google Scholar] [CrossRef]
- Østergaard, S.; Jessen, C.; Paulsson, J.F.; Kasimova, M.A.; Conde-Frieboes, K.W.; Straarup, E.M.; Skyggebjerg, R.B.; Ynddal, L.; Sanfridson, A.; Wulff, B.S.; et al. Variant screening of PYY(3-36) leads to potent long-acting PYY analogs with superior Y(2) receptor selectivity. Sci. Transl. Med. 2025, 17, eadq6392. [Google Scholar] [CrossRef]
- Schmidt, J.B.; Gregersen, N.T.; Pedersen, S.D.; Arentoft, J.L.; Ritz, C.; Schwartz, T.W.; Holst, J.J.; Astrup, A.; Sjödin, A. Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1248–E1256. [Google Scholar] [CrossRef]
- Field, B.C.; Wren, A.M.; Peters, V.; Baynes, K.C.; Martin, N.M.; Patterson, M.; Alsaraf, S.; Amber, V.; Wynne, K.; Ghatei, M.A.; et al. PYY3-36 and oxyntomodulin can be additive in their effect on food intake in overweight and obese humans. Diabetes 2010, 59, 1635–1639. [Google Scholar] [CrossRef]
- Guida, C.; McCulloch, L.J.; Godazgar, M.; Stephen, S.D.; Baker, C.; Basco, D.; Dong, J.; Chen, D.; Clark, A.; Ramracheya, R.D. Sitagliptin and Roux-en-Y gastric bypass modulate insulin secretion via regulation of intra-islet PYY. Diabetes Obes. Metab. 2018, 20, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.M.; Salem, V.; Troke, R.C.; Alsafi, A.; Field, B.C.T.; De Silva, A.; Misra, S.; Baynes, K.C.R.; Donaldson, M.; Minnion, J.; et al. Combination of Peptide YY 3–36 with GLP-1 7–36 amide Causes an Increase in First-Phase Insulin Secretion after IV Glucose. J. Clin. Endocrinol. Metab. 2014, 99, E2317–E2324. [Google Scholar] [CrossRef] [PubMed]
- Oliveira De Souza, C.; Sun, X.; Oh, D. Metabolic Functions of G Protein-Coupled Receptors and β-Arrestin-Mediated Signaling Pathways in the Pathophysiology of Type 2 Diabetes and Obesity. Front. Endocrinol. 2021, 12, 715877. [Google Scholar] [CrossRef]
- Costa, J.M.M.d.; Silva, P.L.d.S.; Rosalem, I.D.S.; Pedroni, E.G.; Pessin, L.P.; Pelissari, D.F.; Sousa, A.A.d.; Parmagnani, I.C.; Helmer, L.F.; Morozewsky, G.M.; et al. Integrative Review of Glp-1 and Pyy Intestinal Hormones in the Regulation of Appetite and Satiety after Roux-En-Y Bariatric Surgery: Recent Evidence in Humans. Int. J. Health Sci. 2023, 3, 2–7. [Google Scholar] [CrossRef]
- Joshi, S.; Tough, I.R.; Cox, H.M. Endogenous PYY and GLP-1 mediate l-glutamine responses in intestinal mucosa. Br. J. Pharmacol. 2013, 170, 1092–1101. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Yu, L.; Ye, Z.; Cheng, M.; Qiu, W.; Zhou, M.; Ma, J.; Wang, X.; Yang, M.; et al. Acrolein Exposure Impaired Glucose Homeostasis and Increased Risk of Type 2 Diabetes: An Urban Adult Population-Based Cohort Study with Repeated Measures. Environ. Sci. Technol. 2023, 57, 7162–7173. [Google Scholar] [CrossRef]
- Claustre, J.; Brechet, S.; Plaisancie, P.; Chayvialle, J.A.; Cuber, J.C. Stimulatory effect of beta-adrenergic agonists on ileal L cell secretion and modulation by alpha-adrenergic activation. J. Endocrinol. 1999, 162, 271–278. [Google Scholar] [CrossRef]
- Gribble, F.M.; Reimann, F. Enteroendocrine Cells: Chemosensors in the Intestinal Epithelium. Annu. Rev. Physiol. 2016, 78, 277–299. [Google Scholar] [CrossRef]
- Ren, W.; Chen, J.; Wang, W.; Li, Q.; Yin, X.; Zhuang, G.; Zhou, H.; Zeng, W. Sympathetic nerve-enteroendocrine L cell communication modulates GLP-1 release, brain glucose utilization, and cognitive function. Neuron 2024, 112, 972–990.e978. [Google Scholar] [CrossRef]
