Non-Digestible Oligosaccharides and Constipation: A Systematic Review and Meta-Analysis of Randomized Trials on Stool Frequency, Stool Consistency, and Fermentation Biomarkers
Abstract
1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Risk of Bias Assessment
2.4. Data Synthesis and Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Risk of Bias
3.3. Stool Frequency
3.3.1. Effects on Stool Frequency in Constipated Individuals
3.3.2. Effects on Stool Frequency in Non-Constipated Individuals
3.3.3. Effects on Stool Frequency by Intervention Duration (Post Hoc Analysis)
3.4. Stool Consistency
3.4.1. Effects on Stool Consistency in Constipated Individuals
3.4.2. Effects on Stool Consistency in Non-Constipated Individuals
3.4.3. Effects on Stool Consistency by Intervention Duration (Post Hoc Analysis)
3.5. Faecal pH
3.6. Total Short-Chain Fatty Acids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NDO(s) | Non-digestible oligosaccharide(s) |
RCT(s) | Randomized controlled trial(s) |
GOS | Galacto-oligosaccharides |
FOS | Fructo-oligosaccharides |
scFOS | Short-chain fructo-oligosaccharides (oligofructose) |
XOS | Xylo-oligosaccharides |
MOS | Mannooligosaccharides |
PHGG | Partially hydrolyzed guar gum |
DSG | Deshipu stachyose granules |
SCFA(s) | Short-chain fatty acid(s) |
FFAR2 | Free fatty acid receptor 2 |
References
- Barberio, B.; Judge, C.; Savarino, E.V.; Ford, A.C. Global prevalence of functional constipation according to the Rome criteria: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 638–648. [Google Scholar] [CrossRef]
- Ota, T.; Kuratani, S.; Masaki, H.; Ishizaki, S.; Seki, H.; Takebe, T. Impact of chronic constipation symptoms on work productivity and daily activity: A large-scale internet survey. JGH Open 2024, 8, e70042. [Google Scholar] [CrossRef]
- Bashir, A.; Sizar, O. Laxatives. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Mussatto, S.I.; Mancilha, I.M. Non-digestible oligosaccharides: A review. Carbohydr. Polym. 2007, 68, 587–597. [Google Scholar] [CrossRef]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Laursen, M.F.; Sakanaka, M.; von Burg, N.; Mörbe, U.; Andersen, D.; Moll, J.M.; Pekmez, C.T.; Rivollier, A.; Michaelsen, K.F.; Mølgaard, C.; et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat. Microbiol. 2021, 6, 1367–1382. [Google Scholar] [CrossRef]
- Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Wang, J.; Sailer, M.; Theis, S.; Verbeke, K.; Raes, J. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 2017, 66, 1968–1974. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, G.B.; Han, K.; Jung, E.J.; Suh, H.J.; Jo, K. Efficacy and safety of galacto-oligosaccharide in the treatment of functional constipation: Randomized clinical trial. Food Funct. 2024, 15, 6374–6382. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Wang, Q.; Xue, Y.; Cao, H.; Zhuang, R.; Li, D.; Yan, J.; Yang, J.; Xia, Y.; Zhang, F. Xylo-oligosaccharides improve functional constipation by targeted enrichment of Bifidobacterium. Food Sci. Nutr. 2024, 12, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Reigstad, C.S.; Salmonson, C.E.; Rainey, J.F., 3rd; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015, 29, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Li, T.; Lu, X.S.; Yang, X.B. Evaluation of clinical safety and beneficial effects of stachyose-enriched α-galacto-oligosaccharides on gut microbiota and bowel function in humans. Food Funct. 2017, 8, 262–269. [Google Scholar] [CrossRef]
