The Impact of Ultra-Marathon Running on the Gut Microbiota as Determined by Faecal Bacterial Profiling, and Its Relationship with Exercise-Associated Gastrointestinal Symptoms: An Exploratory Investigation
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Faecal Sample Collection and Bacterial Profiling
2.4. Statistical Analysis
3. Results
3.1. Dietary Intake
3.2. Faecal Microbial Taxa
3.3. Exercise-Associated Gastrointestinal Symptoms (Ex-GIS)
3.4. Bacterial RA and Ex-GIS
4. Discussion
4.1. Exercise-Associated Gastrointestinal Symptoms
4.2. Impact of Bacterial Microbial Composition on EIGS and Ex-GIS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, R.J.S.; Hoffman, M.D.; Stellingwerff, T. Considerations for ultra-endurance activities: Part 1—Nutrition. Res. Sports. Med. 2019, 27, 166–181. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, J.; Smith, A.; Buadze, A.; Liebrenz, M. Ultra culture-ultra reality: A content analysis of YouTube depictions of ultra endurance sport and comparisons to scientific literature. Front. Sports Act. Living 2023, 5, 1192401. [Google Scholar] [CrossRef] [PubMed]
- Scheer, V.; Basset, P.; Giovanelli, N.; Vernillo, G.; Millet, G.P.; Costa, R.J.S. Defining Off-road Running: A Position Statement from the Ultra Sports Science Foundation. Int. J. Sports Med. 2020, 41, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D. State of the Science—Ultraendurance Sports. Int. J. Sports Physiol. Perform. 2016, 11, 831–832. [Google Scholar] [CrossRef]
- Scheer, V.; Tiller, N.B.; Doutreleau, S.; Khodaee, M.; Knechtle, B.; Pasternak, A.; Rojas-Valverde, D. Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med. 2022, 52, 725–740. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Gaskell, S.K.; Henningsen, K.; Jeacocke, N.; Martinez-Hurtado, I.; Mika, A.; Scheer, V.; Scrivin, R.; Snipe, R.M.J.; Wallett, A.M.; et al. The prevention and management of exercise-associated gastrointestinal perturbations and symptoms: A practitioner guide (Sports Dietitians Australia and Ultra Sports Science Foundation Joint Position Statement). Sports Med. 2025, 55, 1097–1134. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Young, P.; Gill, S.K.; Snipe, R.M.J.; Gaskell, S.; Russo, I.; Burke, L.M. Assessment of Exercise-Associated Gastrointestinal Perturbations in Research and Practical Settings: Methodological Concerns and Recommendations for Best Practice. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 387–418. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Camoes-Costa, V.; Snipe, R.M.J.; Dixon, D.; Russo, I.; Huschtscha, Z. Impact of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profile. J. Appl. Physiol. 2019, 126, 1281–1291. [Google Scholar] [CrossRef]
- Russo, I.; Della Gatta, P.A.; Garnham, A.; Porter, J.; Burke, L.M.; Costa, R.J.S. Does the nutritional composition of dairy milk based recovery beverages influence post-exercise gastrointestinal and immune status, and subsequent markers of recovery optimisation in response to high intensity interval exercise? Front. Nutr. 2020, 7, 622270. [Google Scholar] [CrossRef]
- Russo, I.; Della Gatta, P.A.; Garnham, A.; Porter, J.; Burke, L.M.; Costa, R.J.S. Assessing overall exercise recovery processes using carbohydrate and carbohydrate-protein containing recovery beverages. Front. Physiol. 2021, 12, 628863. [Google Scholar] [CrossRef]
