Dynapenia, Dehydroepiandrosterone (DHEA), and Redox Balance in Geriatric Patients—Does Sex Play a Role?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Functional Assessment and Nutritional Health
- -
- Measurement of hand grip strength of the dominant hand with a manual hydraulic dynamometer SAEHAN DHD-1 (Glanford Electronics Ltd., Scunthorpe, UK) (mean of two results);
- -
- The assessment of the risk of falls with the Timed Up and Go test (TUG) [20];
- -
- Gait speed measurement evaluation during the 4.57 m walk at usual pace;
- -
- -
- The ability to perform activities of daily living (ADL) with the Barthel Index [23];
- -
- The ability to perform instrumental activities of daily living (IADL) with the 6 instrumental ADL items of Duke OARS scale [24];
- -
- Emotional health assessment with the 15-item Geriatric Depression Scale (GDS) [25];
- -
- Cognitive abilities assessment with the Short-Blessed Scale [26].
2.3. Laboratory Data and Biochemical Parameters
2.4. Study Parameters
2.5. Statistical Analysis
3. Results
3.1. Study Group Characteristic
3.2. Characteristics of Participants with Low and Normal Hand Grip Strength
3.3. Dynapenia and Redox Status
3.4. Determinants of Low HGS in Logistic Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADL | Activities of daily living | 
| AF | Atrial fibrillation | 
| BMI | Body mass index | 
| CHF | Chronic heart failure | 
| CI | Confidence interval | 
| CKD | Chronic kidney disease | 
| CRP | C-reactive protein | 
| CV | Coefficient of variation | 
| COPD | Chronic obstructive pulmonary disease | 
| DHEA | Dehydroepiandrosterone | 
| DHEAS | Dehydroepiandrosterone sulfate | 
| ELISA | Enzyme-linked immunosorbent assay | 
| HGS | Hand grip strength | 
| GDS | Geriatric Depression Scale | 
| GFR | Glomerular filtration rate | 
| Hb | Hemoglobin | 
| EWGSOP2 | The Second European Working Group on Sarcopenia in Older People | 
| IADL | Instrumental activities of daily living | 
| IHD | Ischemic heart disease | 
| IL-6 | Interleukin 6 | 
| IQR | Interquartile range | 
| M | Mean | 
| Me | Median | 
| MI | Miocardial infarction | 
| MNA-SF | Mini Nutritional Assessment-Short Form | 
| NT-proBNP | N-terminal pro-B-type natriuretic peptide | 
| N | Number | 
| 25(OH)D | 25-hydroxycholecalciferol | 
| OR | Odds ratio | 
| OSI | Oxidative stress index | 
| PAD | Peripheral arterial disease | 
| ROS | Reactive oxygen species | 
| RyR | Ryanodine receptor | 
| SARC-F | S(trength), A(ssistance with walking), R(ise from a chair), C(limbing stairs), and F(alls) questionnaire | 
| SCr | Serum creatinine | 
| SD | Standard deviation | 
| TAS | Total antioxidative status | 
| TNF-α | Tumor necrosis factor α | 
| TSH | Thyroid-stimulating hormone | 
| TOS | Total oxidative status | 
| TUG | Timed Up and Go test | 
| WC | Waist circumference | 
References
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef]
- Yoshikawa, T.; You, F. Oxidative Stress and Bio-Regulation. Int. J. Mol. Sci. 2024, 25, 3360. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxidative Med. Cell. Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef]