- Puhlmann, M.L.; Jokela, R.; van Dongen, K.C.W.; Bui, T.P.N.; van Hangelbroek, R.W.J.; Smidt, H.; de Vos, W.M.; Feskens, E.J.M. Dried chicory root improves bowel function, benefits intestinal microbial trophic chains and increases faecal and circulating short chain fatty acids in subjects at risk for type 2 diabetes. Gut Microbiome 2022, 3, e4. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.; Feirtag, J. Chicory inulin does not increase stool weight or speed up intestinal transit time in healthy male subjects. Food Funct. 2011, 2, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.M.; da Silva, N.B.M.; Chaves, J.B.P.; Alfenas, R.C.G. Consumption of yacon flour improves body composition and intestinal function in overweight adults: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. ESPEN 2019, 29, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Ramnani, P.; Costabile, A.; Bustillo, A.G.R.; Gibson, G.R. A randomised, double-blind, cross-over study investigating the prebiotic effect of agave fructans in healthy human subjects. J. Nutr. Sci. 2015, 4, e10. [Google Scholar] [CrossRef]
- Sathitkowitchai, W.; Suratannon, N.; Keawsompong, S.; Weerapakorn, W.; Patumcharoenpol, P.; Nitisinprasert, S.; Nakphaichit, M. A randomized trial to evaluate the impact of copra meal hydrolysate on gastrointestinal symptoms and gut microbiome. PeerJ 2021, 9, e12158. [Google Scholar] [CrossRef]
- Sant’Anna, M.D.L.; Rodrigues, V.C.; Araújo, T.F.; Oliveira, T.T.; Peluzio, M.D.G.; Ferreira, C. Yacon-Based Product in the Modulation of Intestinal Constipation. J. Med. Food 2015, 18, 980–986. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, T.; Wang, S.E.; Li, F.; Guo, X.Y.; Jin, J.; Yu, H.X. Laxative Effect of Fructooligosaccharide in Mice and Humans. Curr. Top. Nutraceutical Res. 2013, 11, 1–8. [Google Scholar]
- Souza, D.D.S.; Tahan, S.; Weber, T.K.; de Araujo-Filho, H.B.; De Morais, M.B. Randomized, double-blind, placebo-controlled parallel clinical trial assessing the effect of fructooligosaccharides in infants with constipation. Nutrients 2018, 10, 1602. [Google Scholar]
- Vulevic, J.; Tzortzis, G.; Juric, A.; Gibson, G.R. Effect of a prebiotic galactooligosaccharide mixture (B-GOS®) on gastrointestinal symptoms in adults selected from a general population who suffer with bloating, abdominal pain, or flatulence. Neurogastroenterol. Motil. 2018, 30, e13440. [Google Scholar] [CrossRef]
- Armanian, A.M.; Barekatain, B.; Hoseinzadeh, M.; Salehimehr, N. Prebiotics for the management of hyperbilirubinemia in preterm neonates. J. Matern. Fetal Neonatal Med. 2016, 29, 3009–3013. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.; Davoodi-Semiromi, Y.; Colee, J.C.; Culpepper, T.; Dahl, W.J.; Mai, V.; Christman, M.C.; Langkamp-Henken, B. Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: A randomized, double-blind, controlled trial in healthy university students. Am. J. Clin. Nutr. 2011, 93, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Sierra, C.; Bernal, M.J.; Blasco, J.; Martinez, R.; Dalmau, J.; Ortuno, I.; Espin, B.; Vasallo, M.I.; Gil, D.; Vidal, M.L.; et al. Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: A multicentre, randomised, double-blind and placebo-controlled trial. Eur. J. Nutr. 2015, 54, 89–99. [Google Scholar] [CrossRef]
- Van Harsselaar, J.; Mödinger, Y.; Dharsono, T.; Menzel, D.; Theis, S.; Schön, C. Prebiotic effect of oligofructose after 2 weeks supplementation with a low dose: A randomized, double-blind, placebo-controlled, cross-over study. J. Funct. Foods 2024, 119, 106356. [Google Scholar] [CrossRef]
