Time-Restricted Eating Combined with Exercise Reduces Menopausal Symptoms and Improves Quality of Life More than Exercise Alone in Menopausal Women: A Quasi-Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Procedures
2.2. Primary and Secondary Outcome Measures
2.3. Participants
2.4. Questionnaire Assessment
2.5. Blood Collection and BMI Measurement
2.6. Diet Protocol
2.7. Exercise Protocol
2.8. Statistical Analysis
3. Results
3.1. Participants
3.2. Adherence to Exercise and/or Dietary Intervention
3.3. Menopausal Symptoms and Quality of Life
3.4. Life Satisfaction, General Health, Fatigue, Sleep Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1RM | One-repetition maximum |
AMPK | Adenosine monophosphate-activated protein kinase |
BMI | Body mass index |
ES | Effect size |
eTRE | Early time-restricted eating |
FAS | Fatigue Assessment Scale |
GHQ-12 | General Health Questionnaire |
IF | Intermittent fasting |
KomPAN | Questionnaire for Dietary Habits, Lifestyle, and Nutrition Knowledge Assessment |
LMR | Lymphocyte-to-monocyte ratio |
MENQOL | Menopause-Specific Quality of Life Questionnaire |
MRS | Menopause Rating Scale |
mTOR | Mechanistic target of rapamycin |
SQS | Single-Item Sleep Quality Scale |
SWLS | Satisfaction with Life Scale |
TRE | Time-restricted eating |
ULK1 | Unc-51-like kinase 1 |
References
- Hybholt, M. Psychological and Social Health Outcomes of Physical Activity around Menopause: A Scoping Review of Research. Maturitas 2022, 164, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Lambrinoudaki, I.; Armeni, E.; Goulis, D.; Bretz, S.; Ceausu, I.; Durmusoglu, F.; Erkkola, R.; Fistonic, I.; Gambacciani, M.; Geukes, M.; et al. Menopause, Wellbeing and Health: A Care Pathway from the European Menopause and Andropause Society. Maturitas 2022, 163, 1–14. [Google Scholar] [CrossRef]
- Duralde, E.R.; Sobel, T.H.; Manson, J.E. Management of Perimenopausal and Menopausal Symptoms. BMJ 2023, 382, e072612. [Google Scholar] [CrossRef]
- Madsen, T.E.; Sobel, T.; Negash, S.; Shrout Allen, T.; Stefanick, M.L.; Manson, J.E.; Allison, M. A Review of Hormone and Non-Hormonal Therapy Options for the Treatment of Menopause. Int. J. Womens Health 2023, 15, 825–836. [Google Scholar] [CrossRef]
- Kulak, A.; Toros, T.; Ogras, E.B.; Etiler, I.E.; Bagci, E.; Gokyurek, B.; Bilgin, U. The Impact of Sustainable Exercise on Self-Efficacy and Life Satisfaction in Women before and after Menopause. Behav. Sci. 2023, 13, 759. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Do, T.T.T.; Tran, T.N.; Kim, J.H. Exercise and Quality of Life in Women with Menopausal Symptoms: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2020, 17, 7049. [Google Scholar] [CrossRef]
- Tandon, V.R.; Sharma, S.; Mahajan, A.; Mahajan, A.; Tandon, A. Menopause and Sleep Disorders. J. Midlife Health 2022, 13, 26–33. [Google Scholar] [CrossRef]
