Linking Nutrients to Multiple Sclerosis Pathogenesis: Biological Evidence and Clinical Implications
Abstract
1. Introduction
1.1. Pathogenesis and Clinical Phenotypes of Multiple Sclerosis
1.2. Nutrition and MS Pathogenesis
1.3. Gut Microbiota and Diet in MS
2. Methods
3. Dietary Fatty Acids
| References | Dietary Fatty Acids | C:N | Pathology | Biological Effects | Clinical Effects |
|---|---|---|---|---|---|
| Haghikia et al., 2015 [35] | Lauric acid | SF, C12:0 | EAE | ↑ Differentiation Th1 and Th17 cells; ↑ Th17 in spleen and CNS; Gut microbiome involvement; | Worsening disease course |
| Haghikia et al., 2015 [35] | Palmitic acid | SF, C16:0 | EAE | ↑ Differentiation Th1 and Th17 cells | Worsening disease course |
| Conde et al., 2020 [39]; Conde et al., 2019 [40] | Oleic acid—EVOO | MUFA, CIS-18:1 (ω-9) | EAE | ↑ Lipid peroxidation; ↓ Carbonylated proteins; ↓ Glutathione peroxidase; ↓ Brain, spinal cord, blood and intestine levels of TNF-alpha, NF-kBp065 and NO; ↓ Serum and intestinal LPS | Improved clinical parameters |
| Ni et al., 2025 [58] | Oleic acid linoleic acid— Canola oil | MUFA, CIS-18:1 (ω-9) PUFA, 18:2 (ω-6) | EAE | Limited CNS infiltration and no evidence of demyelination compared to high carbohydrates and high proteins diet | Zero incidence and clinical score |
| Feng et al., 2021 [50]; Adkins et al., 2019 [47]; Unoda et al., 2013 [48]; Ouyang et al., 2020 [49] | EPA, DHA | PUFA, 20:5 (ω-3) PUFA, 22:5 (ω-3) | EAE | ↓ Phosphorylated transforming growth factor β-activated kinase 1, inhibition terminal activation of NF-κB; ↓ T-cell activation; Anti-inflammatory effect, induction of a tolerogenic DC phenotype with increased Tregs | Reduce clinical severity |
| Langer-Gould et al., 2020 [43] | EPA, DHA | PUFA, 20:5 (ω-3) PUFA, 22:5 (ω-3) | MS | Consuming fish/seafood at least once a week or at least once a month with regular fish oil use associated with 44% reduced odds of MS/CIS | |
| Bjørnevik et al., 2017 [42] | ALA | PUFA, 18:3 (ω-3) | MS | Associated with a lower risk of MS |
4. Dietary Carbohydrates
| References | Dietary Carbohydrates/Diet | Phatology | Biological Effects | Clinical Effects |
|---|---|---|---|---|
| Zhang et al., 2019 [80] | Glucose (20% of glucose-diet) | EAE | ↑ Differentiation of Th17 cells, elevated into the spinal cords and brain; ↑ ROS; Activation TGF-β | Higher disease severity |
| Peterson et al., 2023 [71] | Fructose (70% of diet) | EAE | Modulation of gut microbiota composition; ↑ Helios−RORγt + Foxp3 + CD4+ Treg cells appeared in the small intestine lamina | Minimal influence on the EAE severity |
| Cao et al., 2017 [70] | Sucrose (10–11% w/v of cola beverages) | EAE | ↑ Th17 cell Microbiota-dependent mechanism | Exacerbate disease pathogenesis |
| Ni et al., 2025 [58] | Carbohydrates (75% of diet) | EAE | ↑ Infiltrating CD4+, CD8+ and RORγt + CD4+ T cells and inflammatory macrophages; Exacerbated neuroinflammation and peripheral T cell inflammatory cytokine responses | Earlier EAE onset; ↑ Disease incidence; ↑ Maximum and cumulative clinical scores |
| Bromley et al., 2019 [66]; Fitzgerald et al., 2018 [67] | Lower intake of carbohydrates and sugars | MS | Improved walking ability; lower disability | |
| De la Rubia Ortí et al., 2020 [68] | Simple carbohydrate diet | MS | ↑ Levels of MS-associated depression |
5. Dietary Fibers
Gut Microbiome Modulation by Dietary Fibers and Their Products SCFA
| References | Dietary Fibers/Diet | Pathology | Biological Effects | Clinical Effects |
|---|---|---|---|---|
| Fettig et al., 2022 [85] | Guar gum | EAE | ↓ Activation and migration of CD4+ Th1; delays in neuroinflammation onset | Delay EAE onset |
| Berer et al., 2018 [86] | Non fermentable fibers | EAE | ↑ LCFAs, which promoted autoimmune suppressive Th2 immune response; Gut microbiota modulation (↑ Enterococcus, Helicobacter, Parabacteroides, Desulfovibrio, Pseudoflavonifractor and Oscillibacter, ↓ Parasutterella, Lactobacillus, Coprobacillus and TM7 genera Incertae Sedis) | Prevention of autoimmune disease |
| Lu et al., 2020 [88] | Oral pomegranate peel extract | EAE | ↓ CNS infiltration and myelin loss; Gut microbiota modulation (↑ Prevotellaceae, ↓ Bacteroidales_S24_7) | Amelioration of EAE |
| Yousof et al., 2023 [97] | Palmaria palmata aqueous extract | Cuprizone-induced MS | Gut microbiota modulation (↑ in Bacteroidia, Lactobacillus and Proteobacteria) | Protection against cuprizone-induced MS |
| Sen et al., 2023 [89] | High fiber intake | EAE | ↑ Proinflammatory environment; ↑ DC and monocytes infiltration in the CNS; ↑ SCFA | Worsening of general disease course |
| Mizuno et al., 2017 [98] | High fiber intake | EAE | Block of IFN-γ production; ↑ IL-17, Treg and macrophages | Amelioration of disease severity of autoimmune inflammatory diseases |
| Cavalla et al., 2022 [92] | Low fiber intake | MS | ↑ Risk of a demyelinating event | |
| Moravejolahkamidoi et al., 2019 [93] | High prebiotic fiber intake | MS | ↓ Systemic inflammation | Modulation of disease severity |
| Bronzini et al., 2024 [94] | High fiber intake and adherence to MD | MS | ↓ MSSS | |
| Marck et al., 2021 [95] | High fiber intake | MS | ↑ Health outcome | |
| Hatami et al., 2024 [96] | High fiber intake | MS | ↑ Odds of MS |
6. Dietary Proteins
6.1. Proteins from Meat
6.2. Proteins from Dairy Products
6.3. Proteins from Wheat
6.4. Tryptophan
| Dietary Proteins | References | Pathology | Biological Effects | Clinical Effects |
|---|---|---|---|---|
| MEAT | Lauer et al., 1994 [128]; Gusev et al., 1996 [129] | MS | ↑ MS risk with higher red meat intake; ↑ MS with meat diet | |
| Black et al., 2019 [130] | MS | ↓ First diagnosis of CNS demyelination with unprocessed med in women | ||
| Ghadirian et al., 1998 [90]; Lauer et al., 2007 [131]; Sepcić et al., 1993 [132] | MS | ↑ MS risk with processed meat | ||
| Ghadirian et al., 1998 [90]; Zhang et al., 2000 [127] | MS | No association between red meat and MS | ||
| Zhang et al., 2000 [127] Black et al., 2019 [130] | MS | No association between processed red meat and MS | ||
| Black et al., 2019 [133]; Alfredsson et al., 2023 [134]; Veronese et al., 2022 [135] | MS | ↓ MS risk with prudent diet (low red/processed meat diet) | ||
| Cantoni et al., 2022 [136] | MS | ↓ Microbiota fibre fermentation bacteria; ↑ Th17 cell | ||
| DAIRY PRODUCTS | Otaegui et al., 2007 [146] | EAE/MS | ↑ Production of milk-related transcript of the casein family after inflammatory event | |
| Escribano et al., 2022 [157] | EAE | ↓ Inflammation and oxidative stress with casein and lactose | Improve clinical aspect of the disease | |
| Chunder et al., 2023 [147] | MS | ↑ Ab titers against β-casein displayed greater levels of disability | ||
| Stefferl et al., 2000 [149] | EAE | Initial immunization with BTN triggers an autoimmune response against the MOG protein through a T cell-dependent mechanism | ||
| Mañá et al., 2004 [156] | EAE | ↓ Proliferation of pro-inflammatory Th1-related cytokines in response to MOG; ↑ IL-10 secretion in C57BL/6 mice | Prevention of EAE development; Alleviate transient clinical symptoms | |
| Sadatipour et al., 1998 [152] | MS | ↑ Levels of anti -GM3 in PPMS and SPMS | ||
| Honorat et al., 2013 [155] | EAE | ↑ XO levels and ROS expression in the CNS | ||
| Abbasi et al., 2017 [158] | MS | Reduction in the risk of MS | ||
| Zhang et al., 2000 [127]; Dieu et al., 2022 [159] | MS | No association with MS risk or demyelination | ||
| Ibrahim et al., 2023 [160] | EAE | ↓ Expression of inflammatory cytokines; ↑ Total microbial load; ↑ Levels of SCFAs in MOG-immunized C57BL/6J mouse model | Reduction in EAE disease index | |
| WHEAT | Thomsen et al., 2019 [162] | MS | Gluten-free dietary interventions improved EDSS, MRI lesion activity, perceived fatigue and quality of life in MS patients | |
| Zevallos et al., 2023 [166] | EAE | Activation of myeloid cell; ↑ Pro-inflammatory CD45 + CD11b+ myeloid cells infiltrating the CNS; ↓ Foxp3 + CD25+ Treg cells in mesenteric lymph nodes | Worsening of EAE clinical scores with increasing amounts of dietary ATIs | |
| Engel et al., 2023 [167] | MS | ↑ In anti-inflammatory monocytes | Improvement in pain-related quality of life | |
| TRYPTOPHAN | Sonner et al., 2019 [173] | EAE | Impaired encephalitogenic T cell responses due to tryptophan restriction; Modulation in gut microbiota; Impact on T cell responses mediated by gut microbiota | |
| Hyyppä et al., 1975 [171] | MS | Amelioration in MS symptoms as motility, bladder disturbances and patients’ mood | ||
| Lieben et al., 2018 [172] | MS | Amelioration in memory processes |
7. Clinical Implications of Dietary Intervention
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haki, M.; AL-Biati, H.A.; Al-Tameemi, Z.S.; Ali, I.S.; Al-hussaniy, H.A. Review of Multiple Sclerosis: Epidemiology, Etiology, Pathophysiology, and Treatment. Medicine 2024, 103, e37297. [Google Scholar] [CrossRef]
- Number of People with MS|Atlas of MS. Available online: https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms (accessed on 21 January 2025).
