Ashwagandha Does Not Enhance the Effect of High-Intensity Interval Training on Selected Energy Metabolism Parameters in Young Healthy Men
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Supplementation
2.3. Nutritional Status
2.4. Training Protocol
2.5. Body Composition
2.6. Blood Sampling and Diagnostics
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PPM | Basal metabolism |
HIIT | High-intensity interval training |
PAL | Physical Activity Level |
CPM | Total energy requirements |
TBW | Total body water |
MM | Muscle mass |
FM | Fat mass |
BIA | Body Impedance Analysis |
tChol | Total cholesterol |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
VLDL | Very low-density lipoprotein |
FFA | Free fat acids |
HPLC | High Performance Liquid Chromatography |
ET | Exercise training |
References
- Xu, S.; Cui, X.; Su, W.; Shang, X.; Tao, M.; Wang, J.; Liu, C.; Sun, Y.; Yun, H. Comparative effects of high-intensity interval training and moderate-intensity continuous training on weight and metabolic health in college students with obesity. Sci. Rep. 2024, 14, 16558. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Chueh, T.Y.; Huang, C.J.; Kao, S.C.; Hillman, C.H.; Chang, Y.K.; Hung, T.M. Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. J. Sports Sci. 2021, 39, 10–22. [Google Scholar] [CrossRef]
- Alansare, A.; Alford, K.; Lee, S.; Church, T.; Jung, H.C. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Heart Rate Variability in Physically Inactive Adults. Int. J. Environ. Res. Public Health 2018, 15, 1508. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, H.; Luan, Z.; Zhao, Z.; Shen, B. Acute Effect of High-Intensity Interval Cycling on Carotid Arterial Stiffness and Hemodynamics. Biomed. Res. Int. 2019, 2019, 6260286. [Google Scholar] [CrossRef]
- Naves, J.P.A.; Rebelo, A.C.S.; Silva, L.R.B.; Silva, M.S.; Ramirez-Campillo, R.; Ramírez-Vélez, R.; Gentil, P. Cardiorespiratory and perceptual responses of two interval training and a continuous training protocol in healthy young men. Eur. J. Sport Sci. 2019, 19, 653–660. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Hartman, M.E.; Ladwig, M.A. A Methodological Checklist for Studies of Pleasure and Enjoyment Responses to High-Intensity Interval Training: Part I. Participants and Measures. J. Sport Exerc. Psychol. 2023, 45, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Ekkekakis, P.; Hartman, M.E.; Ladwig, M.A. A Methodological Checklist for Studies of Pleasure and Enjoyment Responses to High-Intensity Interval Training: Part II.; Intensity, Timing of Assessments, Data Modeling, and Interpretation. J. Sport Exerc. Psychol. 2023, 45, 92–109. [Google Scholar] [CrossRef]
- Wewege, M.; van den Berg, R.; Ward, R.E.; Keech, A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and bese adults: A systematic review and meta-analysis. Obes. Rev. 2017, 18, 635–646. [Google Scholar] [CrossRef]
- Zhu, X.; Jiao, J.; Liu, Y.; Li, H.; Zhang, H. The Release of Lipolytic Hormones during Various High-Intensity Interval and Moderate-Intensity Continuous Training Regimens and Their Effects on Fat Loss. J. Sports Sci. Med. 2024, 23, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Rousset, S.; Pereira, B.; Traore, A.; De Pradel Del Amaze, P.; Boirie, Y.; Duclos, M.; Boisseau, N. High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab. 2016, 42, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Hov, H.; Eithun, G.; Wang, E.; Helgerud, J. Aerobic high-intensity interval training and maximal strength training in patients with unspecific musculoskeletal disorders improve VO2peak and maximal strength more than moderate training. Eur. J. Sport Sci. 2024, 24, 1010–1020. [Google Scholar] [CrossRef]
- Vaidya, V.G.; Naik Gayatri Ganu, N.N.; Parmar, V.; Jagtap, S.; Saste, S.; Bhatt, A.; Mulay, V.; Girme, A.; Modi, S.J.; Hingorani, L. Clinical pharmacokinetic evaluation of Withania somnifera (L.) Dunal root extract in healthy human volunteers: A non-randomized, single dose study utilizing UHPLC-MS/MS analysis. J. Ethnopharmacol. 2024, 25, 117603. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, P.; Malinowska, M.; Ignacyk, M.; Szustowski, P.; Nowak, J.; Pesta, K.; Szelag, M.; Szklanny, D.; Judasz, E.; Kaczmarek, G.; et al. Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review. Pharmaceutics 2023, 15, 1057. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Devi, I.; Sharma, B.; Sharma, P. Ashwagandha: A Review of its Phytochemistry, Mechanisms of Action, and Clinical Applications. Int. J. Pharm. Sci. 2025, 3, 1699–1710. [Google Scholar] [CrossRef]