- Martínez de Toda, I.; González-Sánchez, M.; Díaz-Del Cerro, E.; Valera, G.; Carracedo, J.; Guerra-Pérez, N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech. Ageing Dev. 2023, 211, 111797. [Google Scholar] [CrossRef]
- Calzada, C.C.; Zamarripa, C.A.J. Menopause Induces Oxidative Stress. In Oxidative Stress and Chronic Degenerative Diseases—A Role for Antioxidants; Morales-Gonzalez, J.A., Ed.; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J. Cell Mol. Med. 2017, 21, 1024–1032. [Google Scholar] [CrossRef]
- Clark, B.C.; Manini, T.M. What is dynapenia? Nutrition 2012, 28, 495–503. [Google Scholar] [CrossRef]
- Silva, R.R.; Galvão, L.L.; Meneguci, J.; Santos, D.A.T.; Virtuoso Júnior, J.S.; Tribess, S. Dynapenia in all-cause mortality and its relationship with sedentary behavior in community-dwelling older adults. Sports Med. Health Sci. 2022, 4, 253–259. [Google Scholar] [CrossRef]
- Chang, C.-C.; Liao, Y.; Chen, J.; Lai, T.-F.; Hsueh, M.-C.; Park, J.-H.; Chang, Y.-J. Dynapenia is associated with a higher risk of depressive symptoms among older adults. Front. Public Health 2025, 13, 1533973. [Google Scholar] [CrossRef]
- Neves, T.; Ferriolli, E.; Lopes, M.B.M.; Souza, M.G.C.; Fett, C.A.; Fett, W.C.R. Prevalence and factors associated with sarcopenia and dynapenia in elderly people. J. Frailty Sarcopenia Falls 2018, 3, 194–202. [Google Scholar] [CrossRef]
- Uchida, S.; Kamiya, K.; Hamazaki, N.; Nozaki, K.; Ichikawa, T.; Nakamura, T.; Yamashita, M.; Maekawa, E.; Reed, J.L.; Yamaoka-Tojo, M.; et al. Prognostic utility of dynapenia in patients with cardiovascular disease. Clin. Nutr. 2021, 40, 2210–2218. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Deng, S.; Lian, Z.; Yu, K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front. Cell Dev. Biol. 2022, 10, 964130. [Google Scholar] [CrossRef]
- Xu, H.; Brown, J.L.; Bhaskaran, S.; Van Remmen, H. Reactive oxygen species in the pathogenesis of sarcopenia. Free Radic. Biol. 2025, 227, 446–458. [Google Scholar] [CrossRef]
- Baumann, C.W.; Kwak, D.; Liu, H.M.; Thompson, L.V. Age-induced oxidative stress: How does it influence skeletal muscle quantity and quality? J. Appl. Physiol. (1985) 2016, 121, 1047–1052. [Google Scholar] [CrossRef]
- Hosoi, T.; Yakabe, M.; Hashimoto, S.; Akishita, M.; Ogawa, S. The roles of sex hormones in the pathophysiology of age-related sarcopenia and frailty. Reprod. Med. Biol. 2024, 23, e12569. [Google Scholar] [CrossRef]
- Priego, T.; Martin, A.I.; Gonzalez-Hedstrom, D.; Granado, M.; Lopez-Calderon, A. Role of hormones in sarcopenia. Vitam. Horm. 2021, 115, 535–570. [Google Scholar] [CrossRef]
- Morley, J.E. Hormones and Sarcopenia. Curr. Pharm. Des. 2017, 23, 4484–4492. [Google Scholar] [CrossRef]
- Nafziger, A.N.; Bowlin, S.J.; Jenkins, P.L.; Pearson, T.A. Longitudinal changes in dehydroepiandrosterone concentrations in men and women. J. Lab. Clin. Med. 1998, 131, 316–323. [Google Scholar] [CrossRef]