- Dighriri, I.M.; Aldalbahi, A.A.; Albeladi, F.; Tahiri, A.A.; Kinani, E.M.; Almohsen, R.A.; Alamoudi, N.H.; Alanazi, A.A.; Alkhamshi, S.J.; Althomali, N.A.; et al. An Overview of the History, Pathophysiology, and Pharmacological Interventions of Multiple Sclerosis. Cureus 2023, 15, e33242. [Google Scholar] [CrossRef] [PubMed]
- Klineova, S.; Lublin, F.D. Clinical Course of Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a028928. [Google Scholar] [CrossRef]
- Kornbluh, A.B.; Kahn, I. Pediatric Multiple Sclerosis. Semin. Pediatr. Neurol. 2023, 46, 101054. [Google Scholar] [CrossRef] [PubMed]
- Alfredsson, L.; Olsson, T. Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2019, 9, a028944. [Google Scholar] [CrossRef] [PubMed]
- Swank, R.L.; Lerstad, O.; Strøm, A.; Backer, J. Multiple Sclerosis in Rural Norway Its Geographic and Occupational Incidence in Relation to Nutrition. N. Engl. J. Med. 1952, 246, 721–728. [Google Scholar] [CrossRef]
- Swank, R.L. Multiple Sclerosis: Twenty Years on Low Fat Diet. Arch. Neurol. 1970, 23, 460–474. [Google Scholar] [CrossRef]
- Chataway, J. Evolving Diagnostic Criteria for Multiple Sclerosis. Lancet Neurol. 2018, 17, 118. [Google Scholar] [CrossRef]
- Habek, M.; Adamec, I.; Gabelić, T.; Barun, B.; Krbot Skorić, M. Diagnostic Performance of the 2010, 2017, and 2024 McDonald Criteria: Clinical Implications in Multiple Sclerosis. J. Neurol. 2025, 272, 637. [Google Scholar] [CrossRef]
- Montalban, X.; Lebrun-Frénay, C.; Oh, J.; Arrambide, G.; Moccia, M.; Pia Amato, M.; Amezcua, L.; Banwell, B.; Bar-Or, A.; Barkhof, F.; et al. Diagnosis of Multiple Sclerosis: 2024 Revisions of the McDonald Criteria. Lancet Neurol. 2025, 24, 850–865. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, W.; Wang, L.; Wang, F.; Li, J.; Liu, Z.; Zhao, Y.; Zhou, M.; Yin, P.; Hao, J. Prevalence and Burden of Multiple Sclerosis in China, 1990-2019: Findings from the Global Burden of Disease Study 2019. Neurology 2024, 102, e209351. [Google Scholar] [CrossRef]
- Popkin, B.M. Will China’s Nutrition Overwhelm Its Health Care System and Sloe Economic Growth? Health Aff. 2008, 27, 1064–1076. [Google Scholar] [CrossRef]
- Du, S.; Mroz, T.A.; Zhai, F.; Popkin, B.M. Rapid Income Growth Adversely Affects Diet Quality in China—Particularly for the Poor! Soc. Sci. Med. 2004, 59, 1505–1515. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising Prevalence of Multiple Sclerosis Worldwide: Insights from the Atlas of MS, Third Edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Diet Collaborators Health Effects of Dietary Risks in 195 Countries, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [CrossRef]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-Processed Foods and the Nutrition Transition: Global, Regional and National Trends, Food Systems Transformations and Political Economy Drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Shaikh, S.R.; Beck, M.A.; Alwarawrah, Y.; MacIver, N.J. Emerging Mechanisms of Obesity-Associated Immune Dysfunction. Nat. Rev. Endocrinol. 2024, 20, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Göbel, K.; Ruck, T.; Meuth, S.G. Cytokine Signaling in Multiple Sclerosis: Lost in Translation. Mult. Scler. 2018, 24, 432–439. [Google Scholar] [CrossRef]
- Correale, J.; Marrodan, M. Multiple Sclerosis and Obesity: The Role of Adipokines. Front. Immunol. 2022, 13, 1038393. [Google Scholar] [CrossRef]
- Zeng, R.; Jiang, R.; Huang, W.; Wang, J.; Zhang, L.; Ma, Y.; Wu, Y.; Meng, M.; Lan, H.; Lian, Q.; et al. Dissecting Shared Genetic Architecture between Obesity and Multiple Sclerosis. EBioMedicine 2023, 93, 104647. [Google Scholar] [CrossRef]
- Munger, K.L.; Chitnis, T.; Ascherio, A. Body Size and Risk of MS in Two Cohorts of US Women. Neurology 2009, 73, 1543–1550. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Brara, S.M.; Beaber, B.E.; Koebnick, C. Childhood Obesity and Risk of Pediatric Multiple Sclerosis and Clinically Isolated Syndrome. Neurology 2013, 80, 548–552. [Google Scholar] [CrossRef]
- Munger, K.L.; Bentzen, J.; Laursen, B.; Stenager, E.; Koch-Henriksen, N.; Sørensen, T.I.A.; Baker, J.L. Childhood Body Mass Index and Multiple Sclerosis Risk: A Long-Term Cohort Study. Mult. Scler. 2013, 19, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Mohammadi, A.; Habibzadeh, A.; Korkorian, R.; Mohamadi, M.; Shaygannejad, V.; Zabeti, A.; Mirmosayyeb, O. Abnormal Body Mass Index Is Associated with Risk of Multiple Sclerosis: A Systematic Review and Meta-Analysis. Obes. Res. Clin. Pr. 2024, 18, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-H.; Wu, C.-Y. The Gut Microbiome in Obesity. J. Formos. Med. Assoc. 2019, 118 (Suppl. S1), S3–S9. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, K.J.; Moloney, G.M.; Keane, L.; Clarke, G.; Cryan, J.F. The Gut Microbiota-Immune-Brain Axis: Therapeutic Implications. Cell Rep. Med. 2025, 6, 101982. [Google Scholar] [CrossRef]
- Ross, F.C.; Patangia, D.; Grimaud, G.; Lavelle, A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. The Interplay between Diet and the Gut Microbiome: Implications for Health and Disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Sig. Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Correale, J.; Hohlfeld, R.; Baranzini, S.E. The Role of the Gut Microbiota in Multiple Sclerosis. Nat. Rev. Neurol. 2022, 18, 544–558. [Google Scholar] [CrossRef]
- Firrman, J.; Liu, L.; Mahalak, K.; Tanes, C.; Bittinger, K.; Tu, V.; Bobokalonov, J.; Mattei, L.; Zhang, H.; Van den Abbeele, P. The Impact of Environmental pH on the Gut Microbiota Community Structure and Short Chain Fatty Acid Production. FEMS Microbiol. Ecol. 2022, 98, fiac038. [Google Scholar] [CrossRef]
- Harirchian, M.H.; Karimi, E.; Bitarafan, S. Diet and Disease-Related Outcomes in Multiple Sclerosis: A Systematic Review of Clinical Trials. Curr. J. Neurol. 2022, 21, 52–63. [Google Scholar] [CrossRef]
- Yu, H.; Bai, S.; Hao, Y.; Guan, Y. Fatty Acids Role in Multiple Sclerosis as “Metabokines”. J. Neuroinflammation 2022, 19, 157. [Google Scholar] [CrossRef]
- Haghikia, A.; Jörg, S.; Duscha, A.; Berg, J.; Manzel, A.; Waschbisch, A.; Hammer, A.; Lee, D.-H.; May, C.; Wilck, N.; et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 2015, 43, 817–829. [Google Scholar] [CrossRef]
- Saresella, M.; Marventano, I.; Barone, M.; La Rosa, F.; Piancone, F.; Mendozzi, L.; d’Arma, A.; Rossi, V.; Pugnetti, L.; Roda, G.; et al. Alterations in Circulating Fatty Acid Are Associated with Gut Microbiota Dysbiosis and Inflammation in Multiple Sclerosis. Front. Immunol. 2020, 11, 1390. [Google Scholar] [CrossRef]
- Sheashea, M.; Xiao, J.; Farag, M.A. MUFA in Metabolic Syndrome and Associated Risk Factors: Is MUFA the Opposite Side of the PUFA Coin? Food Funct. 2021, 12, 12221–12234. [Google Scholar] [CrossRef] [PubMed]