- Russo, I.; Della Gatta, P.A.; Garnham, A.; Porter, J.; Burke, L.M.; Costa, R.J.S. The effects of an acute “train-low” nutritional protocol on markers of recovery optimization in endurance-trained male athletes. Int. J. Sports Physiol. Perform. 2021, 16, 1764–1776. [Google Scholar] [CrossRef]
- Snipe, R.M.J.; Costa, R.J.S. Does biological sex impact intestinal epithelial injury, small intestine permeability, gastrointestinal symptoms and systemic cytokine profile in response to exertional-heat stress? J. Sports Sci. 2018, 36, 2827–2835. [Google Scholar] [CrossRef]
- Houghton, M.J.; Snipe, R.M.J.; Williamson, G.; Costa, R.M.J. Plasma measurements of the dual sugar test reveal carbohydrate immediately alleviates intestinal permeability caused by exertional heat stress. J. Physiol. 2023, 601, 4573–4589. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, K.; Martinez, I.; Costa, R.J.S. Exertional Stress-induced Pathogenic Luminal Content Translocation—Friend or Foe? Int. J. Sports. Med. 2024, 45, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Teixeira, A.; Rama, L.; Rosado, F.; Hankey, J.; Scheer, V.; Hemmings, K.; Ansley-Robson, P.; Costa, R.J.S. Circulatory endotoxin concentration and cytokine profile in response to exertional-heat stress during a multi-stage ultra-marathon competition. Exerc. Immunol. Rev. 2015, 21, 114–128. [Google Scholar] [PubMed]
- Gill, S.K.; Hankey, J.; Wright, A.; Marczak, S.; Hemming, K.; Allerton, D.M.; Ansley-Robson, P.; Costa, R.J.S. The impact of a 24-hour ultra-marathon on circulatory endotoxin and cytokine profile. Int. J. Sports Med. 2015, 36, 688–695. [Google Scholar]
- Gill, S.K.; Allerton, D.M.; Ansley-Robson, P.; Hemming, K.; Cox, M.; Costa, R.J.S. Does acute high dose probiotic supplementation containing lactobacillus casei attenuate exertional-heat stress induced endotoxaemia and cytokinaemia? Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 268–275. [Google Scholar] [CrossRef]
- Castillo, D.J.; Rifkin, R.F.; Cowan, D.A.; Potgieter, M. The healthy human blood microbiome: Fact or fiction? Front. Cell. Infect. Microbiol. 2019, 9, 148. [Google Scholar] [CrossRef]
- Bennett, C.J.; Henry, R.; Snipe, R.M.J.; Costa, R.J.S. Is the gut microbiota bacterial abundance and composition associated with intestinal epithelial injury, systemic inflammatory profile, and gastrointestinal symptoms in response to exertional-heat stress? J. Sci. Med. Sport. 2020, 23, 1141–1153. [Google Scholar] [CrossRef]
- Gnauck, A.; Lentle, R.G.; Kruger, M.C. The characteristics and function of bacterial lipopolysaccharides and their endotoxic potential in humans. Int. Rev. Immunol. 2016, 35, 189–21820. [Google Scholar] [CrossRef]
- Ramsay, G.; Newman, P.M.; McCartney, A.C.; Ledingham, I.M. Endotoxaemia in multiple organ failure due to sepsis. Prog. Clin. Biol. Res. 1988, 272, 237–246. [Google Scholar]
- Gaskell, S.K.; Henningsen, K.; Young, P.; Gill, P.; Muir, J.; Henry, R.; Costa, R.J.S. The Impact of a 24-h Low and High Fermentable Oligo- Di- Mono-Saccharides and Polyol (FODMAP) Diet on Plasma Bacterial Profile in Response to Exertional-Heat Stress. Nutrients 2023, 15, 3376. [Google Scholar] [CrossRef]