- Siscovick, D.S.; Fried, L.; Mittelmark, M.; Rutan, G.; Bild, D.; O’Leary, D.H. Exercise intensity and subclinical cardiovascular disease in the elderly. The Cardiovascular Health Study. Am. J. Epidemiol. 1997, 145, 977–986. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Malmstrom, T.; Morley, J. SARC-F: A Simple Questionnaire to Rapidly Diagnose Sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Fillenbaum, G.G.; Smyer, M.A. The development, validity, and reliability of the OARS multidimensional functional assessment questionnaire. J. Gerontol. 1981, 36, 428–434. [Google Scholar] [CrossRef]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Katzman, R.; Brown, T.; Fuld, P.; Peck, A.; Schechter, R.; Schimmel, H. Validation of a short Orientation-Memory-Concentration Test of cognitive impairment. Am. J. Psychiatry 1983, 140, 734–739. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF): A practical tool for identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef]
- Kirk, B.; Cawthon, P.M.; Arai, H.; Ávila-Funes, J.A.; Barazzoni, R.; Bhasin, S.; Binder, E.F.; Bruyere, O.; Cederholm, T.; Chen, L.-K.; et al. The Conceptual Definition of Sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age Ageing 2024, 53, afae052. [Google Scholar] [CrossRef]
- Lee, D.-Y. Prevalence and Associated Factors of Dynapenia, Pre-Sarcopenia, and Sarcopenia in Korean Adults: A Cross-Sectional Epidemiological Study. Medicina 2025, 61, 575. [Google Scholar] [CrossRef]
- Delmonico, M.J.; Harris, T.B.; Visser, M.; Park, S.W.; Conroy, M.B.; Velasquez-Mieyer, P.; Boudreau, R.; Manini, T.M.; Nevitt, M.; Newman, A.B.; et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009, 90, 1579–1585. [Google Scholar] [CrossRef]
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013, 3, 346–350. [Google Scholar] [CrossRef]
- Mendoza-Núñez, V.M.; Beristain-Pérez, A.; Pérez-Vera, S.P.; Altamirano-Lozano, M.A. Age-related sex differences in glutathione peroxidase and oxidative DNA damage in a healthy Mexican population. J. Womens Health 2010, 19, 919–926. [Google Scholar] [CrossRef]
- Xia, W.; Khalil, R.A. Hormone Replacement Therapy and Cardiovascular Health in Postmenopausal Women. Int. J. Mol. Sci. 2025, 26, 5078. [Google Scholar] [CrossRef]
- Harma, M.; Erel, O. Increased oxidative stress in patients with hydatidiform mole. Swiss Med. Wkly. 2003, 133, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Jin, D.; Liu, L.; Song, Q.; Pan, D.; Guo, B.; Xie, W. Gender-specific association of oxidative balance score with sarcopenia in American adults: NHANES 2011–2018. Exp. Gerontol. 2025, 206, 112775. [Google Scholar] [CrossRef] [PubMed]
- Moreira-Pais, A.; Vitorino, R.; Sousa-Mendes, C.; Neuparth, M.J.; Nuccio, A.; Luparello, C.; Attanzio, A.; Novak, P.; Loginov, D.; Nogueira-Ferreira, R.; et al. Mitochondrial remodeling underlying age-induced skeletal muscle wasting: Let’s talk about sex. Free Radic. Biol. Med. 2024, 218, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Fernández, J.; Fernández-Montero, A.; Córdova-Martínez, A.; Pastor, D.; Martínez-Rodríguez, A.; Roche, E. Sarcopenia: Molecular Pathways and Potential Targets for Intervention. Int. J. Mol. Sci. 2020, 21, 8844. [Google Scholar] [CrossRef]
- Musaro, A.; Fulle, S.; Fano, G. Oxidative stress and muscle homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 236–242. [Google Scholar] [CrossRef]