- Quiles, J.L.; Barja, G.; Battino, M.; Mataix, J.; Solfrizzi, V. Role of Olive Oil and Monounsaturated Fatty Acids in Mitochondrial Oxidative Stress and Aging. Nutr. Rev. 2006, 64, S31–S39. [Google Scholar] [CrossRef]
- Conde, C.; Escribano, B.M.; Luque, E.; Aguilar-Luque, M.; Feijóo, M.; Ochoa, J.J.; LaTorre, M.; Giraldo, A.I.; Lillo, R.; Agüera, E.; et al. The Protective Effect of Extra-Virgin Olive Oil in the Experimental Model of Multiple Sclerosis in the Rat. Nutr. Neurosci. 2020, 23, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Conde, C.; Escribano, B.M.; Luque, E.; Feijóo, M.; Caballero-Villarraso, J.; Valdelvira, M.E.; Ochoa-Sepúlveda, J.J.; Lillo, R.; Paz, E.; Santamaría, A.; et al. Extra-Virgin Olive Oil Modifies the Changes Induced in Non-Nervous Organs and Tissues by Experimental Autoimmune Encephalomyelitis Models. Nutrients 2019, 11, 2448. [Google Scholar] [CrossRef] [PubMed]
- Balić, A.; Vlašić, D.; Žužul, K.; Marinović, B.; Bukvić Mokos, Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int. J. Mol. Sci. 2020, 21, 741. [Google Scholar] [CrossRef]
- Bjørnevik, K.; Chitnis, T.; Ascherio, A.; Munger, K.L. Polyunsaturated Fatty Acids and the Risk of Multiple Sclerosis. Mult. Scler. 2017, 23, 1830–1838. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Black, L.J.; Waubant, E.; Smith, J.B.; Wu, J.; Gonzales, E.G.; Shao, X.; Koebnick, C.; Lucas, R.M.; Xiang, A.; et al. Seafood, Fatty Acid Biosynthesis Genes, and Multiple Sclerosis Susceptibility. Mult. Scler. 2020, 26, 1476–1485. [Google Scholar] [CrossRef]
- AlAmmar, W.A.; Albeesh, F.H.; Ibrahim, L.M.; Algindan, Y.Y.; Yamani, L.Z.; Khattab, R.Y. Effect of Omega-3 Fatty Acids and Fish Oil Supplementation on Multiple Sclerosis: A Systematic Review. Nutr. Neurosci. 2021, 24, 569–579. [Google Scholar] [CrossRef]
- Gallai, V.; Sarchielli, P.; Trequattrini, A.; Franceschini, M.; Floridi, A.; Firenze, C.; Alberti, A.; Di Benedetto, D.; Stragliotto, E. Cytokine Secretion and Eicosanoid Production in the Peripheral Blood Mononuclear Cells of MS Patients Undergoing Dietary Supplementation with N-3 Polyunsaturated Fatty Acids. J. Neuroimmunol. 1995, 56, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Shinto, L.; Marracci, G.; Baldauf-Wagner, S.; Strehlow, A.; Yadav, V.; Stuber, L.; Bourdette, D. Omega-3 Fatty Acid Supplementation Decreases Matrix Metalloproteinase-9 Production in Relapsing-Remitting Multiple Sclerosis. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Adkins, Y.; Soulika, A.M.; Mackey, B.; Kelley, D.S. Docosahexaenoic Acid (22:6n-3) Ameliorated the Onset and Severity of Experimental Autoimmune Encephalomyelitis in Mice. Lipids 2019, 54, 13–23. [Google Scholar] [CrossRef]
- Unoda, K.; Doi, Y.; Nakajima, H.; Yamane, K.; Hosokawa, T.; Ishida, S.; Kimura, F.; Hanafusa, T. Eicosapentaenoic Acid (EPA) Induces Peroxisome Proliferator-Activated Receptors and Ameliorates Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2013, 256, 7–12. [Google Scholar] [CrossRef]
- Ouyang, L.; Dan, Y.; Hua, W.; Shao, Z.; Duan, D. Therapeutic Effect of Omega-3 Fatty Acids on T Cell-Mediated Autoimmune Diseases. Microbiol. Immunol. 2020, 64, 563–569. [Google Scholar] [CrossRef]
- Feng, C.; Li, L.; Li, Q.; Switzer, K.; Liu, M.; Han, S.; Zheng, B. Docosahexaenoic Acid Ameliorates Autoimmune Inflammation by Activating GPR120 Signaling Pathway in Dendritic Cells. Int. Immunopharmacol. 2021, 97, 107698. [Google Scholar] [CrossRef]
- Parks, N.E.; Jackson-Tarlton, C.S.; Vacchi, L.; Merdad, R.; Johnston, B.C. Dietary Interventions for Multiple Sclerosis-Related Outcomes. Cochrane Database Syst. Rev. 2020, 5, CD004192. [Google Scholar] [CrossRef] [PubMed]
- Oteng, A.-B.; Kersten, S. Mechanisms of Action of Trans Fatty Acids. Adv. Nutr. 2020, 11, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Fan, R.; Zhao, L.; Tong, C.; Qian, X.; Zhang, M.; Xiao, R.; Ma, W. Trans-Fatty Acids Alter the Gut Microbiota in High-Fat-Diet-Induced Obese Rats. Br. J. Nutr. 2020, 124, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Ushigome, E.; Nakanishi, N.; Asano, M.; Yamazaki, M.; Takakuwa, H.; Hamaguchi, M.; et al. Trans Fatty Acid Intake Induces Intestinal Inflammation and Impaired Glucose Tolerance. Front. Immunol. 2021, 12, 669672. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public. Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Mannino, A.; Daly, A.; Dunlop, E.; Probst, Y.; Ponsonby, A.-L.; van der Mei, I.A.; Ausimmune Investigator Group; Black, L.J. Higher Consumption of Ultra-Processed Foods and Increased Likelihood of Central Nervous System Demyelination in a Case-Control Study of Australian Adults. Eur. J. Clin. Nutr. 2023, 77, 611. [Google Scholar] [CrossRef]
- Guglielmetti, M.; Grosso, G.; Ferraris, C.; Bergamaschi, R.; Tavazzi, E.; La Malfa, A.; Wahidah, H.A.-Q.; Tagliabue, A. Ultra-Processed Foods Consumption Is Associated with Multiple Sclerosis Severity. Front. Neurol. 2023, 14, 1086720. [Google Scholar] [CrossRef]
- Ni, D.; Tan, J.; Reyes, J.; Senior, A.M.; Andrews, C.; Taitz, J.; Potier-Villette, C.; Wishart, C.; Spiteri, A.; Piccio, L.; et al. High Fat Low Carbohydrate Diet Is Linked to CNS Autoimmunity Protection. Adv. Sci. 2025, 12, 2412236. [Google Scholar] [CrossRef]
- Hammer, A.; Schliep, A.; Jörg, S.; Haghikia, A.; Gold, R.; Kleinewietfeld, M.; Müller, D.N.; Linker, R.A. Impact of Combined Sodium Chloride and Saturated Long-Chain Fatty Acid Challenge on the Differentiation of T Helper Cells in Neuroinflammation. J. Neuroinflammation 2017, 14, 184. [Google Scholar] [CrossRef]
- Carrillo Pérez, C.; Cavia Camarero, M.D.M.; Alonso de la Torre, S. Role of Oleic Acid in Immune System; Mechanism of Action; a Review. Nutr. Hosp. 2012, 27, 978–990. [Google Scholar] [CrossRef]
- Pompura, S.L.; Hafler, D.A.; Dominguez-Villar, M. Fatty Acid Metabolism and T Cells in Multiple Sclerosis. Front. Immunol. 2022, 13, 869197. [Google Scholar] [CrossRef] [PubMed]
- Pompura, S.L.; Wagner, A.; Kitz, A.; LaPerche, J.; Yosef, N.; Dominguez-Villar, M.; Hafler, D.A. Oleic Acid Restores Suppressive Defects in Tissue-Resident FOXP3 Tregs from Patients with Multiple Sclerosis. J. Clin. Investig. 2021, 131, e138519. [Google Scholar] [CrossRef]
- Dworkin, R.H.; Bates, D.; Millar, J.H.; Paty, D.W. Linoleic Acid and Multiple Sclerosis: A Reanalysis of Three Double-Blind Trials. Neurology 1984, 34, 1441–1445. [Google Scholar] [CrossRef]
- Meade, C.J.; Mertin, J.; Sheena, J.; Hunt, R. Reduction by Linoleic Acid of the Severity of Experimental Allergic Encephalomyelitis in the Guinea Pig. J. Neurol. Sci. 1978, 35, 291–308. [Google Scholar] [CrossRef]