- Monda, V.; Villano, I.; Messina, A.; Valenzano, A.; Esposito, T.; Moscatelli, F.; Viggiano, A.; Cibelli, G.; Chieffi, S.; Monda, M.; et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid. Med. Cell Longev. 2017, 2017, 3831972. [Google Scholar] [CrossRef] [PubMed]
- Young, P.; Russo, I.; Gill, P.; Muir, J.; Henry, R.; Davidson, Z.; Costa, R.J.S. Reliability of pathophysiological markers reflective of exercise-induced gastrointestinal syndrome (EIGS) in response to 2-h high-intensity interval exercise: A comprehensive methodological efficacy exploration. Front. Physiol. 2023, 14, 1063335. [Google Scholar] [CrossRef] [PubMed]
- Rauch, C.E.; Henningsen, K.; Martinez, I.; Young, P.; Mika, A.; Huschtscha, Z.; McCubbin, A.; Henry, R.; Anderson, D.; Costa, R.J. The Effects of Prebiotic Supplementation on Markers of Exercise-Induced Gastrointestinal Syndrome in Response to Exertional Heat Stress. Int. J. Sport Nutr. Exerc. Metab. 2025, 35, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, S.K.; Costa, R.J.S. Case Study: Applying a low FODMAP dietary intervention to a female ultra-endurance runner with irritable bowel syndrome during a multi-stage ultra-marathon. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 61–67. [Google Scholar] [CrossRef]
- Gaskell, S.K.; Rauch, C.; Costa, R.J.S. Gastrointestinal assessment and management procedures for exercise-associated gastrointestinal symptoms. Aspetar Sports Med. J. 2021, 10, 36–44. [Google Scholar]
- Gaskell, S.K.; Rauch, C.; Costa, R.J.S. Gastrointestinal assessment and therapeutic intervention for the management of exercise-associated gastrointestinal symptoms: A case series translational and professional practice approach. Front. Physiol. 2021, 12, 719142. [Google Scholar] [CrossRef]
- Snipe, R.M.J.; Costa, R.J.S. Does the temperature of water ingested during exertional-heat stress influence gastrointestinal injury, symptoms, and systemic inflammatory profile? J. Sci. Med. Sport. 2018, 21, 771–776. [Google Scholar] [CrossRef]
- Maughan, R.J.; Leiper, J.B.; McGaw, B.A. Effects of exercise intensity on absorption of ingested fluids in man. Exp. Physiol. 1990, 75, 419–421. [Google Scholar] [CrossRef]
- Gaskell, S.K.; Snipe, R.M.J.; Costa, R.J.S. Test-Retest Reliability of a Modified Visual Analog Scale Assessment Tool for Determining Incidence and Severity of Gastrointestinal Symptoms in Response to Exercise Stress. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Mailing, L.J.; Allen, J.M.; Buford, T.W.; Fields, C.J.; Woods, J.A. Exercise and the gut microbiome: A review of the evidence, potential mechanisms, and implications for human health. Exerc. Sport. Sci. Rev. 2019, 47, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.J.S.; Snipe, R.M.J.; Kitic, C.M.; Gibson, P.R. Systematic review: Exercise-induced gastrointestinal syndrome—Implications for health and intestinal disease. Aliment. Pharmacol. Ther. 2017, 46, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.J.S.; Gill, S.K.; Hankey, J.; Wright, A.; Marczak, S. Perturbed energy balance and hydration status in ultra-endurance runners during a 24 h ultra-marathon. Br. J. Nutri. 2014, 112, 428–437. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Z.; Hu, B.; Huang, W.; Yuan, C.; Zou, L. Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Front. Microbiol. 2018, 9, 765. [Google Scholar] [CrossRef]