- Kubat, G.B.; Bouhamida, E.; Ulger, O.; Turkel, I.; Pedriali, G.; Ramaccini, D.; Ekinci, O.; Ozerklig, B.; Atalay, O.; Patergnani, S.; et al. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023, 72, 33–58. [Google Scholar] [CrossRef]
- Hyatt, H.W.; Powers, S.K. Mitochondrial dysfunction is a common denominator linking skeletal muscle wasting due to disease, aging, and prolonged inactivity. Antioxidants 2021, 10, 588. [Google Scholar] [CrossRef]
- Valenti, G.; Denti, L.; Maggio, M.; Ceda, G.; Volpato, S.; Bandinelli, S.; Ceresini, G.; Cappola, A.; Guralnik, J.M.; Ferrucci, L. Effect of DHEAS on skeletal muscle over the life span: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 466–472. [Google Scholar] [CrossRef]
- Du, Y.; Xu, C.; Shi, H.; Jiang, X.; Tang, W.; Wu, X.; Chen, M.; Li, H.; Zhang, X.; Cheng, Q. Serum concentrations of oxytocin, DHEA and follistatin are associated with osteoporosis or sarcopenia in community-dwelling postmenopausal women. BMC Geriatr. 2021, 21, 542. [Google Scholar] [CrossRef] [PubMed]
- Yanagita, I.; Fujihara, Y.; Kitajima, Y.; Tajima, M.; Honda, M.; Kawajiri, T.; Eda, T.; Yonemura, K.; Yamaguchi, N.; Asakawa, H.; et al. A High Serum Cortisol/DHEA-S Ratio Is a Risk Factor for Sarcopenia in Elderly Diabetic Patients. J. Endocr. Soc. 2019, 3, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Atkins, J.L.; Wannamathee, S.G. Sarcopenic obesity in ageing: Cardiovascular outcomes and mortality. Br. J. Nutr. 2020, 124, 1102–1113. [Google Scholar] [CrossRef] [PubMed]
- Bien, B.; Bien-Barkowska, K.; Wojskowicz, A.; Kasiukiewicz, A.; Wojszel, Z.B. Prognostic factors of long-term survival in geriatric inpatients. Should we change the recommendations for the oldest people? J. Nutr. Health Aging 2015, 19, 481–488. [Google Scholar] [CrossRef]
- Hemsell, D.L.; Grodin, J.M.; Brenner, P.F.; Siiteri, P.K.; MacDonald, P.C. Plasma precursors of estrogen. II. Correlation of the extent of conversion of plasma androstenedione to estrone with age. J. Clin. Endocrinol. Metab. 1974, 38, 476–479. [Google Scholar] [CrossRef]
| Characteristic | All | Women | Men | p 1 | Missing Data | 
|---|---|---|---|---|---|
| n (%) | 134 (100) | 99 (73.9) | 35 (26.1) | ||
| Age (y), M (SD) | 79.1 (7.3) | 79.6 (7.3) | 77.7 (7.4) | 0.20 | - | 
| Chronic diseases | |||||
| Hypertension, n (%) | 118 (88.1) | 89 (89.9) | 29 (82.9) | 0.36 | |
| Atrial fibrillation, n (%) | 27 (20.1) | 20 (20.2) | 7 (20) | 1.00 | |
| CHF, n (%) | 57 (42.5) | 38 (38.4) | 19 (54.3) | 0.12 | |
| IHD, n (%) | 25 (18.7) | 17 (17.2) | 8 (22.9) | 0.46 | |
| MI, n (%) | 5 (3.7) | 2 (2) | 3 (8.6) | 0.11 | |
| PAD, n (%) | 22 (16.4) | 12 (12.1) | 10 (28.6) | 0.03 | |
| Brain infarct, n (%) | 8 (6.0) | 3 (3.0) | 5 (14.3) | 0.03 | |
| Orthostatic hypotension, n (%) | 38 (28.4) | 23 (23.2) | 15 (42.9) | 0.03 | |
| COPD, n (%) | 6 (4.5) | 3 (3.0) | 3 (8.6) | 0.18 | |
| Asthma, n (%) | 2 (1.5) | 2 (2) | 0 (0.0) | 1.00 | |
| Diabetes, n (%) | 75 (56) | 56 (56.6) | 19 (54.3) | 0.85 | |
| CKD, n (%) | 47 (35.1) | 34 (34.3) | 13 (37.1) | 0.84 | |