- Holesh, J.E.; Aslam, S.; Martin, A. Physiology, Carbohydrates. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bromley, L.; Horvath, P.J.; Bennett, S.E.; Weinstock-Guttman, B.; Ray, A.D. Impact of Nutritional Intake on Function in People with Mild-to-Moderate Multiple Sclerosis. Int. J. MS Care 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Tyry, T.; Salter, A.; Cofield, S.S.; Cutter, G.; Fox, R.; Marrie, R.A. Diet Quality Is Associated with Disability and Symptom Severity in Multiple Sclerosis. Neurology 2018, 90, e1–e11. [Google Scholar] [CrossRef]
- Ortí, J.E.D.L.R.; Cuerda-Ballester, M.; Drehmer, E.; Carrera-Juliá, S.; Motos-Muñoz, M.; Cunha-Pérez, C.; Benlloch, M.; López-Rodríguez, M.M. Vitamin B1 Intake in Multiple Sclerosis Patients and Its Impact on Depression Presence: A Pilot Study. Nutrients 2020, 12, 2655. [Google Scholar] [CrossRef]
- Della Corte, K.W.; Perrar, I.; Penczynski, K.J.; Schwingshackl, L.; Herder, C.; Buyken, A.E. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients 2018, 10, 606. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Wang, Q.; Huang, W.; Tong, J.; Ye, D.; He, Y.; Liu, Z.; Tang, X.; Cheng, H.; Wen, Q.; et al. Long-Term Consumption of Caffeine-Free High Sucrose Cola Beverages Aggravates the Pathogenesis of EAE in Mice. Cell Discov. 2017, 3, 17020. [Google Scholar] [CrossRef]
- Peterson, S.R.; Ali, S.; Shrode, R.L.; Mangalam, A.K. Effect of a Fructose-Rich Diet on Gut Microbiota and Immunomodulation: Potential Factors for Multiple Sclerosis. Immunohorizons 2023, 7, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-N.; Liu, Y.-J.; Xie, Z.; Zhang, W.J. Fructose and Metabolic Diseases: Too Much to Be Good. Chin. Med. J. 2021, 134, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Thornton, A.M.; Korty, P.E.; Tran, D.Q.; Wohlfert, E.A.; Murray, P.E.; Belkaid, Y.; Shevach, E.M. Expression of Helios, an Ikaros Transcription Factor Family Member, Differentiates Thymic-Derived from Peripherally Induced Foxp3+ T Regulatory Cells. J. Immunol. 2010, 184, 3433–3441. [Google Scholar] [CrossRef]
- Thornton, A.M.; Lu, J.; Korty, P.E.; Kim, Y.C.; Martens, C.; Sun, P.D.; Shevach, E.M. Helios+ and Helios—Treg Subpopulations Are Phenotypically and Functionally Distinct and Express Dissimilar TCR Repertoires. Eur. J. Immunol. 2019, 49, 398–412. [Google Scholar] [CrossRef]
- Arroyo Hornero, R.; Hamad, I.; Côrte-Real, B.; Kleinewietfeld, M. The Impact of Dietary Components on Regulatory T Cells and Disease. Front. Immunol. 2020, 11, 253. [Google Scholar] [CrossRef]
- Sefik, E.; Geva-Zatorsky, N.; Oh, S.; Konnikova, L.; Zemmour, D.; McGuire, A.M.; Burzyn, D.; Ortiz-Lopez, A.; Lobera, M.; Yang, J.; et al. Individual Intestinal Symbionts Induce a Distinct Population of RORγ+ Regulatory T Cells. Science 2015, 349, 993–997. [Google Scholar] [CrossRef]
- Ayyoub, M.; Deknuydt, F.; Raimbaud, I.; Dousset, C.; Leveque, L.; Bioley, G.; Valmori, D. Human Memory FOXP3+ Tregs Secrete IL-17 Ex Vivo and Constitutively Express the TH17 Lineage-Specific Transcription Factor RORγt. Proc. Natl. Acad. Sci. USA 2009, 106, 8635–8640. [Google Scholar] [CrossRef] [PubMed]
- Ueno, A.; Jijon, H.; Chan, R.; Ford, K.; Hirota, C.; Kaplan, G.G.; Beck, P.L.; Iacucci, M.; Fort Gasia, M.; Barkema, H.W.; et al. Increased Prevalence of Circulating Novel IL-17 Secreting Foxp3 Expressing CD4+ T Cells and Defective Suppressive Function of Circulating Foxp3+ Regulatory Cells Support Plasticity between Th17 and Regulatory T Cells in Inflammatory Bowel Disease Patients. Inflamm. Bowel Dis. 2013, 19, 2522–2534. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-S.; Lu, H.; Ichiyama, K.; Chen, X.; Zhang, Y.-B.; Mistry, N.A.; Tanaka, K.; Lee, Y.; Nurieva, R.; Zhang, L.; et al. Generation of RORγt+ Antigen-Specific T Regulatory 17 (Tr17) Cells from Foxp3+ Precursors in Autoimmunity. Cell Rep. 2017, 21, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jin, W.; Wu, R.; Li, J.; Park, S.-A.; Tu, E.; Zanvit, P.; Xu, J.; Liu, O.; Cain, A.; et al. High Glucose Intake Exacerbates Autoimmunity through Reactive Oxygen Species-Mediated TGF-β Cytokine Activation. Immunity 2019, 51, 671–681.e5. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary Carbohydrate Intake and Mortality: A Prospective Cohort Study and Meta-Analysis. Lancet Public. Health 2018, 3, e419–e428. [Google Scholar] [CrossRef]
- Choe, U. Role of Dietary Fiber and Short-Chain Fatty Acids in Preventing Neurodegenerative Diseases through the Gut-Brain Axis. J. Funct. Foods 2025, 129, 106870. [Google Scholar] [CrossRef]
- Hoffman, K.; Doyle, W.J.; Schumacher, S.M.; Ochoa-Repáraz, J. Gut Microbiome-Modulated Dietary Strategies in EAE and Multiple Sclerosis. Front. Nutr. 2023, 10, 1146748. [Google Scholar] [CrossRef] [PubMed]
- Saresella, M.; Mendozzi, L.; Rossi, V.; Mazzali, F.; Piancone, F.; LaRosa, F.; Marventano, I.; Caputo, D.; Felis, G.E.; Clerici, M. Immunological and Clinical Effect of Diet Modulation of the Gut Microbiome in Multiple Sclerosis Patients: A Pilot Study. Front. Immunol. 2017, 8, 1391. [Google Scholar] [CrossRef] [PubMed]
- Fettig, N.M.; Robinson, H.G.; Allanach, J.R.; Davis, K.M.; Simister, R.L.; Wang, E.J.; Sharon, A.J.; Ye, J.; Popple, S.J.; Seo, J.H.; et al. Inhibition of Th1 Activation and Differentiation by Dietary Guar Gum Ameliorates Experimental Autoimmune Encephalomyelitis. Cell Rep. 2022, 40, 111328. [Google Scholar] [CrossRef]
- Berer, K.; Martínez, I.; Walker, A.; Kunkel, B.; Schmitt-Kopplin, P.; Walter, J.; Krishnamoorthy, G. Dietary Non-Fermentable Fiber Prevents Autoimmune Neurological Disease by Changing Gut Metabolic and Immune Status. Sci. Rep. 2018, 8, 10431. [Google Scholar] [CrossRef]
- Mo, Y.; Ma, J.; Gao, W.; Zhang, L.; Li, J.; Li, J.; Zang, J. Pomegranate Peel as a Source of Bioactive Compounds: A Mini Review on Their Physiological Functions. Front. Nutr. 2022, 9, 887113. [Google Scholar] [CrossRef]
- Lu, X.-Y.; Han, B.; Deng, X.; Deng, S.-Y.; Zhang, Y.-Y.; Shen, P.-X.; Hui, T.; Chen, R.-H.; Li, X.; Zhang, Y. Pomegranate Peel Extract Ameliorates the Severity of Experimental Autoimmune Encephalomyelitis via Modulation of Gut Microbiota. Gut Microbes 2020, 12, 1857515. [Google Scholar] [CrossRef]
- Sen, M.K.; Ge, A.; Liao, E.; Gard, H.; Ni, D.; Macia, L.; Piccio, L. Impact of a High Fibre Diet on Immune Cells and the Multiple Sclerosis Animal Model. J. Immunol. 2023, 210, 66.11. [Google Scholar] [CrossRef]
- Ghadirian, P.; Jain, M.; Ducic, S.; Shatenstein, B.; Morisset, R. Nutritional Factors in the Aetiology of Multiple Sclerosis: A Case-Control Study in Montreal, Canada. Int. J. Epidemiol. 1998, 27, 845–852. [Google Scholar] [CrossRef]
- Atabilen, B.; Akdevelioğlu, Y.; Özen, P.A.; Tuncer, A. Examining Dietary Habits in the Context of Multiple Sclerosis: A Comprehensive Investigative Approach. Mult. Scler. Relat. Disord. 2024, 83, 105467. [Google Scholar] [CrossRef]
- Cavalla, P.; Golzio, P.; Maietta, D.; Bosa, C.; Pasanisi, M.B.; Alteno, A.; Schillaci, V.; Costantini, G.; Durelli, P.; Cuffini, E.; et al. Dietary Habits, Nutritional Status and Risk of a First Demyelinating Event: An Incident Case-Control Study in a Southern European Cohort. Neurol. Sci. 2022, 43, 4373–4380. [Google Scholar] [CrossRef]