- El Hajj, A.; Wardy, N.; Haidar, S.; Bourgi, D.; Haddad, M.E.; Chammas, D.E.; El Osta, N.; Rabbaa Khabbaz, L.; Papazian, T. Menopausal Symptoms, Physical Activity Level and Quality of Life of Women Living in the Mediterranean Region. PLoS ONE 2020, 15, e0230515. [Google Scholar] [CrossRef]
- Steger, F.L.; Jamshed, H.; Bryan, D.R.; Richman, J.S.; Warriner, A.H.; Hanick, C.J.; Martin, C.K.; Salvy, S.-J.; Peterson, C.M. Early Time-Restricted Eating Affects Weight, Metabolic Health, Mood, and Sleep in Adherent Completers: A Secondary Analysis. Obesity 2023, 31, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Grigolon, R.B.; Ceolin, G.; Deng, Y.; Bambokian, A.; Koning, E.; Fabe, J.; Lima, M.; Gerchman, F.; Soares, C.N.; Brietzke, E.; et al. Effects of Nutritional Interventions on the Severity of Depressive and Anxiety Symptoms of Women in the Menopausal Transition and Menopause: A Systematic Review, Meta-Analysis, and Meta-Regression. Menopause 2023, 30, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Choda, N.; Wakai, K.; Naito, M.; Imaeda, N.; Goto, C.; Maruyama, K.; Kadomatsu, Y.; Tsukamoto, M.; Sasakabe, T.; Kubo, Y.; et al. Associations between Diet and Mental Health Using the 12-Item General Health Questionnaire: Cross-Sectional and Prospective Analyses from the Japan Multi-Institutional Collaborative Cohort Study. Nutr. J. 2020, 19, 2. [Google Scholar] [CrossRef]
- Hao, S.; Tan, S.; Li, J.; Li, W.; Li, J.; Cai, X.; Hong, Z. Dietary and Exercise Interventions for Perimenopausal Women: A Health Status Impact Study. Front. Nutr. 2021, 8, 752500. [Google Scholar] [CrossRef]
- Chaix, A.; Rynders, C.A. Time Restricted Feeding plus Exercise: Could Two Be Better than One for Metabolic Health? J. Physiol. 2022, 600, 699–700. [Google Scholar] [CrossRef]
- Vasim, I.; Majeed, C.N.; DeBoer, M.D. Intermittent Fasting and Metabolic Health. Nutrients 2022, 14, 631. [Google Scholar] [CrossRef]
- Gudden, J.; Arias Vasquez, A.; Bloemendaal, M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients 2021, 13, 3166. [Google Scholar] [CrossRef]
- Jamshed, H.; Steger, F.L.; Bryan, D.R.; Richman, J.S.; Warriner, A.H.; Hanick, C.J.; Martin, C.K.; Salvy, S.-J.; Peterson, C.M. Effectiveness of Early Time-Restricted Eating for Weight Loss, Fat Loss, and Cardiometabolic Health in Adults with Obesity: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 953–962. [Google Scholar] [CrossRef]
- Longo, V.D.; Mattson, M.P. Fasting: Molecular Mechanisms and Clinical Applications. Cell Metab. 2014, 19, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Germic, N.; Frangez, Z.; Yousefi, S.; Simon, H.-U. Regulation of the Innate Immune System by Autophagy: Monocytes, Macrophages, Dendritic Cells and Antigen Presentation. Cell Death Differ. 2019, 26, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Eissa, N.T. Autophagy as a Stress Response Pathway in the Immune System. Int. Rev. Immunol. 2015, 34, 382–402. [Google Scholar] [CrossRef] [PubMed]