- Cinca-Morros, S.; Alvarez-Herms, J. The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventative Strategy to Improve Heat Tolerance and Acclimatization. Microorganisms 2024, 12, 1160. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Gaskell, S.K.; McCubbin, A.J.; Snipe, R.M.J. Exertional-heat stress-associated gastrointestinal perturbations during olympic sports: Management strategies for athletes preparing and competing in the 2020 Tokyo olympic games. Temperature 2020, 7, 58–88. [Google Scholar] [CrossRef]
- Fontana, F.; Longhi, G.; Tarracchini, C.; Mancabelli, L.; Lugli, G.A.; Alessandri, G.; Turroni, F.; Milani, C.; Ventura, M. The human gut microbiome of athletes: Metagenomic and metabolic insights. Microbiome 2023, 11, 27. [Google Scholar] [CrossRef]
- Ghaffar, T.; Ubaldi, F.; Volpini, V.; Valeriani, F.; Spica, V.R. The Role of Gut Microbiota in Different Types of Physical Activity and Their Intensity: Systematic Review and Meta-Analysis. Sports 2024, 12, 8. [Google Scholar] [CrossRef]
- Wosinska, L.; Cotter, P.D.; O’Sullivan, O.; Guinane, C. The Potential Impact of Probiotics on the Gut Microbiome of Athletes. Nutrients 2019, 11, 2270. [Google Scholar] [CrossRef]
- Barton, W.; Penney, N.C.; Cronin, O.; Garcia-Perez, I.; Molloy, M.; Holmes, E.; Shanahan, F.; Cotter, P.D.; O’Sullivan, O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018, 67, 625–633. [Google Scholar] [CrossRef]
- O’Donovan, C.M.; Madigan, S.M.; Garcia-Perez, I.; Rankin, A.; O’Sullivan, O.; Cotter, P.D. Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes. J. Sci. Med. Sport 2020, 23, 63–68. [Google Scholar] [CrossRef]
- Perez-Prieto, I.; Plaza-Florido, A.; Ubago-Guisado, E.; Ortega, F.B.; Altmae, S. Physical activity, sedentary behaviour and microbiome: A systematic review and meta-analysis. J. Sci. Med. Sport 2024, 27, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.M.; Bautista, E.J.; Nguyen, H.; Hanson, B.M.; Chen, L.; Lek, S.H.; Sodergren, E.; Weinstock, G.M. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome 2017, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Barton, W.; Cronin, O.; Garcia-Perez, I.; Whiston, R.; Holmes, E.; Woods, T.; Molloy, C.B.; Molloy, M.G.; Shanahan, F.; Cotter, P.D.; et al. The effects of sustained fitness improvement on the gut microbiome: A longitudinal, repeated measures case-study approach. Transl. Sports Med. 2021, 4, 174–192. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.T.O.; O’Sullivan, O.; Claesson, M.J.; Cotter, P.D. The Athlete Gut Microbiome and its Relevance to Health and Performance: A Review. Sports. Med. 2022, 52, 119–128. [Google Scholar] [CrossRef]
- Kostic, A. Metagenomic and Functional Analysis of Athletes Identify an Exercise-Promoting Microbiome. Diabetes 2018, 67, 2251-PUB. [Google Scholar] [CrossRef]
- Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Tito, R.Y.; Joossens, M.; Raes, J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 2016, 65, 57–62. [Google Scholar] [CrossRef]
- Leite, G.G.S.; Weitsman, S.; Parodi, G.; Celly, S.; Sedighi, R.; Sanchez, M.; Morales, W.; Villanueva-Millan, M.J.; Barlow, G.M.; Mathur, R.; et al. Mapping the Segmental Microbiomes in the Human Small Bowel in Comparison with Stool: A REIMAGINE Study. Dig. Dis. Sci. 2020, 64, 2595–2604. [Google Scholar] [CrossRef]