- Khan, B.; Ahmad, S.F.; Bani, S.; Kaul, A.; Suri, K.A.; Satti, N.K.; Athar, M.; Qazi, G.N. Augmentation and proliferation of T lymphocytes and Th-1 cytokines by Withania somnifera in stressed mice. Int. Immunopharmacol. 2006, 6, 1394–1403. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Bhattacharya, A.; Sairam, K.; Ghosal, S. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine 2000, 7, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.; Srivastav, A.K.; Tapas, K.; Sur, T.P.; Chaudhuri, S.; Wang, Y.; Biswas, T.K. Effects of Withania somnifera Extract in Chronically Stressed Adults: A Randomized Controlled Trial. Nutrients 2024, 16, 1293. [Google Scholar] [CrossRef]
- Smith, S.J.; Lopresti, A.L.; Fairchild, T.J. Exploring the efficacy and safety of a novel standardized ashwagandha (Withania somnifera) root extract (Witholytin®) in adults experiencing high stress and fatigue in a randomized, double-blind, placebo-controlled trial. J. Psychopharmacol. 2023, 37, 1091–1104. [Google Scholar] [CrossRef]
- Chandrasekhar, K.; Kapoor, J.; Anishetty, S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J. Psychol. Med. 2012, 34, 255–262. [Google Scholar] [CrossRef]
- Guo, S.; Rezaei, M.J. The benefits of ashwagandha (Withania somnifera) supplements on brain function and sports performance. Front. Nutr. 2024, 11, 1439294. [Google Scholar] [CrossRef]
- Puttaswamy, N.; Singh, G.; Mayachari, A.; Parameswaran, M.; Kudiganti, V. Efficacy of Ashwagandha Extract Formulation (ASVAMAN®) on Improvement of Energy and Endurance: A Randomized, Double-blind, Placebo-controlled Clinical Study in Healthy Adults. Eur. J. Med. Health Sci. 2025, 7, 88–95. [Google Scholar] [CrossRef]
- Ziegenfuss, T.M.; Kedia, A.W.; Sandrock, J.E.; Raub, B.J.; Kerksick, C.M.; Lopez, H.L. Effects of an Aqueous Extract of Withania somnifera on Strength Training Adaptations and Recovery: The STAR Trial. Nutrients 2018, 10, 1807. [Google Scholar] [CrossRef] [PubMed]
- Durg, S.; Bavage, S.; Shivaram, S.B. Withania somnifera (Indian ginseng) in diabetes mellitus: A systematic review and meta-analysis of scientific evidence from experimental research to clinical application. Phytother. Res. 2020, 34, 1041–1059. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, J.; Rosenberg, R.; Smotrich, A.; Hanuš, L.; Bernstein, N. Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry 2015, 116, 283–289. [Google Scholar] [CrossRef]
- Wiciński, M.; Fajkiel-Madajczyk, A.; Kurant, Z.; Liss, S.; Szyperski, P.; Szambelan, M.; Gromadzki, B.; Rupniak, I.; Słupski, M.; Sadowska-Krawczenko, I. Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes—A Review. Nutrients 2024, 16, 2481. [Google Scholar] [CrossRef]
- Sharma, A.K.; Basu, I.; Singh, S. Efficacy and Safety of Ashwagandha Root Extract in Subclinical Hypothyroid Patients: A Double-Blind, Randomized Placebo-Controlled Trial. J. Altern. Complement. Med. 2018, 24, 243–248. [Google Scholar] [CrossRef]
- Sprengel, M.; Laskowski, R.; Jost, Z. Withania somnifera (Ashwagandha) supplementation: A review of its mechanisms, health benefits, and role in sports performance. Nutr. Metab. 2025, 22, 9. [Google Scholar] [CrossRef]
- Uschner, D.; Schindler, D.; Hilgers, R.D.; Heussen, N. RandomizeR: An R package for the assessment and implementation of randomization in clinical trials. J. Stat. Softw. 2018, 85, 1–22. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 41–247. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; World Health Organization; United Nations University. Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; FAO Food and Nutrition Technical Report Series No. 1; FAO: Rome, Italy, 2001; Available online: https://www.fao.org/3/y5686e/y5686e00.htm (accessed on 10 September 2025).