- Khater, S.I.; Shalabi, M.; Alammash, B.B.; Alrais, A.I.; Al-ahmadi, D.; Alqahtani, L.S.; Khamis, T.; Abdelaziz, S.; Aldawy, K. Autophagy Characteristics of Phytoestrogens in Management and Prevention of Diseases: A Narrative Review of in-Vivo and in-Vitro Studies. J. Adv. Vet. Anim. Res. 2023, 10, 308–320. [Google Scholar] [CrossRef]
- van Niekerk, G.; Hattingh, S.M.; Engelbrecht, A.-M. Enhanced Therapeutic Efficacy in Cancer Patients by Short-Term Fasting: The Autophagy Connection. Front. Oncol. 2016, 6, 242. [Google Scholar] [CrossRef]
- Hofer, S.J.; Carmona-Gutierrez, D.; Mueller, M.I.; Madeo, F. The Ups and Downs of Caloric Restriction and Fasting: From Molecular Effects to Clinical Application. EMBO Mol. Med. 2022, 14, e14418. [Google Scholar] [CrossRef]
- Hannan, M.A.; Rahman, M.A.; Rahman, M.S.; Sohag, A.A.M.; Dash, R.; Hossain, K.S.; Farjana, M.; Uddin, M.J. Intermittent Fasting, a Possible Priming Tool for Host Defense against SARS-CoV-2 Infection: Crosstalk among Calorie Restriction, Autophagy and Immune Response. Immunol. Lett. 2020, 226, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Bagherniya, M.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. The Effect of Fasting or Calorie Restriction on Autophagy Induction: A Review of the Literature. Ageing Res. Rev. 2018, 47, 183–197. [Google Scholar] [CrossRef]
- Dengjel, J.; Schoor, O.; Fischer, R.; Reich, M.; Kraus, M.; Müller, M.; Kreymborg, K.; Altenberend, F.; Brandenburg, J.; Kalbacher, H.; et al. Autophagy Promotes MHC Class II Presentation of Peptides from Intracellular Source Proteins. Proc. Natl. Acad. Sci. USA 2005, 102, 7922–7927. [Google Scholar] [CrossRef]
- Jordan, S.; Tung, N.; Casanova-Acebes, M.; Chang, C.; Cantoni, C.; Zhang, D.; Wirtz, T.H.; Naik, S.; Rose, S.A.; Brocker, C.N.; et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell 2019, 178, 1102–1114.e17. [Google Scholar] [CrossRef]
- Congdon, E.E. Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer’s Disease. Front. Neurosci. 2018, 12, 372. [Google Scholar] [CrossRef]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G.; Leeuwenburgh, C.; Mattson, M.P. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Tan, S.; Li, J.; Li, W.; Li, J.; Liu, Y.; Hong, Z. The Effect of Diet and Exercise on Climacteric Symptomatology. Asia Pac. J. Clin. Nutr. 2022, 31, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Ashtary-Larky, D.; Bagheri, R.; Tinsley, G.M.; Asbaghi, O.; Paoli, A.; Moro, T. Effects of Intermittent Fasting Combined with Resistance Training on Body Composition: A Systematic Review and Meta-Analysis. Physiol. Behav. 2021, 237, 113453. [Google Scholar] [CrossRef]
- Keenan, S.; Cooke, M.B.; Belski, R. The Effects of Intermittent Fasting Combined with Resistance Training on Lean Body Mass: A Systematic Review of Human Studies. Nutrients 2020, 12, 2349. [Google Scholar] [CrossRef]