- Watson, L.E.; Phillips, L.K.; Wu, T.; Bound, M.J.; Checklin, H.L.; Grivell, J.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. A whey/guar “preload” improves postprandial glycaemia and glycated haemoglobin levels in type 2 diabetes: A 12-week, single-blind, randomized, placebo-controlled trial. Diabetes Obes. Metab. 2019, 21, 930–938. [Google Scholar] [CrossRef]
- Wölnerhanssen, B.K.; Drewe, J.; Verbeure, W.; le Roux, C.W.; Dellatorre-Teixeira, L.; Rehfeld, J.F.; Holst, J.J.; Hartmann, B.; Tack, J.; Peterli, R.; et al. Gastric emptying of solutions containing the natural sweetener erythritol and effects on gut hormone secretion in humans: A pilot dose-ranging study. Diabetes Obes. Metab. 2021, 23, 1311–1321. [Google Scholar] [CrossRef]
- Wölnerhanssen, B.K.; Cajacob, L.; Keller, N.; Doody, A.; Rehfeld, J.F.; Drewe, J.; Peterli, R.; Beglinger, C.; Meyer-Gerspach, A.C. Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects. Am. J. Physiol.-Endocrinol. Metab. 2016, 310, E1053–E1061. [Google Scholar] [CrossRef]
- Panaro, B.L.; Tough, I.R.; Engelstoft, M.S.; Matthews, R.T.; Digby, G.J.; Møller, C.L.; Svendsen, B.; Gribble, F.; Reimann, F.; Holst, J.J.; et al. The Melanocortin-4 Receptor Is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-like Peptide 1 In Vivo. Cell Metab. 2014, 20, 1018–1029. [Google Scholar] [CrossRef]
- Boey, D.; Heilbronn, L.; Sainsbury, A.; Laybutt, R.; Kriketos, A.; Herzog, H.; Campbell, L.V. Low serum PYY is linked to insulin resistance in first-degree relatives of subjects with type 2 diabetes. Neuropeptides 2006, 40, 317–324. [Google Scholar] [CrossRef]
- Pfluger, P.T.; Kampe, J.; Castaneda, T.R.; Vahl, T.; D’Alessio, D.A.; Kruthaupt, T.; Benoit, S.C.; Cuntz, U.; Rochlitz, H.J.; Moehlig, M.; et al. Effect of human body weight changes on circulating levels of peptide YY and peptide YY3-36. J. Clin. Endocrinol. Metab. 2007, 92, 583–588. [Google Scholar] [CrossRef]
- Ramracheya, R.D.; McCulloch, L.J.; Clark, A.; Wiggins, D.; Johannessen, H.; Olsen, M.K.; Cai, X.; Zhao, C.-M.; Chen, D.; Rorsman, P. PYY-Dependent Restoration of Impaired Insulin and Glucagon Secretion in Type 2 Diabetes following Roux-En-Y Gastric Bypass Surgery. Cell Rep. 2016, 15, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Obici, S.; Feng, Z.; Tan, J.; Liu, L.; Karkanias, G.; Rossetti, L. Central melanocortin receptors regulate insulin action. J. Clin. Investig. 2001, 108, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Tovar, S.A.; Seoane, L.M.; Caminos, J.E.; Nogueiras, R.; Casanueva, F.F.; Diéguez, C. Regulation of Peptide YY Levels by Age, Hormonal, and Nutritional Status. Obes. Res. 2004, 12, 1944–1950. [Google Scholar] [CrossRef] [PubMed]
- le Roux, C.W.; Borg, C.M.; Murphy, K.G.; Vincent, R.P.; Ghatei, M.A.; Bloom, S.R. Supraphysiological doses of intravenous PYY3-36 cause nausea, but no additional reduction in food intake. Ann. Clin. Biochem. 2008, 45, 93–95. [Google Scholar] [CrossRef]
- Shi, Y.C.; Ip, C.K.; Reed, F.; Sarruf, D.A.; Wulff, B.S.; Herzog, H. Y5 receptor signalling counteracts the anorectic effects of PYY 3-36 in diet-induced obese mice. J. Neuroendocrinol. 2017, 29, e12483. [Google Scholar] [CrossRef]
- Knop, F.K.; Aaboe, K.; Vilsbøll, T.; Vølund, A.; Holst, J.J.; Krarup, T.; Madsbad, S. Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes Obes. Metab. 2012, 14, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.M.; Hahn, J.D.; Konanur, V.R.; Lam, A.; Kanoski, S.E. Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission. Neuropsychopharmacology 2015, 40, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Oertel, M.; Ziegler, C.G.; Kohlhaas, M.; Nickel, A.; Kloock, S.; Maack, C.; Sequeira, V.; Fassnacht, M.; Dischinger, U. GLP-1 and PYY for the treatment of obesity: A pilot study on the use of agonists and antagonists in diet-induced rats. Endocr. Connect. 2024, 13, e230398. [Google Scholar] [CrossRef] [PubMed]