- Moravejolahkami, A.R.; Paknahad, Z.; Chitsaz, A. Dietary Intake of Energy and Fiber in MS Patients; an Approach to Prebiotics Role. Nutr. Food Sci. 2019, 49, 1039–1050. [Google Scholar] [CrossRef]
- Bronzini, M.; Maglione, A.; Rosso, R.; Masuzzo, F.; Matta, M.; Meroni, R.; Rolla, S.; Clerico, M. Lower Multiple Sclerosis Severity Score Is Associated with Higher Adherence to Mediterranean Diet in Subjects with Multiple Sclerosis from Northwestern Italy. Nutrients 2024, 16, 880. [Google Scholar] [CrossRef] [PubMed]
- Marck, C.H.; Probst, Y.; Chen, J.; Taylor, B.; van der Mei, I. Dietary Patterns and Associations with Health Outcomes in Australian People with Multiple Sclerosis. Eur. J. Clin. Nutr. 2021, 75, 1506–1514. [Google Scholar] [CrossRef]
- Hatami, A.; Ahmadi-khorram, M.; Keykhaei, F.; Esfehani, A.J.; Nematy, M. Association Between the Risk of Multiple Sclerosis and Dietary Proinflammatory/Anti-Inflammatory Food Intake and Dietary Diversity: A Case-Control Study. Clin. Nutr. Res. 2024, 13, 61–73. [Google Scholar] [CrossRef]
- Yousof, S.M.; Alghamdi, B.S.; Alqurashi, T.; Alam, M.Z.; Tash, R.; Tanvir, I.; Kaddam, L.A. Modulation of Gut Microbiome Community Mitigates Multiple Sclerosis in a Mouse Model: The Promising Role of Palmaria Palmata Alga as a Prebiotic. Pharmaceuticals 2023, 16, 1355. [Google Scholar] [CrossRef]
- Mizuno, M.; Noto, D.; Kaga, N.; Chiba, A.; Miyake, S. The Dual Role of Short Fatty Acid Chains in the Pathogenesis of Autoimmune Disease Models. PLoS ONE 2017, 12, e0173032. [Google Scholar] [CrossRef]
- Mirza, A.I.; Zhu, F.; Knox, N.; Black, L.J.; Daly, A.; Bonner, C.; Van Domselaar, G.; Bernstein, C.N.; Marrie, R.A.; Hart, J.; et al. Mediterranean Diet and Associations with the Gut Microbiota and Pediatric-Onset Multiple Sclerosis Using Trivariate Analysis. Commun. Med. 2024, 4, 148. [Google Scholar] [CrossRef] [PubMed]
- Puhlmann, M.-L.; de Vos, W.M. Intrinsic Dietary Fibers and the Gut Microbiome: Rediscovering the Benefits of the Plant Cell Matrix for Human Health. Front. Immunol. 2022, 13, 954845. [Google Scholar] [CrossRef]
- Lin, X.; Peng, Y.; Guo, Z.; He, W.; Guo, W.; Feng, J.; Lu, L.; Liu, Q.; Xu, P. Short-Chain Fatty Acids Suppresses Astrocyte Activation by Amplifying Trp-AhR-AQP4 Signaling in Experimental Autoimmune Encephalomyelitis Mice. Cell. Mol. Life Sci. 2024, 81, 293. [Google Scholar] [CrossRef] [PubMed]
- Barcutean, L.; Maier, S.; Burai-Patrascu, M.; Farczadi, L.; Balasa, R. The Immunomodulatory Potential of Short-Chain Fatty Acids in Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 3198. [Google Scholar] [CrossRef]
- Duscha, A.; Gisevius, B.; Hirschberg, S.; Yissachar, N.; Stangl, G.I.; Dawin, E.; Bader, V.; Haase, S.; Kaisler, J.; David, C.; et al. Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell 2020, 180, 1067–1080.e16. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; et al. Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis. Immunity 2014, 40, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Kang, S.G.; Park, J.H.; Yanagisawa, M.; Kim, C.H. Short-Chain Fatty Acids Activate GPR41 and GPR43 on Intestinal Epithelial Cells to Promote Inflammatory Responses in Mice. Gastroenterology 2013, 145, 396-406.e1-10. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Fock, E.; Parnova, R. Mechanisms of Blood–Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells 2023, 12, 657. [Google Scholar] [CrossRef]
- Chen, T.; Noto, D.; Hoshino, Y.; Mizuno, M.; Miyake, S. Butyrate Suppresses Demyelination and Enhances Remyelination. J. Neuroinflammation 2019, 16, 165. [Google Scholar] [CrossRef]
- Levi, I.; Gurevich, M.; Perlman, G.; Magalashvili, D.; Menascu, S.; Bar, N.; Godneva, A.; Zahavi, L.; Chermon, D.; Kosower, N.; et al. Potential Role of Indolelactate and Butyrate in Multiple Sclerosis Revealed by Integrated Microbiome-Metabolome Analysis. Cell Rep. Med. 2021, 2, 100246. [Google Scholar] [CrossRef]
- Ling, Z.; Cheng, Y.; Yan, X.; Shao, L.; Liu, X.; Zhou, D.; Zhang, L.; Yu, K.; Zhao, L. Alterations of the Fecal Microbiota in Chinese Patients with Multiple Sclerosis. Front. Immunol. 2020, 11, 590783. [Google Scholar] [CrossRef]
- Pérez-Pérez, S.; Domínguez-Mozo, M.I.; Alonso-Gómez, A.; Medina, S.; Villarrubia, N.; Fernández-Velasco, J.I.; García-Martínez, M.Á.; García-Calvo, E.; Estévez, H.; Costa-Frossard, L.; et al. Acetate Correlates with Disability and Immune Response in Multiple Sclerosis. PeerJ 2020, 8, e10220. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.; Gustavsen, S.; Nguyen, T.D.; Nyman, M.; Langkilde, A.R.; Hansen, T.H.; Sellebjerg, F.; Oturai, A.B.; Bach Søndergaard, H. Serum Short-Chain Fatty Acids and Associations with Inflammation in Newly Diagnosed Patients with Multiple Sclerosis and Healthy Controls. Front. Immunol. 2021, 12, 661493. [Google Scholar] [CrossRef]
- Park, J.; Wang, Q.; Wu, Q.; Mao-Draayer, Y.; Kim, C.H. Bidirectional Regulatory Potentials of Short-Chain Fatty Acids and Their G-Protein-Coupled Receptors in Autoimmune Neuroinflammation. Sci. Rep. 2019, 9, 8837. [Google Scholar] [CrossRef]
- Gao, Y.; Yao, Q.; Meng, L.; Wang, J.; Zheng, N. Double-Side Role of Short Chain Fatty Acids on Host Health via the Gut-Organ Axes. Anim. Nutr. 2024, 18, 322–339. [Google Scholar] [CrossRef]
- Wyness, L. The Role of Red Meat in the Diet: Nutrition and Health Benefits. Proc. Nutr. Soc. 2016, 75, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Khan, A.A.; Anamika, F.; Munjal, R.; Munjal, J.; Jain, R. Red Meat Consumption and Its Relationship with Cardiovascular Health: A Review of Pathophysiology and Literature. Cardiol. Rev. 2025, 33, 49–53. [Google Scholar] [CrossRef]
- Wolk, A. Potential Health Hazards of Eating Red Meat. J. Intern. Med. 2017, 281, 106–122. [Google Scholar] [CrossRef]
- Lupoli, R.; Vitale, M.; Calabrese, I.; Giosuè, A.; Riccardi, G.; Vaccaro, O. White Meat Consumption, All-Cause Mortality, and Cardiovascular Events: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 676. [Google Scholar] [CrossRef]
- Abete, I.; Romaguera, D.; Vieira, A.R.; Lopez de Munain, A.; Norat, T. Association between Total, Processed, Red and White Meat Consumption and All-Cause, CVD and IHD Mortality: A Meta-Analysis of Cohort Studies. Br. J. Nutr. 2014, 112, 762–775. [Google Scholar] [CrossRef]
- Zierfuss, B.; Wang, Z.; Jackson, A.N.; Moezzi, D.; Yong, V. Iron in Multiple Sclerosis—Neuropathology, Immunology, and Real-World Considerations. Mult. Scler. Relat. Disord. 2023, 78, 104934. [Google Scholar] [CrossRef]
- Stephenson, E.; Nathoo, N.; Mahjoub, Y.; Dunn, J.F.; Yong, V.W. Iron in Multiple Sclerosis: Roles in Neurodegeneration and Repair. Nat. Rev. Neurol. 2014, 10, 459–468. [Google Scholar] [CrossRef]