- Reddy, B.L.; Reddy, V.S.; Saier, M.H. Health Benefits of Intermittent Fasting. Microb. Physiol. 2024, 34, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.; Bull, F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Sawicka-Gutaj, N.; Gruszczyński, D.; Guzik, P.; Mostowska, A.; Walkowiak, J. Publication Ethics of Human Studies in the Light of the Declaration of Helsinki—A Mini-Review. J. Med. Sci. 2022, 91, e700. [Google Scholar] [CrossRef]
- Heinemann, L.A.J.; Potthoff, P.; Schneider, H.P.G. International Versions of the Menopause Rating Scale (MRS). Health Qual. Life Outcomes 2003, 1, 28. [Google Scholar] [CrossRef]
- Hilditch, J.R.; Lewis, J.; Peter, A.; van Maris, B.; Ross, A.; Franssen, E.; Guyatt, G.H.; Norton, P.G.; Dunn, E. A Menopause-Specific Quality of Life Questionnaire: Development and Psychometric Properties. Maturitas 1996, 24, 161–175. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction With Life Scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- De Vries, J.; Michielsen, H.; Van Heck, G.L. Assessment of Fatigue among Working People: A Comparison of Six Questionnaires. Occup. Environ. Med. 2003, 60, i10–i15. [Google Scholar] [CrossRef]
- Goldberg, D.P.; Gater, R.; Sartorius, N.; Ustun, T.B.; Piccinelli, M.; Gureje, O.; Rutter, C. The Validity of Two Versions of the GHQ in the WHO Study of Mental Illness in General Health Care. Psychol. Med. 1997, 27, 191–197. [Google Scholar] [CrossRef]
- Snyder, E.; Cai, B.; DeMuro, C.; Morrison, M.F.; Ball, W. A New Single-Item Sleep Quality Scale: Results of Psychometric Evaluation in Patients With Chronic Primary Insomnia and Depression. J. Clin. Sleep Med. 2018, 14, 1849–1857. [Google Scholar] [CrossRef]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef]
- Rosenthal, R. Parametric Measures of Effect Size. In The Handbook of Research Synthesis; Russell Sage Foundation: New York, NY, USA, 1994; pp. 231–244. ISBN 978-0-87154-226-7. [Google Scholar]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Duijts, S.F.A.; van Beurden, M.; Oldenburg, H.S.A.; Hunter, M.S.; Kieffer, J.M.; Stuiver, M.M.; Gerritsma, M.A.; Menke-Pluymers, M.B.E.; Plaisier, P.W.; Rijna, H.; et al. Efficacy of Cognitive Behavioral Therapy and Physical Exercise in Alleviating Treatment-Induced Menopausal Symptoms in Patients With Breast Cancer: Results of a Randomized, Controlled, Multicenter Trial. J. Clin. Oncol. 2012, 30, 4124–4133. [Google Scholar] [CrossRef]
- Costa, J.G.; Giolo, J.G.; Mariano, I.M.; Batista, J.P.; Ribeiro, A.L.A.; Souza, T.C.F.; de Oliveira, E.P.; Resende, A.P.M.; Puga, G.M. Combined exercise training reduces climacteric symptoms without the additive effects of isoflavone supplementation: A clinical, controlled, randomised, double-blind study. Nutr. Health 2017, 23, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.D.; Guthrie, K.A.; Newton, K.M.; Anderson, G.L.; Booth-Laforce, C.; Caan, B.; Carpenter, J.S.; Cohen, L.S.; Dunn, A.L.; Ensrud, K.E.; et al. Menopausal Quality of Life: A RCT of Yoga, Exercise and Omega-3 Supplements. Am. J. Obstet. Gynecol. 2014, 210, 244.e1. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Holtz, D.N.; Strom, N.; La Reau, A.; Kolipaka, S.; Schmidt, N.; Hata, E.; Znayenko-Miller, T.; Holubkov, R.; Barnard, N.D. A Dietary Intervention for Postmenopausal Hot Flashes: A Potential Role of Gut Microbiome. An Exploratory Analysis. Complement. Ther. Med. 2023, 79, 103002. [Google Scholar] [CrossRef] [PubMed]