- Dalbøge, L.S.; Pedersen, P.J.; Hansen, G.; Fabricius, K.; Hansen, H.B.; Jelsing, J.; Vrang, N. A Hamster Model of Diet-Induced Obesity for Preclinical Evaluation of Anti-Obesity, Anti-Diabetic and Lipid Modulating Agents. PLoS ONE 2015, 10, e0135634. [Google Scholar] [CrossRef]
- Shi, Y.C.; Hämmerle, C.M.; Lee, I.C.; Turner, N.; Nguyen, A.D.; Riepler, S.J.; Lin, S.; Sainsbury, A.; Herzog, H.; Zhang, L. Adult-onset PYY overexpression in mice reduces food intake and increases lipogenic capacity. Neuropeptides 2012, 46, 173–182. [Google Scholar] [CrossRef]
- Melson, E.; Ashraf, U.; Papamargaritis, D.; Davies, M.J. What is the pipeline for future medications for obesity? Int. J. Obes. 2025, 49, 433–451. [Google Scholar] [CrossRef]
- Reidelberger, R.D.; Haver, A.C.; Apenteng, B.A.; Anders, K.L.; Steenson, S.M. Effects of Exendin-4 Alone and With Peptide YY 3–36 on Food Intake and Body Weight in Diet-Induced Obese Rats. Obesity 2011, 19, 121–127. [Google Scholar] [CrossRef]
- Sidrak, W.R.; Kalra, S.; Kalhan, A. Approved and Emerging Hormone-Based Anti-Obesity Medications: A Review Article. Indian J. Endocrinol. Metab. 2024, 28, 445–460. [Google Scholar] [CrossRef]
- Inge, T.H.; Laffel, L.M.; Jenkins, T.M.; Marcus, M.D.; Leibel, N.I.; Brandt, M.L.; Haymond, M.; Urbina, E.M.; Dolan, L.M.; Zeitler, P.S. Comparison of Surgical and Medical Therapy for Type 2 Diabetes in Severely Obese Adolescents. JAMA Pediatr. 2018, 172, 452–460. [Google Scholar] [CrossRef]
- Billeter, A.T.; de la Garza Herrera, J.R.; Scheurlen, K.M.; Nickel, F.; Billmann, F.; Müller-Stich, B.P. Management of endocrine disease: Which metabolic procedure? Comparing outcomes in sleeve gastrectomy and Roux-en Y gastric bypass. Eur. J. Endocrinol. 2018, 179, R77–R93. [Google Scholar] [CrossRef]
- Gloy, V.L.; Briel, M.; Bhatt, D.L.; Kashyap, S.R.; Schauer, P.R.; Mingrone, G.; Bucher, H.C.; Nordmann, A.J. Bariatric surgery versus non-surgical treatment for obesity: A systematic review and meta-analysis of randomised controlled trials. Bmj 2013, 347, f5934. [Google Scholar] [CrossRef]
- Panunzi, S.; De Gaetano, A.; Carnicelli, A.; Mingrone, G. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: Do BMI or procedure choice matter? A meta-analysis. Ann. Surg. 2015, 261, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Aminian, A.; Brethauer, S.A.; Kirwan, J.P.; Kashyap, S.R.; Burguera, B.; Schauer, P.R. How safe is metabolic/diabetes surgery? Diabetes Obes. Metab. 2015, 17, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.C.; Loh, K.; Bensellam, M.; Lee, K.; Zhai, L.; Lau, J.; Cantley, J.; Luzuriaga, J.; Laybutt, D.R.; Herzog, H. Pancreatic PYY Is Critical in the Control of Insulin Secretion and Glucose Homeostasis in Female Mice. Endocrinology 2015, 156, 3122–3136. [Google Scholar] [CrossRef] [PubMed]
- Persaud, S.J.; Bewick, G.A. Peptide YY: More than just an appetite regulator. Diabetologia 2014, 57, 1762–1769. [Google Scholar] [CrossRef]
- Lafferty, R.A.; Tanday, N.; McCloskey, A.; Bompada, P.; De Marinis, Y.; Flatt, P.R.; Irwin, N. Peptide YY(1–36) peptides from phylogenetically ancient fish targeting mammalian neuropeptide Y1 receptors demonstrate potent effects on pancreatic β-cell function, growth and survival. Diabetes Obes. Metab. 2020, 22, 404–416. [Google Scholar] [CrossRef]