- Driller, M.W.; Fell, J.W.; Gregory, J.R.; Shing, C.M.; Williams, A.D. The effects of high-intensity interval training in well-trained rowers. Int. J. Sports Physiol. Perform. 2009, 4, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Jówko, E.; Klusiewicz, A.; Rębiś, K.; Długołęcka, B.; Charmas, M.; Cieśliński, I. Effects of an 8-week high intensity interval training (HIIT) and ashwagandha supplementation on aerobic capacity, muscle oxygenation and haematological parameters in healthy men. Biol. Sport 2025, 42, 129–139. [Google Scholar] [CrossRef]
- Erdfelder, E.; Faul, F.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, E.; Stoś, K.; Woźniak, A.; Mojska, H. Normy Żywienia dla Populacji Polski–Aktualizacja 2024; Narodowy Instytut Zdrowia Publicznego–Państwowy Zakład Higieny: Warsaw, Poland, 2024. Available online: https://www.pzh.gov.pl/wp-content/uploads/2025/01/normy-02.01.pdf (accessed on 12 October 2025). (In Polish)
- Jak Czytać Pomiary? Available online: https://www.tanitapolska.pl/baza-wiedzy/analiza-wynikow-pomiarowych?utm_source=chatgpt.com (accessed on 12 October 2025). (In Polish).
- Solnica, B.; Sygitowicz, G.; Sitkiewicz, D.; Jóźwiak, J.; Kasperczyk, S.; Broncel, M.; Wolska, A.; Odrowąż-Sypniewska, G.; Banach, M. Guidelines of the Polish Society of Laboratory Diagnostics and the Polish Lipid Association on laboratory diagnostics of lipid metabolism disorders. Arch. Med. Sci. 2024, 20, 357–374. [Google Scholar] [CrossRef]
- Tsirigkakis, S.; Mastorakos, G.; Koutedakis, Y.; Mougios, V.; Nevill, A.M.; Pafili, Z.; Bogdanis, G.C. Effects of Two Workload-Matched High-Intensity Interval Training Protocols on Regional Body Composition and Fat Oxidation in Obese Men. Nutrients 2021, 13, 1096. [Google Scholar] [CrossRef] [PubMed]
- Poon, E.T.; Siu, P.; Wongpipit, W.; Gibala, M.; Heung-Sang Wong, S. Alternating high-intensity interval training and continuous training is efficacious in improving cardiometabolic health in obese middle-aged men. J. Exerc. Sci. 2022, 20, 40–47. [Google Scholar] [CrossRef]
- D’Alleva, M.; Vaccari, F.; Graniero, F.; Giovanelli, N.; Floreani, M.; Fiori, F.; Marinoni, M.; Parpinel, M.; Lazzer, S. Effects of 12-week combined training versus high intensity interval training on cardiorespiratory fitness, body composition and fat metabolism in obese male adults. J. Exerc. Sci. 2023, 21, 193–201. [Google Scholar] [CrossRef]
- Atashak, S.; Stannard, S.R.; Daraei, A.; Soltani, M.; Saeidi, A.; Moradi, F.; Laher, I.; Hackney, A.C.; Zouhal, H. High-intensity Interval Training Improves Lipocalin-2 and Omentin-1 Levels in Men with Obesity. Int. J. Sports Med. 2022, 43, 328–335. [Google Scholar] [CrossRef]