- Paukkonen, I.; Törrönen, E.-N.; Lok, J.; Schwab, U.; El-Nezami, H. The Impact of Intermittent Fasting on Gut Microbiota: A Systematic Review of Human Studies. Front. Nutr. 2024, 11, 1342787. [Google Scholar] [CrossRef] [PubMed]
- Cadena-Ullauri, S.; Guevara-Ramírez, P.; Ruiz-Pozo, V.A.; Tamayo-Trujillo, R.; Paz-Cruz, E.; Zambrano-Villacres, R.; Simancas-Racines, D.; Zambrano, A.K. The Effect of Intermittent Fasting on Microbiota as a Therapeutic Approach in Obesity. Front. Nutr. 2024, 11, 1393292. [Google Scholar] [CrossRef]
- Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018, 27, 1222–1235.e6. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, S.; Ye, Y.; Yin, S.; Fan, J.; Xia, M. Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients. J. Clin. Endocrinol. Metab. 2021, 106, 64–79. [Google Scholar] [CrossRef]
- Czerwińska-Ledwig, O.; Nowak-Zaleska, A.; Żychowska, M.; Meyza, K.; Pałka, T.; Dzidek, A.; Szlachetka, A.; Jurczyszyn, A.; Piotrowska, A. The Positive Effects of Training and Time-Restricted Eating in Gut Microbiota Biodiversity in Patients with Multiple Myeloma. Nutrients 2025, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Obaid, J.M.A.S.; Almjydy, M.M.A.; Garban, M.A.Q.; Al-hebari, F.S.Q.; Al-washah, N.A.H. Neutrophil-to-monocyte Ratio Is the Better New Inflammatory Marker Associated with Rheumatoid Arthritis Activity. Health Sci. Rep. 2023, 6, e1478. [Google Scholar] [CrossRef] [PubMed]
- Faris, M.A.-I.E.; Kacimi, S.; Al-Kurd, R.A.; Fararjeh, M.A.; Bustanji, Y.K.; Mohammad, M.K.; Salem, M.L. Intermittent Fasting during Ramadan Attenuates Proinflammatory Cytokines and Immune Cells in Healthy Subjects. Nutr. Res. 2012, 32, 947–955. [Google Scholar] [CrossRef]
- Korpe, B.; Kose, C.; Keskin, H.L. Systemic Inflammation and Menopausal Symptomatology: Insights from Postmenopausal Women. Menopause 2024, 31, 973–978. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Hsin, I.-L.; Chen, D.-R.; Chang, C.-C.; Kor, C.-T.; Chen, T.-Y.; Wu, H.-M. Circulating Interleukin-8 and Tumor Necrosis Factor-α Are Associated with Hot Flashes in Healthy Postmenopausal Women. PLoS ONE 2017, 12, e0184011. [Google Scholar] [CrossRef] [PubMed]
- Deecher, D.C.; Dorries, K. Understanding the Pathophysiology of Vasomotor Symptoms (Hot Flushes and Night Sweats) That Occur in Perimenopause, Menopause, and Postmenopause Life Stages. Arch. Womens Ment. Health 2007, 10, 247–257. [Google Scholar] [CrossRef]