- Camacho-Ramírez, A.; Prada-Oliveira, J.A.; Ribelles-García, A.; Almorza-Gomar, D.; Pérez-Arana, G.M. The Leading Role of Peptide Tyrosine Tyrosine in Glycemic Control After Roux-en-Y Gastric Bypass in Rats. Obes. Surg. 2020, 30, 697–706. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Kolobova, I.; Wolfe, B.M.; Purnell, J.Q. Short-term intestinal lipase inhibition in normal-weight individuals does not affect postprandial peptide YY(3–36) and glucagon-like peptide-1 levels, hunger or satiety. Diabetes Obes. Metab. 2020, 22, 2499–2503. [Google Scholar] [CrossRef]
- Bhutta, H.Y.; Rajpal, N.; White, W.; Freudenberg, J.M.; Liu, Y.; Way, J.; Rajpal, D.; Cooper, D.C.; Young, A.; Tavakkoli, A.; et al. Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats. PLoS ONE 2015, 10, e0122273. [Google Scholar] [CrossRef]
- Wilbrink, J.A.; van Avesaat, M.; Nienhuijs, S.W.; Stronkhorst, A.; Masclee, A.A.M. Changes in gastrointestinal motility and gut hormone secretion after Roux-en-Y gastric bypass and sleeve gastrectomy for individuals with severe obesity. Clin. Obes. 2025, 15, e12721. [Google Scholar] [CrossRef]
- Stadlbauer, U.; Langhans, W.; Meyer, U. Administration of the Y2 receptor agonist PYY3–36 in mice induces multiple behavioral changes relevant to schizophrenia. Neuropsychopharmacology 2013, 38, 2446–2455. [Google Scholar] [CrossRef]
- Sterl, K.; Wang, S.; Oestricker, L.; Wallendorf, M.J.; Patterson, B.W.; Reeds, D.N.; Wice, B.M. Metabolic responses to xenin-25 are altered in humans with Roux-en-Y gastric bypass surgery. Peptides 2016, 82, 76–84. [Google Scholar] [CrossRef]
- Mumphrey, M.B.; Hao, Z.; Townsend, R.L.; Patterson, L.M.; Berthoud, H.R. Sleeve Gastrectomy Does Not Cause Hypertrophy and Reprogramming of Intestinal Glucose Metabolism in Rats. Obes. Surg. 2015, 25, 1468–1473. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.F.; Bueter, M.; Theis, N.; Lutz, T.; Paulsen, S.; Dalbøge, L.S.; Vrang, N.; Jelsing, J. Hypertrophy Dependent Doubling of L-Cells in Roux-en-Y Gastric Bypass Operated Rats. PLoS ONE 2013, 8, e65696. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.; Kramer, A.; Mullins, C.A.; Mattern, M.; Gannaban, R.B.; Townsend, R.L.; Campagna, S.R.; Morrison, C.D.; Berthoud, H.R.; Shin, A.C. Reduction of Plasma BCAAs following Roux-en-Y Gastric Bypass Surgery Is Primarily Mediated by FGF21. Nutrients 2023, 15, 1713. [Google Scholar] [CrossRef] [PubMed]
- Bala, V.; Rajagopal, S.; Kumar, D.P.; Nalli, A.D.; Mahavadi, S.; Sanyal, A.J.; Grider, J.R.; Murthy, K.S. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S. Front. Physiol. 2014, 5, 420. [Google Scholar] [CrossRef]
- Ueda, S.-y.; Nakahara, H.; Manabe, K.; Miyamoto, T. Neural regulation of hindlimb muscle contraction-induced glucagon-like peptide-1 and peptide YY secretion in rats. J. Phys. Fit. Sports Med. 2015, 4, 125–131. [Google Scholar] [CrossRef]
| Feature | Peptide YY (PYY) | Glucagon-Like Peptide-1 (GLP-1) | Refs. |
|---|---|---|---|
| Primary Source | L-cells of distal small intestine and colon | L-cells of distal small intestine and colon | [4,5] |
| Main Active Form | PYY3–36 (via DPP-4 cleavage) | GLP-17–36 (active form; rapidly degraded by DPP-4) | [2,7] |
| Main Receptor(s) | Y2 (central), Y1 and Y4 (peripheral) | GLP-1 receptor (GLP-1R) | [2,23] |
| Central Action | Appetite suppression via Y2 receptor in hypothalamus | Appetite suppression via GLP-1R in hypothalamus and brain stem | [6,24] |