- Duarte-Silva, E.; Meuth, S.G.; Peixoto, C.A. The Role of Iron Metabolism in the Pathogenesis and Treatment of Multiple Sclerosis. Front. Immunol. 2023, 14, 1137635. [Google Scholar] [CrossRef] [PubMed]
- Jumaylawee, H.R.H.; Komijani, M.; Shahrjerdi, S.; Sargolzaei, J. The Interplay of Gut Microbiota and Heavy Metals in Multiple Sclerosis Patients. Microb. Pathog. 2025, 199, 107269. [Google Scholar] [CrossRef]
- Zostawa, J.; Adamczyk, J.; Sowa, P.; Adamczyk-Sowa, M. The Influence of Sodium on Pathophysiology of Multiple Sclerosis. Neurol. Sci. 2017, 38, 389–398. [Google Scholar] [CrossRef]
- Sanchez, J.M.S.; DePaula-Silva, A.B.; Libbey, J.E.; Fujinami, R.S. Role of Diet in Regulating the Gut Microbiota and Multiple Sclerosis. Clin. Immunol. 2022, 235, 108379. [Google Scholar] [CrossRef] [PubMed]
- Farez, M.F.; Fiol, M.P.; Gaitán, M.I.; Quintana, F.J.; Correale, J. Sodium Intake Is Associated with Increased Disease Activity in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 26–31. [Google Scholar] [CrossRef]
- Zhang, S.M.; Willett, W.C.; Hernán, M.A.; Olek, M.J.; Ascherio, A. Dietary Fat in Relation to Risk of Multiple Sclerosis among Two Large Cohorts of Women. Am. J. Epidemiol. 2000, 152, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Lauer, K. The Risk of Multiple Sclerosis in the U.S.A. in Relation to Sociogeographic Features: A Factor-Analytic Study. J. Clin. Epidemiol. 1994, 47, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Gusev, E.; Boiko, A.; Lauer, K.; Riise, T.; Deomina, T. Environmental Risk Factors in MS: A Case-Control Study in Moscow. Acta Neurol. Scand. 1996, 94, 386–394. [Google Scholar] [CrossRef]
- Black, L.J.; Bowe, G.S.; Pereira, G.; Lucas, R.M.; Dear, K.; van der Mei, I.; Sherriff, J.L. Ausimmune Investigator Group Higher Non-Processed Red Meat Consumption Is Associated with a Reduced Risk of Central Nervous System Demyelination. Front. Neurol. 2019, 10, 125. [Google Scholar] [CrossRef]
- Lauer, K. Sausage Preservation Methods and the Prevalence of Multiple Sclerosis: An Ecological Study. Ecol. Food Nutr. 2007, 46, 1–11. [Google Scholar] [CrossRef]
- Sepcić, J.; Mesaros, E.; Materljan, E.; Sepić-Grahovac, D. Nutritional Factors and Multiple Sclerosis in Gorski Kotar, Croatia. Neuroepidemiology 1993, 12, 234–240. [Google Scholar] [CrossRef]
- Black, L.J.; Rowley, C.; Sherriff, J.; Pereira, G.; Ponsonby, A.-L.; Lucas, R.M. A Healthy Dietary Pattern Associates with a Lower Risk of a First Clinical Diagnosis of Central Nervous System Demyelination. Mult. Scler. 2019, 25, 1514–1525. [Google Scholar] [CrossRef] [PubMed]
- Alfredsson, L.; Olsson, T.; Hedström, A.K. Inverse Association between Mediterranean Diet and Risk of Multiple Sclerosis. Mult. Scler. 2023, 29, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Yang, L.; Piccio, L.; Smith, L.; Firth, J.; Marx, W.; Giannelli, G.; Caruso, M.G.; Cisternino, A.M.; Notarnicola, M.; et al. Adherence to a Healthy Lifestyle and Multiple Sclerosis: A Case-Control Study from the UK Biobank. Nutr. Neurosci. 2022, 25, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Cantoni, C.; Lin, Q.; Dorsett, Y.; Ghezzi, L.; Liu, Z.; Pan, Y.; Chen, K.; Han, Y.; Li, Z.; Xiao, H.; et al. Alterations of Host-Gut Microbiome Interactions in Multiple Sclerosis. EBioMedicine 2022, 76, 103798. [Google Scholar] [CrossRef]
- ’t Hart, B.A. Why Does Multiple Sclerosis Only Affect Human Primates? Mult. Scler. 2016, 22, 559–563. [Google Scholar] [CrossRef]
- Boligan, K.F.; Oechtering, J.; Keller, C.W.; Peschke, B.; Rieben, R.; Bovin, N.; Kappos, L.; Cummings, R.D.; Kuhle, J.; von Gunten, S.; et al. Xenogeneic Neu5Gc and Self-Glycan Neu5Ac Epitopes Are Potential Immune Targets in MS. Neurol. Neuroimmunol. Neuroinflamm 2020, 7, e676. [Google Scholar] [CrossRef]
- Tangvoranuntakul, P.; Gagneux, P.; Diaz, S.; Bardor, M.; Varki, N.; Varki, A.; Muchmore, E. Human Uptake and Incorporation of an Immunogenic Nonhuman Dietary Sialic Acid. Proc. Natl. Acad. Sci. USA 2003, 100, 12045–12050. [Google Scholar] [CrossRef]
- Samraj, A.N.; Pearce, O.M.T.; Läubli, H.; Crittenden, A.N.; Bergfeld, A.K.; Banda, K.; Gregg, C.J.; Bingman, A.E.; Secrest, P.; Diaz, S.L.; et al. A Red Meat-Derived Glycan Promotes Inflammation and Cancer Progression. Proc. Natl. Acad. Sci. USA 2015, 112, 542–547. [Google Scholar] [CrossRef]
- Malosse, D.; Perron, H.; Sasco, A.; Seigneurin, J.M. Correlation between Milk and Dairy Product Consumption and Multiple Sclerosis Prevalence: A Worldwide Study. Neuroepidemiology 1992, 11, 304–312. [Google Scholar] [CrossRef]
- Munger, K.L.; Chitnis, T.; Frazier, A.L.; Giovannucci, E.; Spiegelman, D.; Ascherio, A. Dietary Intake of Vitamin D during Adolescence and Risk of Multiple Sclerosis. J. Neurol. 2011, 258, 479–485. [Google Scholar] [CrossRef]
- Chunder, R.; Weier, A.; Mäurer, H.; Luber, N.; Enders, M.; Luber, G.; Heider, T.; Spitzer, A.; Tacke, S.; Becker-Gotot, J.; et al. Antibody Cross-Reactivity between Casein and Myelin-Associated Glycoprotein Results in Central Nervous System Demyelination. Proc. Natl. Acad. Sci. USA 2022, 119, e2117034119. [Google Scholar] [CrossRef]
- Andersson, M.; Yu, M.; Söderström, M.; Weerth, S.; Baig, S.; Linington, C.; Solders, G.; Link, H. Multiple MAG Peptides Are Recognized by Circulating T and B Lymphocytes in Polyneuropathy and Multiple Sclerosis. Eur. J. Neurol. 2002, 9, 243–251. [Google Scholar] [CrossRef]
- Möller, J.R.; Johnson, D.; Brady, R.O.; Tourtellotte, W.W.; Quarles, R.H. Antibodies to Myelin-Associated Glycoprotein (MAG) in the Cerebrospinal Fluid of Multiple Sclerosis Patients. J. Neuroimmunol. 1989, 22, 55–61. [Google Scholar] [CrossRef]
- Otaegui, D.; Mostafavi, S.; Bernard, C.C.A.; Lopez de Munain, A.; Mousavi, P.; Oksenberg, J.R.; Baranzini, S.E. Increased Transcriptional Activity of Milk-Related Genes Following the Active Phase of Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J. Immunol. 2007, 179, 4074–4082. [Google Scholar] [CrossRef] [PubMed]
- Chunder, R.; Heider, T.; Kuerten, S. The Prevalence of IgG Antibodies against Milk and Milk Antigens in Patients with Multiple Sclerosis. Front. Immunol. 2023, 14, 1202006. [Google Scholar] [CrossRef] [PubMed]
- Mather, I.H.; Jacks, L.J.W. A Review of the Molecular and Cellular Biology of Butyrophilin, the Major Protein of Bovine Milk Fat Globule Membrane1, 2. J. Dairy. Sci. 1993, 76, 3832–3850. [Google Scholar] [CrossRef] [PubMed]
- Stefferl, A.; Schubart, A.; Storch2, M.; Amini, A.; Mather, I.; Lassmann, H.; Linington, C. Butyrophilin, a Milk Protein, Modulates the Encephalitogenic T Cell Response to Myelin Oligodendrocyte Glycoprotein in Experimental Autoimmune Encephalomyelitis. J. Immunol. 2000, 165, 2859–2865. [Google Scholar] [CrossRef]