- Martinez-Guryn, K.; Leone, V.; Chang, E.B. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe 2019, 26, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Gasaly, N.; de Vos, P.; Hermoso, M.A. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Sec. Mucosal. Immun. 2021, 12, 658354. [Google Scholar] [CrossRef] [PubMed]
- Bellali, S.; Lagier, J.C.; Million, M.; Anani, H.; Haddad, G.; Francis, R.; Yimagou, E.K.; Khelaifia, S.; Levasseur, A.; Raoult, D.; et al. Running after ghosts: Are dead bacteria the dark matter of the human gut microbiota? Gut. Microbes 2021, 13, 1897208. [Google Scholar] [CrossRef] [PubMed]
- Yangyan, C.; Yilin, Z.; Chunping, Y. Research Progress on the Impact of Gut Microbial “Dark Matter” and Dietary Nutrition on Human Health. Sci. Technol. Food Ind. 2023, 44, 474–482. [Google Scholar]
- Sales, K.M.; Reimer, R. Unlocking a novel determinant of athletic performance: The role of the gut microbiota, short-chain fatty acids, and “biotics” in exercise. J. Sport Health Sci. 2023, 12, 36–44. [Google Scholar] [CrossRef]
- Bongiovanni, T.; Yin, M.O.L.; Heaney, L.M. The Athlete and Gut Microbiome: Short-chain Fatty Acids as Potential Ergogenic Aids for Exercise and Training. Int. J. Sports Med. 2021, 42, 1143–1158. [Google Scholar]
- Cheng, S.C.; Chang, C.; Chen, Y.C.; Gojobori, T.; Chiu, P.K. Human gut microbiome determining athletes’ performance: An insight from genomic analysis. Ecol. Genet. Genom. 2025, 34, 100327. [Google Scholar] [CrossRef]
- Charlesson, B.; Jones, J.; Abbiss, C.; Peeling, P.; Watts, S.; Christophersen, C.T. Training load influences gut microbiome of highly trained rowing athletes. J. Int. Soc. Sports Nutr. 2025, 22, 2507952. [Google Scholar] [CrossRef]
- Henningsen, K.; Henry, R.; Gaskell, S.K.; Alcock, R.; Mika, A.; Rauch, C.; Cheuvront, S.N.; Blazy, P.; Kenefick, R.; Costa, R.J. Exertional heat stress promotes the presence of bacterial DNA in plasma: A counterbalanced randomised controlled trial. J. Sci. Med. Sport 2024, 27, 610–617. [Google Scholar] [CrossRef]
- Colbey, C.; Cox, A.; Zhang, P.; Cripps, A.; Pyne, D.; Vlahovich, N.; Hughes, D.; Waddington, G.; Drew, M.; West, N. The gut microbiome and inflammatory profiling in athlete health. J. Sci. Med. Sport 2017, 20, e81. [Google Scholar] [CrossRef]


| Pre-Ultra-Marathon | Post-Ultra-Marathon | ∆ | |
|---|---|---|---|
| Faecal phylum | |||
| SEI | 0.171 (0.035) | 0.179 (0.032) | 0.008 (0.034) |
| Actinobacteriota | 8.808 (4.432) | 7.436 (5.896) | −1.372 (4.210) * |
| Bacteroidota | 17.119 (10.753) | 21.234 (9.285) | −4.115 (9.533) |
| Firmicutes | 70.364 (8.152) | 67.523 (7.607) | −2.841 (7.895) |
| Proteobacteria | 0.878 (2.231) | 1.604 (2.532) | 0.726 (2.244) |
| Verrucomicrobia | 2.827 (3.312) | 2.200 (2.754) | −0.627 (2.765) |
| Faecal family | |||
| SEI | 0.234 (0.032) | 0.233 (0.024) | −0.001 (0.039) |
| Bifidobacteriaceae | 5.073 (3.862) | 4.815 (4.708) | −0.258 (1.699) * |
| Coriobacteriaceae | 2.592 (2.409) | 1.994 (1.663) | −0.597 (0.763) |
| Bacteroidaceae | 10.490 (8.573) | 11.933 (7.631) | 1.443 (3.171) |
| Prevotellaceae | 2.696 (4.307) | 5.122 (8.546) | 2.425 (2.653) |