- Schoemaker, M.H.; Hageman, J.H.J.; Ten Haaf, D.; Hartog, A.; Scholtens, P.A.M.J.; Boekhorst, J.; Nauta, A.; Bos, R. Prebiotic Galacto-Oligosaccharides Impact Stool Frequency and Fecal Microbiota in Self-Reported Constipated Adults: A Randomized Clinical Trial. Nutrients 2022, 14, 309. [Google Scholar] [CrossRef]
- Chumpitazi, B.P.; McMeans, A.R.; Vaughan, A.; Orlando, S.B.; Ali, A.; Elsaadi, A.; Shulman, R.J. Fructans exacerbate childhood irritable bowel syndrome symptoms. In Proceedings of the Gastroenterology, Conference: Digestive Disease Week (DDW 2017), Chicago, IL, USA, 6–9 May 2017; Volume 152, p. S164. [Google Scholar]
- Romano, C.; Comito, D.; Famiani, A.; Calamara, S.; Loddo, I. Partially hydrolyzed guar gum in pediatric functional abdominal pain. World J. Gastroenterol. 2013, 19, 235–240. [Google Scholar] [CrossRef]
- Childs, C.E.; Roytio, H.; Alhoniemi, E.; Fekete, A.A.; Forssten, S.D.; Hudjec, N.; Lim, Y.N.; Steger, C.J.; Yaqoob, P.; Tuohy, K.M.; et al. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: A double-blind, placebo-controlled, randomised, factorial cross-over study. Br. J. Nutr. 2014, 111, 1945–1956. [Google Scholar] [CrossRef]
- Closa-Monasterolo, R.; Ferre, N.; Castillejo-DeVillasante, G.; Luque, V.; Gispert-Llaurado, M.; Zaragoza-Jordana, M.; Theis, S.; Escribano, J. The use of inulin-type fructans improves stool consistency in constipated children. A randomised clinical trial: Pilot study. Int. J. Food Sci. Nutr. 2017, 68, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Bărboi, O.-B.; Ciortescu, I.; Chirilă, I.; Anton, C.; Drug, V. Effect of inulin in the treatment of irritable bowel syndrome with constipation (Review). Exp. Ther. Med. 2020, 20, 185. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, J.; Zhu, S.; Xin, L.; Yu, C.; Shen, Z. The Role of Short Chain Fatty Acids in Irritable Bowel Syndrome. J. Neurogastroenterol. Motil. 2022, 28, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H. Diets for Constipation. Pediatr. Gastroenterol. Hepatol. Nutr. 2014, 17, 203–208. [Google Scholar] [CrossRef]
- Zhen, H.M.; Qian, H.W.; Liu, X.Y.; Tan, C. Fructooligosaccharides for Relieving Functional Constipation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods 2024, 13, 3993. [Google Scholar] [CrossRef]
- Kadim, M.; Darma, A.; Kartjito, M.S.; Dilantika, C.; Basrowi, R.W.; Sungono, V.; Jo, J. Gastrointestinal Health and Immunity of Milk Formula Supplemented with a Prebiotic Mixture of Short-Chain Galacto-oligosaccharides and Long-Chain Fructo-Oligosaccharides (9:1) in Healthy Infants and Toddlers: A Systematic Review with Meta-Analysis. Pediatr. Gastroenterol. Hepatol. Nutr. 2025, 28, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ayakdaş, G.; Ağagündüz, D. Microbiota-accessible carbohydrates (MACs) as novel gut microbiome modulators in noncommunicable diseases. Heliyon 2023, 9, e19888. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to “native chicory inulin” and maintenance of normal defecation by increasing stool frequency pursuant to Article 13.5 of Regulation (EC) No 1924/2006. EFSA J. 2015, 13, 3951. [Google Scholar] [CrossRef]
Author (Year) | Population | Study Type and Duration | Duration | Sample Size and Intervention/Control Group | Intervention | Outcome | |||
---|---|---|---|---|---|---|---|---|---|
Intervention Group | Control Group | Bowel Function (Frequency and Consistency) | Fecal Microbiota (Notable Changes) | Fecal Metabolites (pH and SCFAs) | |||||
Lee (2024) [9] | Adults with functional constipation | Double-blinded, parallel RCT | 4 weeks | 34/29 | Galacto-oligosaccharides capsule 333.33 mg/capsule (plus maltodextrin excipient), 3 capsules twice daily | 392 mg maltodextrin/capsule, 3 capsules twice daily |