- Guggenmos, J.; Schubart, A.S.; Ogg, S.; Andersson, M.; Olsson, T.; Mather, I.H.; Linington, C. Antibody Cross-Reactivity between Myelin Oligodendrocyte Glycoprotein and the Milk Protein Butyrophilin in Multiple Sclerosis. J. Immunol. 2004, 172, 661–668. [Google Scholar] [CrossRef]
- Okuda, T. Dietary Control of Ganglioside Expression in Mammalian Tissues. Int. J. Mol. Sci. 2019, 21, 177. [Google Scholar] [CrossRef]
- Sadatipour, B.T.; Greer, J.M.; Pender, M.P. Increased Circulating Antiganglioside Antibodies in Primary and Secondary Progressive Multiple Sclerosis. Ann. Neurol. 1998, 44, 980–983. [Google Scholar] [CrossRef]
- Aziz, N.; Jamil, R.T. Biochemistry, Xanthine Oxidase. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ozturk, G.; Shah, I.M.; Mills, D.A.; German, J.B.; de Moura Bell, J.M.L.N. The Antimicrobial Activity of Bovine Milk Xanthine Oxidase. Int. Dairy J. 2020, 102, 104581. [Google Scholar] [CrossRef] [PubMed]
- Honorat, J.A.; Kinoshita, M.; Okuno, T.; Takata, K.; Koda, T.; Tada, S.; Shirakura, T.; Fujimura, H.; Mochizuki, H.; Sakoda, S.; et al. Xanthine Oxidase Mediates Axonal and Myelin Loss in a Murine Model of Multiple Sclerosis. PLoS ONE 2013, 8, e71329. [Google Scholar] [CrossRef] [PubMed]
- Mañá, P.; Goodyear, M.; Bernard, C.; Tomioka, R.; Freire-Garabal, M.; Liñares, D. Tolerance Induction by Molecular Mimicry: Prevention and Suppression of Experimental Autoimmune Encephalomyelitis with the Milk Protein Butyrophilin. Int. Immunol. 2004, 16, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Escribano, B.M.; Muñoz-Jurado, A.; Luque, E.; Conde, C.; Feijóo, M.; LaTorre, M.; Valdelvira, M.E.; Buendía, P.; Giraldo, A.I.; Caballero-Villarraso, J.; et al. Lactose and Casein Cause Changes on Biomarkers of Oxidative Damage and Dysbiosis in an Experimental Model of Multiple Sclerosis. CNS Neurol. Disord. Drug Targets 2022, 21, 680–692. [Google Scholar] [CrossRef]
- Abbasi, M.; Nabavi, S.M.; Fereshtehnejad, S.M.; Jou, N.Z.; Ansari, I.; Shayegannejad, V.; Mohammadianinejad, S.E.; Farhoudi, M.; Noorian, A.; Razazian, N.; et al. Multiple Sclerosis and Environmental Risk Factors: A Case-Control Study in Iran. Neurol. Sci. 2017, 38, 1941–1951. [Google Scholar] [CrossRef]
- Dieu, D.Y.R.; Dunlop, E.; Daly, A.; Lucas, R.M.; Probst, Y.; Black, L.J. Total Dairy Consumption Is Not Associated with Likelihood of a First Clinical Diagnosis of Central Nervous System Demyelination. Front. Neurol. 2022, 13, 888559. [Google Scholar] [CrossRef]
- Ibrahim, H.I.M.; Sheikh, A.; Khalil, H.E.; Khalifa, A. Bacillus Amyloliquifaciens-Supplemented Camel Milk Suppresses Neuroinflammation of Autoimmune Encephalomyelitis in a Mouse Model by Regulating Inflammatory Markers. Nutrients 2023, 15, 550. [Google Scholar] [CrossRef]
- Caminero, A. Wheat Proteins as Triggers of Central Nervous System Inflammation. Gut 2023, 73, 5–6. [Google Scholar] [CrossRef]
- Thomsen, H.L.; Jessen, E.B.; Passali, M.; Frederiksen, J.L. The Role of Gluten in Multiple Sclerosis: A Systematic Review. Mult. Scler. Relat. Disord. 2019, 27, 156–163. [Google Scholar] [CrossRef]
- Geisslitz, S.; Weegels, P.; Shewry, P.; Zevallos, V.; Masci, S.; Sorrells, M.; Gregorini, A.; Colomba, M.; Jonkers, D.; Huang, X.; et al. Wheat Amylase/Trypsin Inhibitors (ATIs): Occurrence, Function and Health Aspects. Eur. J. Nutr. 2022, 61, 2873–2880. [Google Scholar] [CrossRef]
- Junker, Y.; Zeissig, S.; Kim, S.-J.; Barisani, D.; Wieser, H.; Leffler, D.A.; Zevallos, V.; Libermann, T.A.; Dillon, S.; Freitag, T.L.; et al. Wheat Amylase Trypsin Inhibitors Drive Intestinal Inflammation via Activation of Toll-like Receptor 4. J. Exp. Med. 2012, 209, 2395–2408. [Google Scholar] [CrossRef]
- Zevallos, V.F.; Raker, V.; Tenzer, S.; Jimenez-Calvente, C.; Ashfaq-Khan, M.; Rüssel, N.; Pickert, G.; Schild, H.; Steinbrink, K.; Schuppan, D. Nutritional Wheat Amylase-Trypsin Inhibitors Promote Intestinal Inflammation via Activation of Myeloid Cells. Gastroenterology 2017, 152, 1100–1113.e12. [Google Scholar] [CrossRef]
- Zevallos, V.F.; Yogev, N.; Hauptmann, J.; Nikolaev, A.; Pickert, G.; Heib, V.; Fittler, N.; Steven, S.; Luessi, F.; Neerukonda, M.; et al. Dietary Wheat Amylase Trypsin Inhibitors Exacerbate CNS Inflammation in Experimental Multiple Sclerosis. Gut 2023, 73, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.; Klotz, L.; Wirth, T.; Fleck, A.-K.; Pickert, G.; Eschborn, M.; Kreuzburg, S.; Curella, V.; Bittner, S.; Zipp, F.; et al. Attenuation of Immune Activation in Patients with Multiple Sclerosis on a Wheat-Reduced Diet: A Pilot Crossover Trial. Ther. Adv. Neurol. Disord. 2023, 16, 17562864231170928. [Google Scholar] [CrossRef] [PubMed]
- San Hernandez, A.M.; Singh, C.; Valero, D.J.; Nisar, J.; Trujillo Ramirez, J.I.; Kothari, K.K.; Isola, S.; Gordon, D.K. Multiple Sclerosis and Serotonin: Potential Therapeutic Applications. Cureus 2020, 12, e11293. [Google Scholar] [CrossRef]
- Baĭdina, T.V.; Akintseva, I.V.; Trushnikova, T.N. A chronic fatigue syndrome and blood platelet serotonin levels in patients with multiple sclerosis. Zhurnal Nevrol. I Psikhiatrii Im. SS Korsakova 2014, 114, 25–28. [Google Scholar]
- Hesse, S.; Moeller, F.; Petroff, D.; Lobsien, D.; Luthardt, J.; Regenthal, R.; Becker, G.-A.; Patt, M.; Thomae, E.; Seese, A.; et al. Altered Serotonin Transporter Availability in Patients with Multiple Sclerosis. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Hyyppä, M.T.; Jolma, T.; Riekkinen, P.; Rinne, U.K. Effects of L-Tryptophan Treatment on Central Indoleamine Metabolism and Short-Lasting Neurologic Disturbances in Multiple Sclerosis. J. Neural Transm. 1975, 37, 297–304. [Google Scholar] [CrossRef]
- Lieben, C.K.; Blokland, A.; Deutz, N.E.; Jansen, W.; Han, G.; Hupperts, R.M. Intake of Tryptophan-Enriched Whey Protein Acutely Enhances Recall of Positive Loaded Words in Patients with Multiple Sclerosis. Clin. Nutr. 2018, 37, 321–328. [Google Scholar] [CrossRef]
- Sonner, J.K.; Keil, M.; Falk-Paulsen, M.; Mishra, N.; Rehman, A.; Kramer, M.; Deumelandt, K.; Röwe, J.; Sanghvi, K.; Wolf, L.; et al. Dietary Tryptophan Links Encephalogenicity of Autoreactive T Cells with Gut Microbial Ecology. Nat. Commun. 2019, 10, 4877. [Google Scholar] [CrossRef]
- Kossoff, E.H.; Hartman, A.L. Ketogenic Diets: New Advances for Metabolism-Based Therapies. Curr. Opin. Neurol. 2012, 25, 173. [Google Scholar] [CrossRef]
- Włodarek, D. Role of Ketogenic Diets in Neurodegenerative Diseases (Alzheimer’s Disease and Parkinson’s Disease). Nutrients 2019, 11, 169. [Google Scholar] [CrossRef]
- Kim, D.Y.; Hao, J.; Liu, R.; Turner, G.; Shi, F.-D.; Rho, J.M. Inflammation-Mediated Memory Dysfunction and Effects of a Ketogenic Diet in a Murine Model of Multiple Sclerosis. PLoS ONE 2012, 7, e35476. [Google Scholar] [CrossRef]