| Erysipelotrichaceae | 1.021 (1.901) | 1.113 (2.513) | 0.091 (0.849) |
| Lachnospiraceae | 36.141 (10.366) | 34.510 (9.168) | −5.8543 (3.405) |
| Oscillospiraceae | 2.356 (1.860) | 2.771 (2.196) | 0.414 (0.789) * |
| Ruminococcaceae | 18.790 (5.770) | 19.943 (7.182) | 1.152 (2.589) |
| Peptostreptococcaceae | 2.937 (4.154) | 1.352 (1.619) | −1.584 (0.900) |
| Akkermansiaceae | 2.927 (3.404) | 2.294 (2.897) | −0.633 (1.264) |
| Eggerthellaceae | 1.072 (1.020) | 0.684 (0.585) | −0.388 (0.290) |
| Barnesiellaceae | 1.035 (1.124) | 1.144 (1.066) | 0.109 (0.431) |
| Rikenellaceae | 1.264 (1.319) | 1.494 (1.390) | 0.229 (0.541) |
| Tannerellaceae | 1.067 (1.210) | 1.324 (1.072) | 0.257 (0.452) |
| Erysipelatoclostridiaceae | 2.495 (2.828) | 2.225 (2.965) | −0.270 (1.158) |
| Streptococcaceae | 1.635 (3.402) | 1.166 (1.226) | −0.468 (1.032) |
| Christensenellaceae | 1.552 (1.881) | 1.262 (1.496) | −0.289 (0.655) |
| Clostridiaceae | 1.581 (4.236) | 0.577 (1.270) | −1.003 (0.417) * |
| Monoglobaceae | 0.736 (0.612) | 0.741 (0.728) | 0.005 (0.265) * |
| Butyricicoccaceae | 0.642 (0.805) | 0.526 (0.416) | −0.115 (0.258) |
| Coprostanoligenes | 0.797 (0.674) | 0.717 (0.476) | −0.080 (0.207) |
| Veillonellaceae | 0.312 (0.547) | 0.860 (1.557) | 0.548 (0.446) |
| Enterobacteriaceae | 0.776 (2.351) | 1.419 (2.647) | 0.642 (1.001) |
| Faecal genus | |||
| SEI | 0.265 (0.021) | 0.264 (0.015) | 0.001 (0.017) |
| Bifidobacterium | 5.406 (4.039) | 5.144 (4.993) | −0.262 (1.781) |
| Bacteroides | 11.422 (9.543) | 12.852 (8.296) | 1.430 (3.507) |
| Agathobacter | 4.718 (3.835) | 5.431 (4.568) | 0.713 (1.654) |
| Anaerostipes | 3.188 (2.514) | 3.492 (3.210) | 0.304 (1.131) |
| Blautia | 13.810 (7.621) | 10.543 (4.801) | −3.267 (2.498) * |
| Fusicatenibacter | 2.923 (1.908) | 3.088 (2.641) | 0.164 (0.903) |
| Eubacterium hallii group | 2.890 (1.808) | 3.465 (2.054) | 0.575 (0.759) |
| Faecalibacterium | 11.224 (7.208) | 12.114 (5.194) | 0.890 (2.464) |
| Ruminococcus | 3.206 (2.626) | 3.574 (2.915) | 0.368 (1.088) |
| Subdoligranulum | 3.720 (1.434) | 22.761 (1.427) | −0.959 (0.561) * |
| Collinsella | 2.807 (2.621) | 2.120 (1.731) | −0.686 (0.871) |
| Adlercreutzia | 0.351 (0.565) | 0.230 (0.298) | −0.121 (0.177) |
| Barnesiella | 1.090 (1.194) | 1.204 (1.150) | 0.113 (0.113) |
| Prevotella | 1.909 (3.724) | 4.681 (9.559) | 2.772 (2.845) |
| Alistipes | 1.251 (1.363) | 1.487 (1.545) | 0.235 (0.571) |
| Parabacteroides | 1.160 (1.336) | 1.413 (1.134) | 0.253 (0.486) |
| Erysipelotrichaceae UCG-003 | 1.798 (2.650) | 1.561 (3.024) | −0.236 (1.115) |
| Holdemanella | 0.782 (1.936) | 0.862 (2.655) | 0.079 (0.911) |
| Streptococcus | 1.719 (3.549) | 1.218 (1.262) | −0.501 (1.044) |
| Christensenellaceae | 1.704 (2.121) | 1.385 (1.701) | −0.318 (0.754) |
| Clostridium | 1.780 (4.856) | 0.650 (1.479) | −1.129 (1.408) |
| Lachnospiraceae | 0.715 (0.605) | 0.877 (0.666) | 0.162 (0.249) |
| Coprococcus | 2.129 (1.676) | 2.002 (1.420) | −0.126 (0.609) |
| Dorea | 2.094 (0.966) | 2.143 (1.035) | 0.048 (0.392) |
| Lachnospiraceae ND3007 | 0.606 (1.066) | 0.700 (1.019) | 0.093 (0.409) |
| Roseburia | 0.786 (0.723) | 0.979 (0.969) | 0.192 (0.335) |
| Ruminococcus gauvreauii group | 0.754 (0.909) | 0.682 (0.882) | −0.072 (0.351) |
| Ruminococcus torques group | 1.140 (0.930) | 1.017 (1.035) | −0.122 (0.386) |