| Osteoarthritis, n (%) | 11 (8.2) | 7 (7.1) | 4 (11.4) | 0.48 | |
| Osteoporosis, n (%) | 53 (39.6) | 49 (49.5) | 4 (11.4) | <0.001 | |
| Neoplasm, n (%) | 11 (8.2) | 6 (6.1) | 5 (14.3) | 0.16 | |
| Dementia, n (%) | 8 (6.0) | 5 (5.1) | 3 (8.6) | 0.43 | |
| Depression, n (%) | 90 (67.2) | 72 (72.7) | 18 (51.4) | 0.04 | |
| Number of chronic diseases, Me (IQR) | 4 (3,6) | 4 (3,5) | 4 (3,6) | 0.58 | |
| Multimorbidity (≥2 diseases), n (%) | 127 (94.8) | 94 (94.9) | 33 (94.3) | 1.00 | |
| Functional abilities and physical activity | |||||
| Barthel Index, points, Me (IQR) | 95 (85, 100) | 95 (85, 100) | 95 (90, 100) | 0.03 | |
| ADL dependence, n (%) | 22 (16.4) | 19 (19.2) | 3 (8.6) | 0.19 | |
| Duke OARS IADL, points, Me (IQR) | 9 (7, 11) | 9 (7, 11) | 9 (7, 11) | 0.89 | |
| IADL dependence, n (%) | 58 (43.3) | 44 (44.4) | 14 (40.0) | 0.70 | |
| GDS, points, Me (IQR) | 5 (3, 7) | 5 (3, 8) | 4 (2, 5) | 0.007 | |
| GDS > 4 points, n(%) | 69 (51.9) | 56 (57.1) | 13 (37.1) | 0.05 | |
| Short-Blessed, points, Me (IQR) | 4 (2, 10) | 4 (2, 8) | 6 (2, 14) | 0.10 | |
| Short-Blessed > 9 points, n (%) | 35 (26.3) | 23 (23.5) | 12 (34.3) | 0.26 | 1 | 
| Low physical activity, n (%) | 45 (34.1) | 31 (32.0) | 14 (40.0) | 0.41 | 2 | 
| Nutritional parameters | |||||
| MNA-SF, points, Me (IQR) | 11.5 (9, 13) | 12 (9, 13) | 11 (10, 13) | 0.77 | |
| MNA-SF < 8 points, n (%) | 16 (11.9) | 12 (12.1) | 4 (11.4) | 0.96 | |
| 8–11 points, n (%) | 51 (38.1) | 37 (37.4) | 14 (40.0) | ||
| 12–14 points, n (%) | 67 (50.0) | 50 (50.5) | 17 (48.6) | ||
| BMI, kg/m2, M (SD) | 29.6 (6.1) | 29.2 (6.2) | 30.8 (5.9) | 0.19 | |
| BMI ≥ 30 kg/m2, n (%) | 62 (46.6) | 43 (43.9) | 19 (54.3) | 0.33 | |
| BMI < 18.5 kg/m2, n (%) | 3 (2.3) | 3 (3.1) | 0 (0) | 0.57 | |
| WC, cm, M(SD) | 95.2 (14.5) | 92.0 (13.4) | 105 (13.3) | <0.001 | |
| Abdominal obesity, n (%) | 102 (81) | 77 (81.1) | 25 (80.6) | 1.00 | 8 | 
| Sarcopenia consensus parameters | |||||
| SARCF, points, Me (IQR) | 2.0 (1, 5) | 3 (1, 5) | 2 (1, 3) | 0.04 | - | 
| SARCF ≥ 4 points, n (%) | 53 (39.6) | 45 (45.5) | 8 (22.9) | 0.03 | - | 
| HGS, kg, Me (IQR) | 20.3 (15.4, 25.3) | 19.3 (14.2, 21.7) | 30.1 (22.6, 35.2) | <0.001 | - | 
| Dynapenia, n (%) | 50 (37.3) | 35 (35.4) | 15 (42.9) | 0.28 | - | 
| Gait speed, m/s, Me (IQR) | 0.73 (0.52, 0.93) | 0.72 (0.52, 0.88) | 0.79 (0.53, 1.16) | 0.22 | 10 | 
| Slow gait (≤0.8 m/s), n (%) | 76 (61.3) | 58 (64.4) | 18 (52.9) | 0.39 | 10 | 
| TUG test, s, Me (IQR) | 15.6 (11, 22.4) | 16 (12, 23) | 13.5 (9.5, 22.1) | 0.10 | 7 | 
| TUG ≥ 20 s, n (%) | 39 (30.7) | 30 (32.6) | 9 (25.7) | 0.52 | 7 | 
| Biochemical parameters | |||||
| Serum protein, g/dL, M (SD) | 6.5 (0.5) | 6.5 (0.5) | 6.6 (0.5) | 0.95 | |
| Serum protein < 6 g/dL, n (%) | 18 (15.4) | 12 (14.3) | 6 (18.2) | 0.58 | |
| Serum albumin, g/dL, M (SD) | 4.13 (0.38) | 4.15 (0.37) | 4.05 (0.41) | 0.21 | |
| Serum albumin < 3.5 g/dL, n (%) | 7 (5.3) | 5 (5.1) | 2 (5.7) | 1.0 | |
| CRP ≥ 5 mg/L, n (%) | 34 (25.4) | 22 (22.2) | 12 (34.3) | 0.18 | |
| IL-6, pg/mL, Me (IQR) | 4.34 (2.79, 8.70) | 3.81 (2.68, 8.68) | 5.62 (3.54, 8.76) | 0.14 | |
| IL-6 > 8 pg/mL, n (%) | 35 (26.1) | 26 (26.3) | 9 (25.7) | 1.00 | |