- Mendelson, M.; Chacaroun, S.; Baillieul, S.; Doutreleau, S.; Guinot, M.; Wuyam, B.; Tamisier, R.; Pépin, J.L.; Estève, F.; Tessier, D.; et al. Effects of high intensity interval training on sustained reduction in cardiometabolic risk associated with overweight/obesity. J. Exerc. Sci. Fit. 2022, 20, 172–181. [Google Scholar] [CrossRef]
- Berglund, I.; Vesterbekkmo, E.K.; Retterstøl, K.; Anderssen, S.A.; Fiatarone Singh, M.A.; Helge, J.W.; Lydersen, S.; Wisløff, U.; Stensvold, D. The Long-term Effect of Different Exercise Intensities on High-Density Lipoprotein Cholesterol in Older Men and Women Using the Per Protocol Approach: The Generation 100 Study. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 859–871. [Google Scholar] [CrossRef]
- Montealegre Suárez, D.P.; Ramos González, E.P.; Romaña Cabrera, L.F. Effects of high intensity intermittent training on lipid profile and blood glucose overweight/obese university students. Rev. Cuid. 2023, 13, 2624. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, M.; Szydlarska, D.; Bar-Andziak, D. Adiponectin, insulin resistance and atherosclerosis. Endokrynol. Otyłość Zaburzenia Przemiany Mater. 2011, 7, 186–191. [Google Scholar]
- Havel, P.J. Section IV: Lipid Modulators of Islet Function Update on Adipocyte Hormones Regulation of Energy Balance and Carbohydrate/Lipid Metabolism. Diabetes 2004, 53, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Lehrke, M.; Broedl, U.C.; Biller-Friedmann, I.M.; Vogeser, M.; Henschel, V.; Nassau, K.; Göke, B.; Kilger, E.; Parhofer, K.G. Serum concentrations of cortisol, interleukin 6, leptin and adiponectin predict stress induced insulin resistance in acute inflammatory reactions. Crit. Care 2008, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.; Abdalla, I. Therapeutic potential of adiponectin in prediabetes: Strategies, challenges, and future directions. Ther. Adv. Endocrinol. Metab. 2024, 15, 20420188231222371. [Google Scholar] [CrossRef]
- Sepidarkish, M.; Rezamand, G.; Qorbani, M.; Heydari, H.; Estêvão, M.D.; Omran, D.; Morvaridzadeh, M.; Roffey, D.M.; Farsi, F.; Ebrahimi, S.; et al. Effect of omega-3 fatty acids supplementation on adipokines: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 7561–7575. [Google Scholar] [CrossRef]
- Lin, F.; Liu, Y.; Rudeski-Rohr, T.; Dahir, N.; Calder, A.; Gilbertson, T.A. Adiponectin Enhances Fatty Acid Signaling in HumanTaste Cells by Increasing Surface Expression of CD36. Int. J. Mol. Sci. 2023, 24, 5801. [Google Scholar] [CrossRef]
- Tang, Y.-H.; Wang, Y.-H.; Chen, C.-C.; Chan, C.-J.; Tsai, F.-J.; Chen, S.-Y. Genetic and Functional Effects of Adiponectin in Type 2 Diabetes Mellitus Development. Int. J. Mol. Sci. 2022, 23, 13544. [Google Scholar] [CrossRef]
- Tiwari, R.; Singh, N.; Singh, S.; Bajpai, M.; Verma, S. Interplay of Adiponectin with Glycemic and Metabolic Risk Metrics in Patients with Diabetes. Cureus 2024, 16, 70543. [Google Scholar] [CrossRef]