- Harvie, M.N.; Pegington, M.; Mattson, M.P.; Frystyk, J.; Dillon, B.; Evans, G.; Cuzick, J.; Jebb, S.A.; Martin, B.; Cutler, R.G.; et al. The Effects of Intermittent or Continuous Energy Restriction on Weight Loss and Metabolic Disease Risk Markers: A Randomized Trial in Young Overweight Women. Int. J. Obes. 2011, 35, 714–727. [Google Scholar] [CrossRef]
- Li, C.; Xing, C.; Zhang, J.; Zhao, H.; Shi, W.; He, B. Eight-Hour Time-Restricted Feeding Improves Endocrine and Metabolic Profiles in Women with Anovulatory Polycystic Ovary Syndrome. J. Transl. Med. 2021, 19, 148. [Google Scholar] [CrossRef]
- Kalam, F.; Akasheh, R.T.; Cienfuegos, S.; Ankireddy, A.; Gabel, K.; Ezpeleta, M.; Lin, S.; Tamatam, C.M.; Reddy, S.P.; Spring, B.; et al. Effect of Time-Restricted Eating on Sex Hormone Levels in Premenopausal and Postmenopausal Females. Obesity 2023, 31 (Suppl. 1), 57–62. [Google Scholar] [CrossRef]
- Steenstrup, B.; Le Rumeur, E.; Moreau, S.; Cornu, J.N. [Sedentary lifestyle and urinary incontinence in women: A literature review]. Prog. Urol. 2018, 28, 973–979. [Google Scholar] [CrossRef]
- El-Bandrawy, A. Effect of Aerobic Walking Exercise on Stress Urinary Incontinence in Postmenopausal Women. Women Sport Phys. Act. J. 2021, 30, 11–17. [Google Scholar] [CrossRef]
- Lara, L.A.d.S.; Montenegro, M.L.; Franco, M.M.; Abreu, D.C.C.; Rosa e Silva, A.C.J.; Ferreira, C.H.J. Is the Sexual Satisfaction of Postmenopausal Women Enhanced by Physical Exercise and Pelvic Floor Muscle Training? J. Sex. Med. 2012, 9, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Maldonado, A.; Díez-Fernández, D.M.; Esteban-Simón, A.; Rodríguez-Pérez, M.A.; Artés-Rodríguez, E.; Casimiro-Artés, M.A.; Moreno-Martos, H.; Toro-de-Federico, A.; Hachem-Salas, N.; Bartholdy, C.; et al. Effects of a 12-Week Supervised Resistance Training Program, Combined with Home-Based Physical Activity, on Physical Fitness and Quality of Life in Female Breast Cancer Survivors: The EFICAN Randomized Controlled Trial. J. Cancer Surviv. 2023, 17, 1371–1385. [Google Scholar] [CrossRef]
- Mathisen, T.F.; Rosenvinge, J.H.; Friborg, O.; Vrabel, K.; Bratland-Sanda, S.; Pettersen, G.; Sundgot-Borgen, J. Is Physical Exercise and Dietary Therapy a Feasible Alternative to Cognitive Behavior Therapy in Treatment of Eating Disorders? A Randomized Controlled Trial of Two Group Therapies. Int. J. Eat. Disord. 2020, 53, 574–585. [Google Scholar] [CrossRef] [PubMed]
Exercise Group (n = 30) | p, r | Combination Group (n = 24) | p, r | |||
---|---|---|---|---|---|---|
Baseline | 12 Weeks | Baseline | 12 Weeks | |||
MRS total | 14.20 ± 5.83, 13.50 (10.00, 18.00) | 13.60 ± 6.05, 12.00 (10.00, 19.00) | 0.665, 0.079 | 15.00 ± 6.09, 14.00 (10.50, 20.50) | 10.83 ± 5.64, 10.50 (7.00, 14.50) | 0.003 *, 0.598 |
MRS psychological | 5.60 ± 3.37, 5.00 (3.00, 8.00) | 5.00 ± 3.29, 4.00 (2.00, 8.00) | 0.434, 0.143 | 6.13 ± 2.97, 6.50 (4.00, 8.00) | 3.75 ± 2.45, 4.00 (2.50, 5.00) | 0.004 *, 0.596 |