| TNF-α, pg/mL, Me (IQR) | 25.73 (10.31, 61.57) | 26.28 (10.52, 57.80) | 18.86 (9.88, 101.86) | 0.91 | |
| TNF-α > 15 pg/mL, n (%) | 81 (60.4) | 61 (61.6) | 20 (57.1) | 0.69 | |
| Hemoglobin, g/dL, M(SD) | 12.5 (1.5) | 12.3 (1.5) | 13.1 (1.4) | 0.01 | |
| Anemia, n (%) | 54 (40.3) | 37 (37.4) | 17 (48.6) | 0.32 | |
| Lymphocytes, K/µL, Me (IQR) | 1.51 (1.22, 1.93) | 1.59 (1.21, 1.93) | 1.43 (1.26, 2.0) | 0.36 | |
| TSH, µIU/mL, Me (IQR) | 1.36 (0.79, 2.01) | 1.19 (0.79, 2.05) | 1.52 (0.92, 2.0) | 0.29 | |
| NT-proBNP, pg/mL, Me (IQR) | 357 (184, 784) | 391 (191, 793) | 303 (179, 518) | 0.28 | |
| GFR, mL/min/1.73 m2, Me (IQR) | 60.9 (45.0, 82.6) | 54,4 (43.9, 78.1) | 70.3 (46.6, 97.8) | 0.02 | 11 | 
| GFR < 60 mL/min/1.73 m2, n (%) | 65 (48.5) | 53 (53.5) | 12 (34.3) | 0.08 | 11 | 
| Serum creatinine, mg/dL, Me (IQR) | 0.86 (0.71, 1.07) | 0.79 (0.68, 1.03) | 0.97 (0.86, 1.21) | <0.001 | 11 | 
| DHEA, ng/mL, Me (IQR) | 0.44 (0.30, 0.57) | 0.45 (0.30, 0.58) | 0.43 (0.28, 0.56) | 0.95 | |
| 25(OH)D, ng/mL, Me (IQR) | 28.7 (18.2, 42.4) | 32.8 (21.4, 43.3) | 22.1 (13.1, 31.0) | 0.002 | 2 | 
| Redox balance parameters | |||||
| TOS, μmol/L, Me (IQR) | 656.5 (402.2, 1033.8) | 729.0 (408.2, 1042.3) | 555.6 (365.4, 986.4) | 0.31 | |
| TAS, μmol/L, Me (IQR) | 358.4 (280.5, 385.8) | 367.3 (294.2, 386.0) | 336.4 (259.1, 379.6) | 0.14 | |
| OSI, M (SD) | 2.24 (1.01) | 2.27 (1.00) | 2.15 (1.04) | 0.46 | 
| Characteristic | Dynapenia− | Dynapenia+ | p 1 | 
|---|---|---|---|
| n (%) | 84 (62.7) | 50 (37.3) | |
| Sociodemographic characteristics | |||
| Age (y), M (SD) | 77.3 (7.3) | 82.3 (6.3) | <0.001 | 
| Sex (women) | 64 (76.2) | 35 (70.0) | 0.54 | 
| Chronic diseases | |||
| Hypertension, n (%) | 71 (84.5) | 47 (94.0) | 0.17 | 
| Atrial fibrillation, n (%) | 14 (16.7) | 13 (26.0) | 0.27 | 
| CHF, n (%) | 29 (34.5) | 28 (56.0) | 0.02 | 
| IHD, n (%) | 13 (15.5) | 12 (24.0) | 0.26 | 
| MI, n (%) | 1 (1.2) | 4 (8.0) | 0.06 | 
| PAD, n (%) | 17 (20.2) | 5 (10.0) | 0.15 | 
| Brain infarct, n (%) | 4 (4.8) | 4 (8.0) | 0.47 | 
| Orthostatic hypotension, n (%) | 27 (32.1) | 11 (22.0) | 0.24 | 
| COPD, n (%) | 3 (3.6) | 3 (6.0) | 0.67 | 
| Asthma, n (%) | 1 (1.2) | 0 (2.0) | 1.00 | 
| Diabetes, n (%) | 45 (53.6) | 30 (60.0) | 0.48 | 
| CKD, n (%) | 26 (31.0) | 21 (42.0) | 0.26 | 
| Osteoarthritis, n (%) | 5 (6.0) | 6 (12.0) | 0.33 | 
| Osteoporosis, n (%) | 30 (35.7) | 23 (46.0) | 0.28 | 
| Neoplasm, n (%) | 4 (4.8) | 7 (14.0) | 0.10 | 
| Dementia, n (%) | 6 (7.1) | 2 (4.0) | 0.71 | 
| Depression, n (%) | 56 (66.7) | 34 (68.0) | 1.00 | 
| Number of chronic diseases, Me (IQR) | 4 (3.5) | 5 (4.6) | 0.005 | 
| Multimorbidity (2+ diseases), n (%) | 77 (91.7) | 50 (100.0) | 0.045 | 
| Functional abilities and physical activity | |||
| Barthel Index, points, Me (IQR) | 95 (90, 100) | 90 (70, 95) | 0.03 | 
| ADL dependence, n (%) | 6 (7.1) | 16 (32.0) | <0.001 | 
| Duke OARS IADL, points, Me (IQR) | 10 (8, 12) | 8 (5, 10) | <0.001 | 
| IADL dependence, n (%) | 29(34.5) | 29 (58.0) | 0.01 | 
| GDS, points, Me (IQR) | 4 (3, 7) | 5 (3, 7) | 0.41 | 
| GDS 15 > 4 points, n(%) | 40 (48.2) | 29 (58.0) | 0.29 | 