- Mallardo, M.; Tommasini, E.; Missaglia, S.; Pecci, C.; Rampinini, E.; Bosio, A.; Sartorio, A. Effects of exhaustive exercise on adiponectin and high-molecular-weight oligomer levels in male amateur athletes. Biomedicines 2024, 12, 1743. [Google Scholar] [CrossRef]
- Ouerghi, N.; Ben Fradj, M.K.; Duclos, M.; Bouassida, A.; Feki, M.; Weiss, K.; Tabka, Z. Effects of high-intensity interval training on selected adipokines and cardiometabolic risk markers in normal-weight and overweight/obese young males—A pre-post test trial. Biology 2022, 11, 853. [Google Scholar] [CrossRef]
- Romere, C.; Duerrschmid, C.; Bournat, J.; Constable, P.; Jain, M.; Xia, F.; Saha, P.K.; Del Solar, M.; Zhu, B.; York, B.; et al. Asprosin, a Fasting-Induced Glucogenic Protein. Hormone Cell 2016, 165, 566–579. [Google Scholar] [CrossRef]
- Yuan, M.; Li, W.; Zhu, Y.; Yu, B.; Wu, J. Asprosin: A Novel Player in Metabolic Diseases. Front. Endocrinol. 2020, 11, 64. [Google Scholar] [CrossRef]
- Kader, U.; Aydin, S. Saliva and Blood Asprosin Hormone Concentration Associated with Obesity. Int. J. Endocrinol. 2019, 2019, 2521096. [Google Scholar] [CrossRef]
- Ceylan, H.İ.; Öztürk, M.E.; Öztürk, D.; Silva, A.F.; Albayrak, M.; Saygın, Ö.; Eken, Ö.; Clemente, F.M.; Nobari, H. Acute effect of moderate and high-intensity interval exercises on asprosin and BDNF levels in inactive normal weight and obese individuals. Sci. Rep. 2023, 13, 7040. [Google Scholar] [CrossRef]
- Rahimi, M.R.; Symonds, M.E.; Faraji, H.; Golpasandi, H. Systematic review and meta-analysis of the effect of exercise training on asprosin in randomized controlled trials. Physiol. Rep. 2025, 13, 70392. [Google Scholar] [CrossRef] [PubMed]
- Kantorowicz, M.; Szymura, J.; Szygula, Z.; Kusmierczyk, J.; Maciejczyk, M.; Wiecek, M. Nordic walking at maximal fat oxidation intensity decreases circulating asprosin and visceral obesity in women with metabolic disorders. Fron. Physiol. 2021, 12, 726783. [Google Scholar] [CrossRef]
- Suder, A.; Makiel, K.; Targosz, A.; Maciejczyk, M.; Kosowski, P.; Haim, A. Exercise-induced effects on asprosin and indices of atherogenicity and insulin resistance in males with metabolic syndrome: A randomized controlled trial. Sci. Rep. 2024, 14, 985. [Google Scholar] [CrossRef]
- Hasanah, U.; Rejeki, P.S.; Wungu, C.D.K.; Pranoto, A.; Izzatunnisa, N.; Rahmanto, I.; Halim, S. High-intensity combination exercise has the highest effect on increasing serum irisin and interleukin 6 levels in women with obesity. J. Basic Clin. Physiol. Pharmacol. 2024, 35, 71–78. [Google Scholar] [CrossRef]
- Küçük, H.; Soyler, M.; Ceylan, T.; Ceylan, L.; Şahin, F.N. Effects of acute and chronic high-intensity interval training on serum irisin, BDNF and apelin levels in male soccer referees. J. Men’s Health 2024, 20, 120–125. [Google Scholar] [CrossRef]