| Peripheral Action | Enhances insulin sensitivity via Y1/Y4 receptors in liver, muscle, and adipose tissue | Promotes insulin secretion via GLP-1R in pancreatic β-cells | [9,17] |
| Insulinotropic Effect | Does not cause direct stimulation of insulin secretion | Has a robust glucose-dependent insulinotropic response | [8,16] |
| Effect on β-cells | Preserves islet architecture and mitigates β-cell stress | Stimulates insulin secretion and may promote β-cell mass expansion | [17,25] |
| Effect on Gastric Emptying | Delays gastric emptying | Delays gastric emptying | [3,12] |
| Clinical Application | Currently under investigation (PYY3–36, CIN-110, etc.) | GLP-1RAs approved for clinical use (liraglutide, semaglutide, etc.) | [2,26] |
| Therapeutic Target | Receptor | Mechanism | Metabolic Effects | Refs. |
|---|---|---|---|---|
| Hypothalamus (Arcuate Nucleus) | Y2 | Inhibits NPY/AgRP neurons Indirectly activates POMC neurons | Appetite ↓ Satiety ↑ | [6,19] |
| Stomach GI Tract | Y2 | Inhibits cholinergic signaling in enteric neurons Modulates vagal feedback | Gastric emptying ↓ Glucose absorption ↓ | [12,36] |
| Skeletal Muscle | Y1, possibly Y4 | Enhances insulin signaling via IRS-1 and AKT phosphorylation | Glucose uptake ↑ Insulin sensitivity ↑ | [9,27] |
| Liver | Y1 | Suppresses gluconeogenic enzymes (PEPCK, G6Pase) | Hepatic glucose production ↓ | [11,27] |
| Adipose Tissue | Y1, possibly Y4 | Improves insulin receptor signaling and induces AMPK activation | Insulin sensitivity ↑ Lipogenesis ↓ | [9,28] |
| Stage | Model | Agent & Dose | Duration | Primary Endpoints | Headline Outcome | Refs. |
|---|---|---|---|---|---|---|
| Preclinical | DIO mice | PYY3–36 (s.c.) | 2–4 wks | Food intake, BW, GTT/ITT | Intake/BW ↓ Glucose tolerance ↑ Insulin sensitivity ↑ | [9,14] |
| Preclinical | ob/ob, db/db mice | PYY3–36 | days–weeks | Insulin signaling (IRS-1/AKT), gluconeogenesis | Insulin signaling ↑ (muscle/liver) PEPCK/G6Pase ↓ | [11,27] |
| Preclinical | STZ rat (β-cell ablated) | PYY3–36 | weeks | FPG, islet histology | Glycemia ↓ Preserved β-cell architecture | [52] |
| Human (acute) | Lean/obese (crossover) | PYY3–36 infusion | hours | Energy intake, postprandial glucose/insulin | Intake 20–30% ↓ Glycemia ↓ (modest) | [7,50] |
| Human (Phase 1) | Overweight/obesity | Long-acting PYY analog (e.g., Y14) | weeks | BW, caloric intake, safety | BW ↓ Intake ↓ Mild nausea PK improved | [26] |
| Human (acute) | Overweight/obese | PYY + GLP-1 co-infusion | hours | Satiety/energy intake; insulin dynamics | Additive satiety Early insulin response ↑ | [51,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.T.; Park, J.-H. Peptide YY in Type 2 Diabetes: A Complementary Gut Hormone with Therapeutic Potential Beyond GLP-1. Nutrients 2025, 17, 3468. https://doi.org/10.3390/nu17213468
Nguyen NT, Park J-H. Peptide YY in Type 2 Diabetes: A Complementary Gut Hormone with Therapeutic Potential Beyond GLP-1. Nutrients. 2025; 17(21):3468. https://doi.org/10.3390/nu17213468
Chicago/Turabian StyleNguyen, Nhi Thi, and Jae-Hyung Park. 2025. "Peptide YY in Type 2 Diabetes: A Complementary Gut Hormone with Therapeutic Potential Beyond GLP-1" Nutrients 17, no. 21: 3468. https://doi.org/10.3390/nu17213468
APA StyleNguyen, N. T., & Park, J.-H. (2025). Peptide YY in Type 2 Diabetes: A Complementary Gut Hormone with Therapeutic Potential Beyond GLP-1. Nutrients, 17(21), 3468. https://doi.org/10.3390/nu17213468