| Short-Blessed points, Me (IQR) | 4 (2, 8) | 6 (2, 12) | 0.10 | 
| Short-Blessed > 9 points, n (%) | 16 (19.3) | 19 (38.0) | 0.03 | 
| Low physical activity, n (%) | 23 (28.0) | 22 (44.0) | 0.09 | 
| Nutritional and biochemical parameters | |||
| MNA-SF, points, Me (IQR) | 12 (9, 13) | 11 (9, 13) | 0.08 | 
| MNA-SF < 8, n (%) | 9 (9.5) | 8 (16.0) | 0.09 | 
| 8–11, n (%) | 28 (33.3) | 23 (46.0) | |
| 12–14, n (%) | 48(57.1) | 19 (38.0) | |
| BMI, kg/m2, M (SD) | 30.5 (6.0) | 28.1 (6.2) | 0.03 | 
| BMI > 30 kg/m2, n (%) | 45 (53.6) | 17 (34.0) | 0.03 | 
| BMI < 18.5 kg/m2, n (%) | 1 (1.2) | 2 (4.0) | 0.56 | 
| WC, cm, M (SD) | 96.1 (15.0) | 93.7 (13.6) | 0.34 | 
| Abdominal obesity, n (%) | 64 (84.2) | 38 (76.0) | 0.26 | 
| Sarcopenia consensus parameters | |||
| SARCF, points, Me (IQR) | 3 (1, 4) | 4 (2,6) | <0.001 | 
| SARCF ≥ 4 points, n (%) | 25 (29.8) | 28 (56.0) | 0.003 | 
| HGS, kg, Me (IQR) | 22.0 (19.9, 29.4) | 14 (9.8, 16.7) | <0.001 | 
| Men | 34.3 (31.1, 37.9) | 22.4 (18.3, 24.5) | <0.001 | 
| Women | 21.1 (19.5, 24.4) | 11.8 (7.9, 14.4) | <0.001 | 
| Gait speed, m/s, Me (IQR) | 0.84 (0.64, 1.12) | 0.54 (0.39, 0.72) | <0.001 | 
| Slow gait (≤0.8 m/s), n (%) | 37 (46.3) | 39 (88.6) | <0.001 | 
| TUG test, s, Me (IQR) | 13 (9.4, 18) | 20.9 (16.0, 32.5) | <0.001 | 
| TUG ≥ 20 s, n(%) | 15 (18.5) | 24 (52.2) | <0.001 | 
| Biochemical parameters | |||
| Serum protein, g/dL, M (SD) | 6.6 (0.43) | 6.5 (0.68) | 0.79 | 
| Serum protein < 6 g/dL, n (%) | 7 (9.7) | 11 (24.4) | 0.04 | 
| CRP ≥ 5 mg/L, n (%) | 20 (23.8) | 14 (28.0) | 0.68 | 
| Serum albumin, g/dL, M (SD) | 4.19 (0.30) | 4.02 (0.48) | 0.03 | 
| Serum albumin < 3.5 g/dL, n (%) | 2 (2.4) | 5 (10.0) | 0.10 | 
| Hemoglobin, g/dL, M(SD) | 12.7 (1.5) | 12.2 (1.5) | 0.05 | 
| Lymphocytes, K/µL, Me (IQR) | 1.53 (1.27, 1.96) | 1.48 (1.09, 1.85) | 0.37 | 
| TSH, µIU/mL, Me (IQR) | 1.32 (0.87, 2.13) | 1.40 (0.51, 1.83) | 0.24 | 
| Serum creatinine, mg/dL, Me (IQR) | 0.84 (0.70, 1.05) | 0.88 (0.74, 1.21) | 0.31 | 
| NT-proBNP, pg/mL, Me (IQR) | 292 (171,509) | 556 (304, 1773) | 0.001 | 
| GFR, mL/min/1.73 m2, Me (IQR) | 69.4 (46.6, 89.7) | 53.7 (40.0, 69.9) | 0.002 | 
| GFR < 60 mL/min/1.73 m2, n (%) | 35 (41.7) | 30 (60.0) | 0.05 | 
| IL-6, pg/mL, Me (IQR), | 4.34 (2.66, 7.36) | 4.49 (2.87, 9.32) | 0.43 | 
| IL-6 > 8 pg/mL, n (%) | 19 (22.6) | 16 (32.0) | 0.31 | 
| TNF-α, pg/mL, Me (IQR) | 26.52 (9.89, 61.78) | 22.75 (11.36, 60.87) | 0.77 | 
| TNF- > 15 pg/mL, n (%) | 53 (63.1) | 28 (56.0) | 0.47 | 
| DHEA, ng/mL, Me (IQR) | 0.46 (0.34, 0.62) | 0.42 (0.20, 0.53) | 0.03 | 
| 25(OH)D, ng/mL, Me (IQR) | 32.8 (18.2, 42.6) | 26.5 (18.7, 39.8) | 0.40 | 
| Parameter | Dynapenia+ | Dynapenia− | p 1 | 
|---|---|---|---|
| Total Group | |||
| TOS, μmol/L, Me (IQR) | 815.1 (398.4, 1189.8) | 640.9 (403.9, 959.6) | 0.12 | 
| TAS, μmol/L, Me (IQR) | 346.3 (273.7, 381.7) | 370.7 (287.4, 386.1) | 0.25 | 
| OSI, M (SD) | 2.52 (1.17) | 2.06 (0.87) | 0.02 | 
| Women | |||
| TOS, μmol/L, Me (IQR) | 819.3 (497.1, 1254.1) | 653.21 (397.8, 963.2) | 0.004 | 
| TAS, μmol/L, Me (IQR) | 352.9 (298.5, 385.8) | 376.6 (293.1, 386.1) | 0.4 | 