- Adilakshmi, P.; Suganthi, V.; Rao, K.S.; Mahendran, K.B. Effect of High-Intensity Resistance Training Versus Endurance Training on Irisin and Adipomyokine Levels in Healthy Individuals: An 8-Week Interventional Study. Cureus 2023, 15, 46483. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, G.R.M.; Hejazi, K.; Hofmeister, M. The Effect of Exercise Interventions on Irisin Level: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EXCLI J. 2022, 21, 524–539. [Google Scholar] [CrossRef]
- Torabi, A.; Reisi, J.; Kargarfard, M.; Mansourian, M. Differences in the Impact of Various Types of Exercise on Irisin Levels: A Systematic Review and Meta-Analysis. Int. J. Prev. Med. 2024, 15, 11. [Google Scholar] [CrossRef]
- Paoletti, I.; Coccurello, R. Irisin: A Multifaceted Hormone Bridging Exercise and Disease Pathophysiology. Int. J. Mol. Sci. 2024, 25, 13480. [Google Scholar] [CrossRef]
- Colaianni, G.; Cinti, S.; Colucci, S.; Grano, M. Irisin and musculoskeletal health. Ann. N. Y. Acad. Sci. 2017, 1402, 5–9. [Google Scholar] [CrossRef]
- Estell, E.G.; Le, P.T.; Vegting, Y.; Kim, H.; Wrann, C.; Bouxsein, M.L.; Nagano, K.; Baron, R.; Spiegelman, B.M.; Rosen, C.J. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo. eLife 2020, 9, 58172. [Google Scholar] [CrossRef]
- Peng, Q.; Ding, R.; Wang, X.; Yang, P.; Jiang, F.; Chen, X. Effect of Irisin on Pressure Overload-Induced Cardiac Remodeling. Arch. Med. Res. 2021, 52, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Sierawska, O.; Sawczuk, M. Interaction between Selected Adipokines and Musculoskeletal and Cardiovascular Systems: A Review of Current Knowledge. Int. J. Mol. Sci. 2023, 24, 17287. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, D.A.; Moreno, J.P.; Gho, C.; Petro, J.L.; Odriozola-Martínez, A.; Kreider, R.B. Effects of Ashwagandha (Withania somnifera) on Physical Performance: Systematic Review and Bayesian Meta-Analysis. J. Funct. Morphol. Kinesiol. 2021, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Gupta, S.K.; Pathak, A.K. A Double-Blind, Randomized, Placebo-Controlled Trial on the Effect of Ashwagandha (Withania somnifera Dunal.) Root Extract in Improving Cardiorespiratory Endurance and Recovery in Healthy Athletic Adults. J. Ethnopharmacol. 2021, 272, 113929. [Google Scholar] [CrossRef]
- Raut, A.; Tripathi, R.; Marathe, P.A.; Uchil, D.A.; Agashe, S.; Rege, N.; Vaidya, A.B. Evaluation of Withania somnifera (L.) Dunal (Ashwagandha) on Physical Performance, Biomarkers of Inflammation, and Muscle Status in Healthy Volunteers: A Randomized, Double-Blind, Placebo-Controlled Study. Cureus 2024, 16, e68940. [Google Scholar] [CrossRef]