| Int vs. baseline: ↑ Bifidobacterium (p = 0.0047), ↑ Lactobacillus (p = 0.0182), Int vs. Ctrl: - Bifidobacterium (p > 0.05), - Lactobacillus (p > 0.0182) |
|
Li (2017) [13] | Adults with functional constipation | Open label, parallel RCT | 30 days | 50/50 | Deshipu stachyose granules (DGS) 5 g/day | Maltodextrin 5 g/day |
| ↑ Bifidobacterium (7.2 → 7.8 log10 CFU/g, p < 0.01) ↑ Lactobacillus (6.8 → 7.5 log10 CFU/g, p < 0.01) ↓ Clostridium perfringens (p < 0.05) |
|
Puhlmann (2022) [14] | Adults at risk for type 2 diabetes | Investigator-blinded, parallel RCT | 3 weeks | 28/27 | Dried chicory root (70% inulin) 30 g/day | Maltodextrin 16 g/day |
| ↑ Bifidobacterium (4.09-fold, p < 0.001) ↑ Anaerostipes (3.24-fold, p < 0.001) |
|
Slavin (2011) [15] | Healthy adult, males, aged 27–49 years | Double-blinded, crossover RCT | 3 weeks | 12/12 | Chicory inulin 20 g/day (basal diet with the addition of 20 g of chicory inulin) | Low-fiber control diet |
| ↑ Total anaerobes (p = 0.03) ↑ Lactobacillus spp. (p = 0.05) - Bifidobacterium spp. (p = 0.33) - Clostridium spp. (p = 0.05) - Bacteroides spp. (p = 0.05) |
|
Machado (2019) [16] | Adults with overweight | Double-blinded, parallel RCT | 6 weeks | 13/13 | Yacon flour 25 g/day (providing 0.1 g FOS/kg body weight/day) | Corn starch, dose equivalent to intervention |
| NR |
|
Ramnani (2015) [17] | Healthy adults | Double-blinded, crossover RCT | 3 weeks | 40/40 | Agave fructans 5 g/day | Maltodextrin 5 g/day |
| ↑ Bifidobacterium spp. (9.2 ± 0.4 → 9.6 ± 0.4, p < 0.001) ↑ Lactobacillus (7.3 ± 0.6 → 7.7 ± 0.8, p < 0.001) |
|
Sathitkowitchai (2021) [18] | Healthy adults | Double-blinded, parallel RCT | 3 weeks | 20/17 | Mannooligosaccharides 5 g/day | Maltodextrin, 10 g/day |
| - Actinobacteria (%) (0.95 ± 1.98 → 1.47 ± 1.87, p = 0.108) - Bacteroidetes (%) (3.67 ± 8.86 → 6.43 ± 10.49, p = 0.328) - Firmicutes (%) (85.89 ± 8.75 → 88.54 ± 14.18, p = 0.424) - Proteobacteria (%) (1.99 ± 2.53 → 1.62 ± 5.85, p = 0.351) - Firmicutes: Bacteroidetes (ratio) (23.95 ± 61.92 → 13.92 ± 20.89, p = 0.301) |
|
Sant’Anna (2015) [19] | Constipated adults | Parallel, maltodextrin-controlled, randomization and blinding design was not reported | 30 days | 24/24 | Fructooligosaccharides/inulin, 10 g/day | Maltodextrin, 25 g/day |
| ↑ Bifidobacterium (p < 0.05) ↓ Clostridium (p < 0.05) ↓ Enterobacteriaceae (p < 0.05) ↓ Lactobacillus (p < 0.05) |
|
Wang (2013) [20] | Constipated adults | Double-blinded, parallel RCT | 10 days | 50/50 | Fructooligosaccharides capsules 1.26 g/day | Starch (dose equivalent to intervention) |
| NR |
|
Souza (2018) [21] | Infants with constipation | Double-blinded, parallel RCT | 4 weeks | 19/19 | Fructooligosaccharides, 6–12 g/day (dose based on weight: 6.0–8.9 kg: 6 g/day; 9.0–11.9 kg: 9 g/day; ≥12 kg: 12 g/day) | Maltodextrin, same dosing regimen |
| ↑ Bifidobacterium (log CFU/g, median) (6.39 (5.25–8.36) → 7.37 (5.86–8.43), p = 0.006) - Lactobacillus (log CFU/g, median) 6.27 (4.33–7.54) → 6.45 (4.83–7.61) (p = 0.095, NS) |
|
Vulevic (2018) [22] | Adults with bloating, abdominal pain or flatulence | Double-blinded, crossover RCT | 2 weeks | 83/83 | Bimuno®-Galactooligosaccharides 2.75 g/day (1.37 g active GOS) | Maltodextrin, 2.75 g/day |
| NR |
|
Armanian (2016) [23] | Preterm neonates | Parallel RCT | 1 week | 25/25 | Short-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides, initial 0.5 g/kg/day, gradually increased to 1.5 g/kg/day | Distilled water, dose equivalent to intervention |
| NR |
|
Hughes (2011) [24] | Healthy university students | Double-blinded, parallel RCT | 8 weeks | 140/139 | Galacto-oligosaccharides, 2.5 g/day and 5.0 g/day | Bakers’ sugar (sucrose), dose equivalent to intervention |