| OSI, M (SD) | 2.67 (1.08) | 2.04 (0.90) | 0.004 | 
| Men | |||
| TOS, μmol/L, Me (IQR) | 401.2 (335.5, 1168.3) | 597.2 (463.4, 837.0) | 0.73 | 
| TAS, μmol/L, Me (IQR) | 336.4 (259.2, 378.5) | 350.27 (255.0, 385.2) | 0.66 | 
| OSI, M (SD) | 2.17 (1.32) | 2.13 (0.81) | 0.92 | 
| OR | 95% CI | p | OR | 95% CI | p | |
|---|---|---|---|---|---|---|
| MODEL 1 | MODEL 2 | |||||
| Age, years | 1.13 | 1.02–1.26 | 0.03 | 1.14 | 1.02–1.28 | 0.02 | 
| CHF | 2.71 | 0.67–11.06 | 0.16 | 2.54 | 0.61–10.52 | 0.20 | 
| MI | 19.01 | 1.20–302.24 | 0.04 | 18.42 | 1.03–329.80 | 0.05 | 
| Neoplasm | 5.28 | 0.74–37.55 | 0.10 | 4.02 | 0.55–29.23 | 0.17 | 
| Number of chronic diseases | 0.95 | 0.62–1.45 | 0.81 | 0.96 | 0.63–1.47 | 0.86 | 
| MNA-SF, points | 0.92 | 0.71–1.18 | 0.50 | 0.92 | 0.71–1.18 | 0.49 | 
| BMI, kg/m2 | 0.90 | 0.80–1.01 | 0.06 | 0.90 | 0.80–1.01 | 0.06 | 
| Serum protein < 6 g/dL | 0.59 | 0.09–3.85 | 0.58 | 0.56 | 0.08–3.66 | 0.54 | 
| Hemoglobin, g/dL | 1.42 | 0.90–2.25 | 0.13 | 0.20 | 0.86–2.15 | 0.20 | 
| NT-proBNP, pg/mL | 1.00 | 1.00–1.00 | 0.68 | 1.00 | 1.00–1.00 | 0.67 | 
| GFR, mL/min/1.73 m2 | 0.99 | 0.96–1.02 | 0.46 | 0.99 | 0.96–1.02 | 0.40 | 
| DHEA, ng/mL | 0.09 | 0.01–1.01 | 0.05 | 0.08 | 0.01–0.88 | 0.04 | 
| OSI | 1.87 | 1.05–3.34 | 0.04 | 1.91 | 1.06–3.46 | 0.03 | 
| Serum albumin (g/dL) | 0.34 | 0.05–2.19 | 0.26 | 0.34 | 0.05–2.22 | 0.26 | 
| Low physical activity | 0.87 | 0.28–2.73 | 0.81 | 0.92 | 0.29–2.95 | 0.89 | 
| GDS (points) | 1.01 | 0.85–1.19 | 0.94 | 1.03 | 0.86–1.22 | 0.77 | 
| Short-Blessed test (points) | 1.02 | 0.92–1.13 | 0.68 | 1.01 | 0.90–1.12 | 0.91 | 
| Sex (men) | 1.98 | 0.51–7.60 | 0.32 | 
| OR | 95% CI | p | |
|---|---|---|---|
| MODEL 3 | |||
| Age (years) | 1.14 | 1.05–1.24 | 0.002 | 
| BMI | 0.89 | 0.82–0.98 | 0.01 | 
| OSI | 1.78 | 1.08–2.95 | 0.02 | 
| DHEA | 0.11 | 0.02–0.88 | 0.04 | 
| MI | 10.81 | 0.95–123.56 | 0.06 | 
| Neoplasm | 6.53 | 0.96–44.26 | 0.06 | 
| CHF | 2.30 | 0.86–6.16 | 0.10 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śliwowski, J.; Wojszel, A.; Rentflejsz, J.; Rogalska, J.; Brzóska, M.M.; Wojszel, Z.B. Dynapenia, Dehydroepiandrosterone (DHEA), and Redox Balance in Geriatric Patients—Does Sex Play a Role? Nutrients 2025, 17, 3413. https://doi.org/10.3390/nu17213413
Śliwowski J, Wojszel A, Rentflejsz J, Rogalska J, Brzóska MM, Wojszel ZB. Dynapenia, Dehydroepiandrosterone (DHEA), and Redox Balance in Geriatric Patients—Does Sex Play a Role? Nutrients. 2025; 17(21):3413. https://doi.org/10.3390/nu17213413
Chicago/Turabian StyleŚliwowski, Jakub, Aleksandra Wojszel, Justyna Rentflejsz, Joanna Rogalska, Małgorzata Michalina Brzóska, and Zyta Beata Wojszel. 2025. "Dynapenia, Dehydroepiandrosterone (DHEA), and Redox Balance in Geriatric Patients—Does Sex Play a Role?" Nutrients 17, no. 21: 3413. https://doi.org/10.3390/nu17213413
APA StyleŚliwowski, J., Wojszel, A., Rentflejsz, J., Rogalska, J., Brzóska, M. M., & Wojszel, Z. B. (2025). Dynapenia, Dehydroepiandrosterone (DHEA), and Redox Balance in Geriatric Patients—Does Sex Play a Role? Nutrients, 17(21), 3413. https://doi.org/10.3390/nu17213413
 
        


 
       