- Wankhede, S.; Langade, D.; Joshi, K.; Sinha, S.R. Bhattacha Examining the effect of Withania somnifera supplementation on muscle strength and recovery: A randomized controlled tried. J. Int. Soc. Sports Nutr. 2015, 12, 43. [Google Scholar] [CrossRef] [PubMed]
Week 1st–2nd | Week 3rd–4th | Week 5th–6th | Week 7th–8th |
---|---|---|---|
5 series of 1.5 min. | 5 series of 1.5 min. | 6 series of 1.5 min. | 7 series of 1.5 min. |
75–80% Pmax 70 W 1.5 min. breaks | 85% Pmax 70 W 1.5 min. breaks | 90% Pmax 70 W 1.5 min. breaks | 95% Pmax 70 W 1.5 min. breaks |
Parameter | Manufacturer | Method | Sensitivity (Detection Limit) |
---|---|---|---|
tChol | Alpha Diagnostics (Warsaw, Poland) | enzymatic colorimetric | 4 mg/dL |
HDL-chol | Alpha Diagnostics (Warsaw, Poland) | enzymatic colorimetric | 1.06 mg/dL |
LDL-chol | Spinreact (Girona, Spain) | enzymatic colorimetric | 1 mm/dL |
TG | Alpha Diagnostics (Warsaw, Poland) | enzymatic colorimetric | 2 mg/dL |
Adiponectin | Biorbyt (Cambridge, UK) | ELISA | 0.11 mg/L |
Asprosin | Biorbyt (Cambridge, UK) | ELISA | 0.15 ng/mL |
Irisin | Biorbyt (Cambridge, UK) | ELISA | 0.938 ng/mL |
Variable | Ashwagandha (n = 18) | Placebo (n = 20) |
---|---|---|
Age (years) | 20.3 ± 0.8 | 20.8 ± 1.8 |
Body height (cm) | 181.9 ± 6.3 | 182.8 ± 7.6 |
Body weight (kg) | 81.2 ± 9.6 | 79.2 ± 9.5 |
BMI (kg/m2) | 24.6 ± 2.7 | 23.7 ± 1.8 |
Component Time | Ashwagandha (n = 18) | Placebo (n = 20) |
---|---|---|
Protein (g) | ||
“term 1” | 131.5 ± 49.4 | 129.1 ± 42.0 |
“term 2” | 121.0 ± 44.8 | 128.4 ± 41.4 |
Carbohydrates (g) | ||
“term 1” | 334.4 ± 128.7 | 333.2 ± 112.8 |
“term 2” | 287.3 ± 119.1 | 333.2 ± 145.7 |
Fat (g) | ||
“term 1” | 77.0 ± 34.6 | 74.7 ± 35.4 |
“term 2” | 73.3 ± 31.3 | 73.5 ± 35.0 |
Fibre (g) | ||
“term 1” | 26.7 ± 12.9 | 27.8 ± 12.1 |
“term 2” | 23.2 ± 13.0 | 26.0 ± 11.5 |
Caloric intake (kcal) | ||
“term 1” | 2565.9 ± 825.7 | 2518.78 ± 779.1 |
“term 2” | 2377.1 ± 819.7 | 2472.8 ± 828.4 |
Component Time | Ashwagandha (n = 18) | Placebo (n = 20) |
---|---|---|
Body weight (kg) | ||
“term 1” | 81.2 ± 9.6 | 79.2 ± 9.5 |
“term 2” | 81.1 ± 9.4 | 79.3 ± 11.2 |
TBW (%) | ||
“term 1” | 61.8 ± 3.0 | 62.4 ± 3.2 |
“term 2” | 62.3 ± 3.0 | 62.5 ± 3.5 |
MM (%) | ||
“term 1” | 80.6 ± 4.0 | 81.4 ± 4.1 |
“term 2” | 81.1 ± 4.1 | 81.5 ± 4.5 |
FM (%) | ||
“term 1” | 15.6 ± 4.1 | 14.6 ± 4.9 |
“term 2” | 15.0 ± 4.5 | 14.8 ± 4.3 |
Component Time | Ashwagandha (n = 18) “Term 1” | Ashwagandha (n = 18) “Term 2” | Placebo (n = 20) “Term 1” | Placebo (n = 20) “Term 2” |
---|---|---|---|---|
tChol (mg/dL) | ||||
“pre” | 180.7 ± 18.0 | 168.5 ± 22.3 | 168.8 ± 23.7 | 161.7 ± 25.4 |
“post” | 204.8 ± 36.7 | 190.2 ± 30.3 | 189.6 ± 25.3 | 181. 2 ± 25.8 |
“post 24 h” | 186.5 ± 23.1 | 177.0 ± 26.0 | 175.1 ± 27.3 | 172.7 ± 25.2 |
HDL (mg/dL) | ||||