MRS somatic | 4.67 ± 2.20, 4.50 (3.00, 6.00) | 4.90 ± 2.07, 5.00 (4.00, 6.00) | 0.495, 0.124 | 5.17 ± 2.14, 5.00 (4.00, 6.50) | 4.17 ± 2.16, 4.00 (3.00, 5.50) | 0.009 *, 0.534 |
MRS urogenital | 3.93 ± 1.93, 4.00 (3.00, 6.00) | 3.70 ± 2.22, 4.00 (2.00, 5.00) | 0.641, 0.085 | 3.71 ± 2.66, 3.50 (2.00, 6.00) | 2.92 ± 2.36, 2.50 (1.50, 3.00) | 0.130, 0.309 |
MENQOL vasomotor | 9.60 ± 5.73, 8.00 (5.00, 13.00) | 9.03 ± 6.05, 7.00 (4.00, 12.00) | 0.187, 0.241 | 7.79 ± 5.10, 6.50 (3.00, 9.50) | 5.92 ± 3.31, 5.00 (3.00, 7.00) | 0.063, 0.380 |
MENQOL psychosocial | 27.33 ± 11.57, 24.50 (17.00, 39.00) | 26.10 ± 11.69, 23.50 (15.00, 37.00) | 0.585, 0.100 | 28.17 ± 9.74, 25.50 (21.50, 36.00) | 20.63 ± 10.27, 18.00 (14.50, 25.00) | 0.021 *, 0.472 |
MENQOL physical | 64.03 ± 20.94, 63.00 (47.00, 80.00) | 57.27 ± 25.68, 53.00 (33.00, 78.00) | 0.066, 0.336 | 59.38 ± 16.79, 61.50 (44.00, 71.50) | 46.25 ± 19.14, 39.00 (30.00, 61.00) | 0.010 *, 0.525 |
MENQOL sexual | 11.70 ± 6.27, 10.00 (7.00, 17.00) | 10.47 ± 5.81, 10.00 (6.00, 12.00) | 0.219, 0.225 | 7.63 ± 4.73, 6.50 (3.00, 10.50) | 7.29 ± 5.67, 5.00 (3.00, 9.50) | 0.660, 0.090 |
SWLS | 23.73 ± 4.62, 23.00 (20.00, 27.00) | 23.47 ± 5.15, 24.00 (19.00, 28.00) | 0.517, 0.118 | 23.04 ± 4.66, 24.00 (20.50, 26.50) | 25.04 ± 4.59, 26.50 (23.50, 28.00) | 0.014 *, 0.499 |
FAS total | 25.77 ± 6.94, 23.50 (20.00, 32.00) | 23.40 ± 6.30, 21.50 (19.00, 29.00) | 0.038 *, 0.378 | 25.63 ± 6.19, 24.50 (22.00, 30.00) | 23.04 ± 3.93, 23.50 (21.00, 25.00) | 0.117, 0.320 |
FAS mental | 12.53 ± 3.70, 11.50 (10.00, 16.00) | 11.60 ± 3.38, 11.00 (9.00, 14.00) | 0.155, 0.260 | 12.21 ± 3.34, 12.00 (10.00, 14.00) | 10.00 ± 2.62, 9.50 (8.00, 12.50) | 0.002 *, 0.620 |
FAS physical | 13.23 ± 3.79, 13.00 (10.00, 16.00) | 11.80 ± 3.58, 11.00 (9.00, 15.00) | 0.050, 0.357 | 13.42 ± 3.49, 14.00 (10.50, 16.00) | 13.04 ± 2.91, 14.00 (11.50, 14.50) | 0.715, 0.074 |
GHQ-12 | 25.87 ± 4.13, 25.00 (23.00, 29.00) | 25.07 ± 5.87, 24.50 (22.00, 29.00) | 0.353, 0.169 | 27.25 ± 5.74, 26.50 (23.00, 31.00) | 22.67 ± 4.34, 22.50 (20.50, 24.50) | 0.002 *, 0.636 |
SQS | 5.70 ± 1.99, 6.00 (4.00, 7.00) | 5.93 ± 5.15, 6.00 (19.00, 28.00) | 0.484, 0.128 | 5.00 ± 1.67, 5.50 (4.00, 6.00) | 5.81 ± 2.07, 6.00 (4.50, 7.00) | 0.177, 0.337 |
LMR | 4.25 ± 1.13, 4.09 (3.45, 5.02) | 4.10 ± 0.97, 4.14 (3.63, 4.78) | 0.206, 0.258 | 4.00 ± 1.37 3.92 (3.8, 4.73) | 4.44 ± 1.39 4.44 (3.9, 5.01) | 0.006 *, 0.560 |
BMI | 26.17 ± 5.43, 25.40 (21.40, 29.00) | 25.93 ± 5.38, 25.15 (21.20, 29.10) | 0.294, 0.191 | 27.85 ± 5.46 26.75 (23.25, 32.60) | 27.18 ± 5.22 26.10 (22.50, 31.40) | 0.001 *, 0.652 |
Dependent Variables | Independent Variables | R-Squared | Partial Correlation | ||||
---|---|---|---|---|---|---|---|
TRE | Age | Initial BMI | Change in LMR | LMR × TRE (Interaction) | |||
MRS total | 4.922 | −0.036 | −0.057 | −3.192 | 1.615 | 0.194 | 0.136 |
0.008 * | 0.838 | 0.703 | 0.031 * | 0.487 | 0.057 | 0.008 * | |
MRS psychological | 2.689 | 0.06 | −0.037 | −2.081 | 0.45 | 0.236 | 0.134 |