| NR |
|
Sierra (2015) [25] | Healthy infants | Double-blinded, parallel RCT | 4 months | 188/177 | Galacto-oligosaccharides, infant formula 0.44 g/dL, follow-on formula 0.50 g/dL | Standard infant and follow-on formulas without GOS |
| ↑ Bifidobacterium spp. (log10 CFU/g, 4 mo) 8.65 ± 1.31 (Int) vs. 8.02 ± 1.66 (Ctrl), p = 0.010 - Lactobacillus spp. 7.11 ± 0.89 (Int) vs. 6.87 ± 0.61 (Ctrl), p = 0.151 (NS) - Bacteroides spp. 7.12 ± 2.04 (Int) vs. 6.83 ± 2.17 (Ctrl), p = 0.187 (NS) - Clostridium difficile positive rate 45.2% (Int) vs. 63.3% (Ctrl), p = 0.037 - Bifidobacterium breve 6.37 ± 1.57 (Int) vs. 4.93 ± 1.44 (Ctrl), p = 0.055 |
|
Van Harsselaar (2024) [26] | Healthy male adults | Double-blinded, crossover RCT | 2 weeks | 32/32 | Oligofructose, 2.5 g/day | Maltodextrin, 2.5 g/day |
| ↑ Bifidobacterium (log10 copies/g) (7.61 ± 0.58 → 7.88 ± 0.54, p = 0.016) |
|
Schoemaker (2022) [27] | Constipated adults | Double-blinded, parallel RCT | 3 weeks | 45/43 | Galacto-oligosaccharides, 11 g/day or 5.5 g/day | Maltodextrin, 15.1 g/day |
| ↑ Bifidobacterium: 11 g GOS: 10.9% → 23.9%, p < 0.001 5.5 g GOS: 11.6% → 19.1%, p = 0.16 (NS) ↑ Anaerostipes hadrus 11 g GOS: adjusted p = 0.03 5.5 g GOS: adjusted p = 0.57 (NS) |
|
Chumpitazi (2017) [28] | Children with irritable bowel syndrome | Double-blinded, crossover RCT | 72 h | 23/23 | Inulin-type fructan, 0.5 g/kg/day (maximum 19 g/day) | Maltodextrin, 0.5 g/kg/day (maximum 19 g/day) |
| NR |
|
Romano (2013) [29] | Children with chronic abdominal pain or irritable bowel syndrome | Parallel RCT | 4 weeks | 30/30 | Partially hydrolyzed guar gum, 5 g/day in fruit juice | Unsupplemented fruit juice |
| NR |
|
Childs (2014) [30] | Healthy adults | Double-blinded, crossover RCT | 21 days | 41/39 | Xylo-oligosaccharides, 8 g/day | Maltodextrin, 8 g/day |
| ↑ Bifidobacterium spp. (log10 cells/g dry) (9.8 ± 0.7 → +0.3 ± 0.5 (XOS), p = 0.008) |
|
Closa-Monasterolo (2017) [31] | Functional constipated children | Double-blinded, parallel RCT | 6 weeks | 8/9 | Inulin-type fructans, 4 g/day | Maltodextrin, 4 g/day |
| NR |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Ren, J.; Wang, L.; Zhang, W.; Duan, S.; Guo, J.; Chen, Q.; Wang, R.; He, J.; He, J.; et al. Non-Digestible Oligosaccharides and Constipation: A Systematic Review and Meta-Analysis of Randomized Trials on Stool Frequency, Stool Consistency, and Fermentation Biomarkers. Nutrients 2025, 17, 3246. https://doi.org/10.3390/nu17203246
Chen H, Ren J, Wang L, Zhang W, Duan S, Guo J, Chen Q, Wang R, He J, He J, et al. Non-Digestible Oligosaccharides and Constipation: A Systematic Review and Meta-Analysis of Randomized Trials on Stool Frequency, Stool Consistency, and Fermentation Biomarkers. Nutrients. 2025; 17(20):3246. https://doi.org/10.3390/nu17203246
Chicago/Turabian StyleChen, Huiyu, Jiale Ren, Langrun Wang, Wenyi Zhang, Sufang Duan, Jie Guo, Qingshan Chen, Ran Wang, Jian He, Jingjing He, and et al. 2025. "Non-Digestible Oligosaccharides and Constipation: A Systematic Review and Meta-Analysis of Randomized Trials on Stool Frequency, Stool Consistency, and Fermentation Biomarkers" Nutrients 17, no. 20: 3246. https://doi.org/10.3390/nu17203246
APA StyleChen, H., Ren, J., Wang, L., Zhang, W., Duan, S., Guo, J., Chen, Q., Wang, R., He, J., He, J., & Zhu, R. (2025). Non-Digestible Oligosaccharides and Constipation: A Systematic Review and Meta-Analysis of Randomized Trials on Stool Frequency, Stool Consistency, and Fermentation Biomarkers. Nutrients, 17(20), 3246. https://doi.org/10.3390/nu17203246