“pre” | 78.6 ± 15.0 | 71.6 ± 11.8 | 78.7 ± 17.1 | 71.4 ± 13.8 |
“post” | 83.3 ± 14.7 | 81.6 ± 16.3 | 80.8 ± 18.1 | 81.1 ± 17.4 |
“post 24 h” | 80.8 ± 14.0 | 75.3 ± 14.5 | 78.1 ± 15.6 | 77.6 ± 15.6 |
LDL (mg/dL) | ||||
“pre” | 132.3 ± 24.1 | 128.5 ± 29.8 | 120.1 ± 31.0 | 117.3 ± 31.7 |
“post” | 144.4 ± 35.9 | 135.0 ± 31.9 | 126.7 ± 33.1 | 123.8 ± 31.8 |
“post 24 h” | 137.1 ± 30.4 | 129.0 ± 29.2 | 126.0 ± 33.4 | 119.8 ± 27.7 |
TG (mg/dL) | ||||
“pre” | 104.6 ± 48.1 | 110.0 ± 43.1 | 107.5 ± 53.1 | 118.9 ± 50.4 |
“post” | 144.0 ± 63.5 | 147.6 ± 90.2 | 162.6 ± 79.4 | 155.3 ± 64.7 |
“post 24 h” | 94.7 ± 32.2 | 123.0 ± 95.1 | 100.3 ± 37.6 | 99.2 ± 37.2 |
Component Time | Ashwagandha (n = 18) “Term 1” | Ashwagandha (n = 18) “Term 2” | Placebo (n = 20) “Term 1” | Placebo (n = 20) “Term 2” |
---|---|---|---|---|
Adiponectin (mg/L) | ||||
“pre” | 6.29 ± 2.9 | 4.36 ± 1.9 # | 5.76 ± 3.5 | 4.61 ± 1.9 |
“post” | 4.83 ± 3.5 | 5.26 ± 3.9 | 4.07 ± 3.0 | 5.46 ± 3.4 |
“post 24 h” | 4.69 ± 1.9 | 4.62 ± 2.1 | 5.41 ± 2.3 | 5.14 ± 2.5 |
Asprosin (ng/mL) | ||||
“pre” | 3.79 ± 3.8 | 2.85 ± 4.0 | 3.51 ± 3.3 | 3.14 ± 3.8 |
“post” | 4.56 ± 4.3 | 3.10 ± 2.3 | 4.43 ± 4.9 | 4.12 ± 6.9 |
“post 24 h” | 3.94 ± 4.2 | 5.20 ± 9.1 | 3.94 ± 4.7 | 4.33 ± 5.0 |
Irisin (ng/mL) | ||||
“pre” | 89.32 ± 36.70 | 89.62 ± 37.40 | 80.99 ± 35.20 | 79.89 ± 37.40 |
“post” | 87.07 ± 38.50 | 95.08 ± 46.40 | 77.86 ± 34.60 | 90.46 ± 37.30 †† |
“post 24 h” | 85.73 ± 37.90 | 106.48 ± 42.20 *** | 78.61 ± 36.90 | 95.43 ± 41.50 ††† |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charmas, M.; Jówko, E.; Długołęcka, B.; Klusiewicz, A.; Przybylska, I.; Galczak-Kondraciuk, A. Ashwagandha Does Not Enhance the Effect of High-Intensity Interval Training on Selected Energy Metabolism Parameters in Young Healthy Men. Nutrients 2025, 17, 3245. https://doi.org/10.3390/nu17203245
Charmas M, Jówko E, Długołęcka B, Klusiewicz A, Przybylska I, Galczak-Kondraciuk A. Ashwagandha Does Not Enhance the Effect of High-Intensity Interval Training on Selected Energy Metabolism Parameters in Young Healthy Men. Nutrients. 2025; 17(20):3245. https://doi.org/10.3390/nu17203245
Chicago/Turabian StyleCharmas, Małgorzata, Ewa Jówko, Barbara Długołęcka, Andrzej Klusiewicz, Iwona Przybylska, and Anna Galczak-Kondraciuk. 2025. "Ashwagandha Does Not Enhance the Effect of High-Intensity Interval Training on Selected Energy Metabolism Parameters in Young Healthy Men" Nutrients 17, no. 20: 3245. https://doi.org/10.3390/nu17203245
APA StyleCharmas, M., Jówko, E., Długołęcka, B., Klusiewicz, A., Przybylska, I., & Galczak-Kondraciuk, A. (2025). Ashwagandha Does Not Enhance the Effect of High-Intensity Interval Training on Selected Energy Metabolism Parameters in Young Healthy Men. Nutrients, 17(20), 3245. https://doi.org/10.3390/nu17203245