- Choi, I.Y.; Piccio, L.; Childress, P.; Bollman, B.; Ghosh, A.; Brandhorst, S.; Suarez, J.; Michalsen, A.; Cross, A.H.; Morgan, T.E.; et al. Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016, 15, 2136–2146. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, N.; Zhang, R.; Jin, L.; Petridis, A.K.; Loers, G.; Zheng, X.; Wang, Z.; Siebert, H.-C. Cuprizone-Induced Demyelination in Mouse Hippocampus Is Alleviated by Ketogenic Diet. J. Agric. Food Chem. 2020, 68, 11215–11228. [Google Scholar] [CrossRef]
- Storoni, M.; Plant, G.T. The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis. Mult. Scler. Int. 2015, 2015, 681289. [Google Scholar] [CrossRef] [PubMed]
- Brenton, J.N.; Lehner-Gulotta, D.; Woolbright, E.; Banwell, B.; Bergqvist, A.G.C.; Chen, S.; Coleman, R.; Conaway, M.; Goldman, M.D. Phase II Study of Ketogenic Diets in Relapsing Multiple Sclerosis: Safety, Tolerability and Potential Clinical Benefits. J. Neurol. Neurosurg. Psychiatry 2022, 93, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Brenton, J.N.; Banwell, B.; Bergqvist, A.G.C.; Lehner-Gulotta, D.; Gampper, L.; Leytham, E.; Coleman, R.; Goldman, M.D. Pilot Study of a Ketogenic Diet in Relapsing-Remitting MS. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e565. [Google Scholar] [CrossRef] [PubMed]
- Nathan, J.; Khedekar Kale, D.; Naik, V.D.; Thakker, F.; Bailur, S. Dietary Therapy in Secondary Progressive Multiple Sclerosis: A Case Report. Cureus 2019, 11, e5341. [Google Scholar] [CrossRef]
- Bock, M.; Steffen, F.; Zipp, F.; Bittner, S. Impact of Dietary Intervention on Serum Neurofilament Light Chain in Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1102. [Google Scholar] [CrossRef]
- Bock, M.; Karber, M.; Kuhn, H. Ketogenic Diets Attenuate Cyclooxygenase and Lipoxygenase Gene Expression in Multiple Sclerosis. EBioMedicine 2018, 36, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Dörffel, Y.; Loening-Baucke, V.; Gille, C.; Göktas, Ö.; Reißhauer, A.; Neuhaus, J.; Weylandt, K.-H.; Guschin, A.; Bock, M. Reduced Mass and Diversity of the Colonic Microbiome in Patients with Multiple Sclerosis and Their Improvement with Ketogenic Diet. Front. Microbiol. 2017, 8, 1141. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean Diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Parsaik, A.K.; Mielke, M.M.; Erwin, P.J.; Knopman, D.S.; Petersen, R.C.; Roberts, R.O. Association of Mediterranean Diet with Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2014, 39, 271–282. [Google Scholar] [CrossRef]
- van den Brink, A.C.; Brouwer-Brolsma, E.M.; Berendsen, A.A.M.; van de Rest, O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer’s Disease-A Review. Adv. Nutr. 2019, 10, 1040–1065. [Google Scholar] [CrossRef]
- Razeghi-Jahromi, S.; Doosti, R.; Ghorbani, Z.; Saeedi, R.; Abolhasani, M.; Akbari, N.; Cheraghi-Serkani, F.; Moghadasi, A.N.; Azimi, A.; Togha, M.; et al. A Randomized Controlled Trial Investigating the Effects of a Mediterranean-like Diet in Patients with Multiple Sclerosis-Associated Cognitive Impairments and Fatigue. Curr. J. Neurol. 2020, 19, 112–121. [Google Scholar] [CrossRef]
- Katz Sand, I.; Benn, E.K.T.; Fabian, M.; Fitzgerald, K.C.; Digga, E.; Deshpande, R.; Miller, A.; Gallo, S.; Arab, L. Randomized-Controlled Trial of a Modified Mediterranean Dietary Program for Multiple Sclerosis: A Pilot Study. Mult. Scler. Relat. Disord. 2019, 36, 101403. [Google Scholar] [CrossRef]
- Ertaş Öztürk, Y.; Helvaci, E.M.; Sökülmez Kaya, P.; Terzi, M. Is Mediterranean Diet Associated with Multiple Sclerosis Related Symptoms and Fatigue Severity? Nutr. Neurosci. 2023, 26, 228–234. [Google Scholar] [CrossRef]
- Katz Sand, I.; Levy, S.; Fitzgerald, K.; Sorets, T.; Sumowski, J.F. Mediterranean Diet Is Linked to Less Objective Disability in Multiple Sclerosis. Mult. Scler. 2023, 29, 248–260. [Google Scholar] [CrossRef]
- Esposito, S.; Sparaco, M.; Maniscalco, G.T.; Signoriello, E.; Lanzillo, R.; Russo, C.; Carmisciano, L.; Cepparulo, S.; Lavorgna, L.; Gallo, A.; et al. Lifestyle and Mediterranean Diet Adherence in a Cohort of Southern Italian Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 47, 102636. [Google Scholar] [CrossRef]
- Mirashrafi, S.; Borzoo-Isfahani, M.; Namjoo, I.; Hojjati Kermani, M.A.; Moravejolahkami, A.R. A Mediterranean-Type Diet Improved Systemic Inflammation in Multiple Sclerosis Patients, as Compared to the Traditional Iranian Diet: A Single-Center Randomized Controlled Trial. Mediterr. J. Nutr. Metab. 2021, 14, 289–304. [Google Scholar] [CrossRef]
- Moravejolahkami, A.R.; Paknahad, Z.; Chitsaz, A.; Hojjati Kermani, M.A.; Borzoo-Isfahani, M. Potential of Modified Mediterranean Diet to Improve Quality of Life and Fatigue Severity in Multiple Sclerosis Patients: A Single-Center Randomized Controlled Trial. Int. J. Food Prop. 2020, 23, 1993–2004. [Google Scholar] [CrossRef]
- Zhang, W.-T.; Zhang, G.-X.; Zhao, R.-Z.; Gao, S.-S.; Zhao, G.; Izquierdo, G. Eating Habits of Patients with Multiple Sclerosis in Three Different Countries: China, Spain and Cuba. Neurol. Perspect. 2021, 1, 170–177. [Google Scholar] [CrossRef]
- Rouskas, K.; Sintila, S.-A.; Pantoura, M.; Gouela, M.; Kyritsi, M.; Mouchtaropoulou, E.; Kesidou, E.; Bakirtzis, C.; Konstantinidou, N.; Theotokis, P.; et al. Exploring the Impact of the Mediterranean Diet on the Gut Microbiome of Individuals with Multiple Sclerosis. Public. Health Toxicol. 2022, 2 (Suppl. 1), A102. [Google Scholar] [CrossRef]
- Atuk Kahraman, T.; Yılmaz, M.; Aslan, K.; Canatan, H.; Kara, A.; Nalbantoglu, O.U.; Gundogdu, A.; Eken, A. Lycopene Supplemented Mediterranean Diet Ameliorates Experimental Autoimmune Encephalomyelitis (EAE) in Mice and Changes Intestinal Microbiome. J. Neuroimmune Pharmacol. 2025, 20, 50. [Google Scholar] [CrossRef] [PubMed]
- Null, G.; Pennesi, L.; Feldman, M. Nutrition and Lifestyle Intervention on Mood and Neurological Disorders. J. Evid. Based Complement. Altern. Med. 2017, 22, 68–74. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosso, R.; Maglione, A.; Bronzini, M.; Virgilio, E.; Clerico, M.; Rolla, S. Linking Nutrients to Multiple Sclerosis Pathogenesis: Biological Evidence and Clinical Implications. Nutrients 2025, 17, 3414. https://doi.org/10.3390/nu17213414
Rosso R, Maglione A, Bronzini M, Virgilio E, Clerico M, Rolla S. Linking Nutrients to Multiple Sclerosis Pathogenesis: Biological Evidence and Clinical Implications. Nutrients. 2025; 17(21):3414. https://doi.org/10.3390/nu17213414
Chicago/Turabian StyleRosso, Rachele, Alessandro Maglione, Matteo Bronzini, Eleonora Virgilio, Marinella Clerico, and Simona Rolla. 2025. "Linking Nutrients to Multiple Sclerosis Pathogenesis: Biological Evidence and Clinical Implications" Nutrients 17, no. 21: 3414. https://doi.org/10.3390/nu17213414
APA StyleRosso, R., Maglione, A., Bronzini, M., Virgilio, E., Clerico, M., & Rolla, S. (2025). Linking Nutrients to Multiple Sclerosis Pathogenesis: Biological Evidence and Clinical Implications. Nutrients, 17(21), 3414. https://doi.org/10.3390/nu17213414