| Monoglobus | 0.784 (0.636) | 0.791 (0.762) | 0.007 (0.275) |
| Butyricicoccus | 0.667 (0.863) | 0.529 (0.437) | −0.139 (0.268) |
| NK4A214 group | 0.740 (0.944) | 0.868 (1.132) | 0.128 (0.409) |
| UCG-002 | 0.801 (0.899) | 0.916 (0.922) | 0.115 (0.357) |
| CAG-352 | 0.906 (2.785) | 0.752 (2.620) | −0.154 (1.060) |
| Incertae Sedis | 0.753 (0.900) | 1.792 (5.083) | 1.039 (1.431) |
| Eubacterium Coprostanoligenes | 0.865 (0.735) | 0.777 (0.522) | −0.088 (0.250) |
| Intestinibacter | 1.071 (2.035) | 0.523 (0.705) | −0.548 (0.597) |
| Romboutsia | 1.665 (3.400) | 0.666 (0.848) | −0.999 (0.972) |
| Phascolarctobacterium | 0.347 (0.421) | 0.502 (0.498) | 0.154 (0.181) |
| Dialister | 0.322 (0.591) | 0.715 (1.333) | 0.393 (0.404) |
| Escherichia-Shigella | 0.811 (2.446) | 0.954 (1.975) | 0.143 (0.872) |
| Akkermansia | 3.155 (3.662) | 2.514 (3.286) | −0.641 (1.364) |
| Ex-GIS Incidence (%) | Ex-GIS (Severity #) | |
|---|---|---|
| Total-GIS | 100 | 8 (2-48) |
| Upper-GIS | 92 | 4 (1-27) |
| Belching | 92 | 1 (1-5) |
| Heartburn (gastro-oesophageal reflux) | 31 | 1 (1-8) |
| Upper abdominal bloating | 46 | 1 (1-8) |
| Upper abdominal pain | 31 | 0 (1-4) |
| Urge to regurgitate | 38 | 1 (1-10) |
| Regurgitation | 8 | 0 (10-10) |
| Projectile vomiting | 15 | 1 (10-10) |
| Lower-GIS | 92 | 4 (1-25) |
| Flatulence | 77 | 2 (1-7) |
| Lower abdominal bloating | 54 | 1 (1-7) |
| Urge to defecate | 54 | 1 (3-10) |
| Left intestinal cramps | 15 | 0 (3-4) |
| Right intestinal cramps | 23 | 0 (2-5) |
| Defecation (loose stools) | 8 | 0 (10-10) |
| Defecation (diarrhoea) | 0.00 | 0 (0-0) |
| Defecation (bloody stools) | 0.00 | 0 (0-0) |
| Nausea | 46 | 1 (1-10) |
| Dizziness | 38 | 1 (1-9) |
| Stitch (acute transient abdominal pain) | 38 | 1 (1-8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henningsen, K.; Gaskell, S.K.; Young, P.; Mika, A.; Henry, R.; Costa, R.J.S. The Impact of Ultra-Marathon Running on the Gut Microbiota as Determined by Faecal Bacterial Profiling, and Its Relationship with Exercise-Associated Gastrointestinal Symptoms: An Exploratory Investigation. Nutrients 2025, 17, 3275. https://doi.org/10.3390/nu17203275
Henningsen K, Gaskell SK, Young P, Mika A, Henry R, Costa RJS. The Impact of Ultra-Marathon Running on the Gut Microbiota as Determined by Faecal Bacterial Profiling, and Its Relationship with Exercise-Associated Gastrointestinal Symptoms: An Exploratory Investigation. Nutrients. 2025; 17(20):3275. https://doi.org/10.3390/nu17203275
Chicago/Turabian StyleHenningsen, Kayla, Stephanie K. Gaskell, Pascale Young, Alice Mika, Rebekah Henry, and Ricardo J. S. Costa. 2025. "The Impact of Ultra-Marathon Running on the Gut Microbiota as Determined by Faecal Bacterial Profiling, and Its Relationship with Exercise-Associated Gastrointestinal Symptoms: An Exploratory Investigation" Nutrients 17, no. 20: 3275. https://doi.org/10.3390/nu17203275
APA StyleHenningsen, K., Gaskell, S. K., Young, P., Mika, A., Henry, R., & Costa, R. J. S. (2025). The Impact of Ultra-Marathon Running on the Gut Microbiota as Determined by Faecal Bacterial Profiling, and Its Relationship with Exercise-Associated Gastrointestinal Symptoms: An Exploratory Investigation. Nutrients, 17(20), 3275. https://doi.org/10.3390/nu17203275