0.009 * | 0.545 | 0.659 | 0.012 * | 0.725 | 0.021 * | 0.009 * | |
MRS somatic | 1.564 | −0.032 | −0.007 | −0.285 | −0.139 | 0.150 | 0.144 |
0.007 * | 0.556 | 0.883 | 0.523 | 0.846 | 0.156 | 0.007 * | |
MRS urogenital | 0.669 | −0.063 | −0.014 | −0.825 | 1.304 | 0.080 | 0.017 |
0.366 | 0.386 | 0.823 | 0.168 | 0.174 | 0.529 | 0.366 | |
MENQOL vasomotor | 2.608 | −0.224 | 0.074 | −0.319 | −1.375 | 0.079 | 0.052 |
0.111 | 0.166 | 0.586 | 0.806 | 0.510 | 0.539 | 0.111 | |
MENQOL psychosocial 1 | 11.853 | −0.533 | 0.219 | −2.221 | −6.767 | 0.273 | 0.186 |
0.002 * | 0.144 | 0.472 | 0.507 | 0.221 | 0.016 * | 0.002 * | |
MENQOL physical | 15.846 | −1.077 | −0.113 | 5.298 | −21.248 | 0.216 | 0.122 |
0.013 * | 0.082 | 0.827 | 0.287 | 0.010 * | 0.034 * | 0.013 * | |
MENQOL sexual 2 | 0.544 | 3.223 | −0.019 | −1.158 | −0.859 | 0.118 | 0.003 |
0.711 | 0.274 | 0.878 | 0.332 | 0.651 | 0.407 | 0.711 | |
SWLS | −3.597 | 0.208 | −0.011 | 1.107 | 0.262 | 0.211 | 0.181 |
0.002 * | 0.063 | 0.904 | 0.219 | 0.855 | 0.038 | 0.002 * | |
FAS total | 2.931 | −0.197 | −0.136 | −1.737 | −2.072 | 0.140 | 0.048 |
0.125 | 0.293 | 0.392 | 0.256 | 0.397 | 0.189 | 0.125 | |
FAS mental | 2.406 | −0.005 | −0.021 | −0.798 | −1.390 | 0.144 | 0.104 |
0.022 * | 0.957 | 0.806 | 0.335 | 0.295 | 0.174 | 0.022 * | |
FAS physical | 0.525 | −0.192 | −0.115 | −0.939 | −0.681 | 0.127 | 0.003 |
0.694 | 0.150 | 0.306 | 0.383 | 0.692 | 0.243 | 0.694 | |
GHQ-12 | 6.022 | −0.298 | −0.005 | −1.887 | −0.651 | 0.177 | 0.156 |
0.004 * | 0.142 | 0.978 | 0.251 | 0.804 | 0.087 | 0.005 * | |
SQS | −0.553 | −0.062 | 0.053 | 0.082 | 0.016 | 0.038 | 0.011 |
0.508 | 0.457 | 0.481 | 0.895 | 0.988 | 0.902 | 0.508 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jóźwiak, B.; Szulc, A.; Laudańska-Krzemińska, I. Time-Restricted Eating Combined with Exercise Reduces Menopausal Symptoms and Improves Quality of Life More than Exercise Alone in Menopausal Women: A Quasi-Randomized Controlled Trial. Nutrients 2025, 17, 3274. https://doi.org/10.3390/nu17203274
Jóźwiak B, Szulc A, Laudańska-Krzemińska I. Time-Restricted Eating Combined with Exercise Reduces Menopausal Symptoms and Improves Quality of Life More than Exercise Alone in Menopausal Women: A Quasi-Randomized Controlled Trial. Nutrients. 2025; 17(20):3274. https://doi.org/10.3390/nu17203274
Chicago/Turabian StyleJóźwiak, Beata, Adam Szulc, and Ida Laudańska-Krzemińska. 2025. "Time-Restricted Eating Combined with Exercise Reduces Menopausal Symptoms and Improves Quality of Life More than Exercise Alone in Menopausal Women: A Quasi-Randomized Controlled Trial" Nutrients 17, no. 20: 3274. https://doi.org/10.3390/nu17203274
APA StyleJóźwiak, B., Szulc, A., & Laudańska-Krzemińska, I. (2025). Time-Restricted Eating Combined with Exercise Reduces Menopausal Symptoms and Improves Quality of Life More than Exercise Alone in Menopausal Women: A Quasi-Randomized Controlled Trial. Nutrients, 17(20), 3274. https://doi.org/10.3390/nu17203274