Digital Health Intervention Combined with Personalized Healthy Breakfast Guidance Improves Breakfast Behavior Among Chinese Young Adults: A Randomized Controlled Trial
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Sample Size and Participants
2.3. Intervention
2.4. Study Variables
2.4.1. Breakfast Behavior Assessment
2.4.2. Anthropometric and Body Composition Assessment
2.4.3. HAPA Assessment
2.5. Statistical Analysis
3. Results
3.1. Demographics Characteristics of Participants
3.2. Effect of the DHI or/and PHBG on Breakfast Behavior
3.3. Effect of DHI or/and PHBG on HAPA Constructs
3.4. Association of the HAPA Constructs and Good Breakfast Behavior
3.5. Mediation Analysis of HAPA Constructs on the Intervention–Behavior Association
3.6. Effect of the DHI or/and PHBG on Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stratton, M.T.; Holden, S.L.; Davis, R.; Massengale, A.T. The Impact of Breakfast Consumption or Omission on Exercise Performance and Adaptations: A Narrative Review. Nutrients 2025, 17, 300. [Google Scholar] [CrossRef]
- Sámano, R.; Hernández-Chávez, C.; Chico-Barba, G.; Córdova-Barrios, A.; Morales-del-Olmo, M.; Sordo-Figuero, H.; Hernández, M.; Merino-Palacios, C.; Cervantes-Zamora, L.; Martínez-Rojano, H. Breakfast Nutritional Quality and Cognitive Interference in University Students from Mexico City. Int. J. Environ. Res. Public Health 2019, 16, 2671. [Google Scholar] [CrossRef]
- Liu, J.; Wu, L.; Um, P.; Wang, J.; Kral, T.V.E.; Hanlon, A.; Shi, Z. Breakfast Consumption Habits at Age 6 and Cognitive Ability at Age 12: A Longitudinal Cohort Study. Nutrients 2021, 13, 2080. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.; Dodd, G.F.; Jeavons, M.; Fisher, D.R.; Whyte, A.R.; Shukitt-Hale, B.; Williams, C.M. The impact of a walnut-rich breakfast on cognitive performance and brain activity throughout the day in healthy young adults: A crossover intervention trial. Food Funct. 2025, 16, 1696–1707. [Google Scholar] [CrossRef]
- Kawabata, M.; Lee, K.; Choo, H.; Burns, S.F. Breakfast and Exercise Improve Academic and Cognitive Performance in Adolescents. Nutrients 2021, 13, 1278. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Furutani, A.; Sasaki, H.; Takahashi, M.; Shibata, S. Effect of a High Protein Diet at Breakfast on Postprandial Glucose Level at Dinner Time in Healthy Adults. Nutrients 2022, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.O.; Genario, R.; Macedo, R.C.O.; Pareek, M.; Tinsley, G.M. Association of breakfast skipping with cardiovascular outcomes and cardiometabolic risk factors: An updated review of clinical evidence. Crit. Rev. Food Sci. Nutr. 2022, 62, 466–474. [Google Scholar] [CrossRef]
- Gwin, J.A.; Leidy, H.J. A Review of the Evidence Surrounding the Effects of Breakfast Consumption on Mechanisms of Weight Management. Adv. Nutr. 2018, 9, 717–725. [Google Scholar] [CrossRef]
- Chatelan, A.; Castetbon, K.; Pasquier, J.; Allemann, C.; Zuber, A.; Camenzind-Frey, E.; Zuberbuehler, C.A.; Bochud, M. Association between breakfast composition and abdominal obesity in the Swiss adult population eating breakfast regularly. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 115. [Google Scholar] [CrossRef]
- Khaing, I.K.; Tahara, Y.; Chimed-Ochir, O.; Shibata, S.; Kubo, T. Effect of breakfast protein intake on muscle mass and strength in adults: A scoping review. Nutr. Rev. 2025, 83, 175–199. [Google Scholar]
- Salas-Salvadó, J.; Díaz-López, A.; Ruiz-Canela, M.; Basora, J.; Fitó, M.; Corella, D.; Serra-Majem, L.; Wärnberg, J.; Romaguera, D.; Estruch, R.; et al. Effect of a Lifestyle Intervention Program With Energy-Restricted Mediterranean Diet and Exercise on Weight Loss and Cardiovascular Risk Factors: One-Year Results of the PREDIMED-Plus Trial. Diabetes Care 2019, 42, 777–788. [Google Scholar] [CrossRef]
- Kwan, Y.H.; Cheng, T.Y.; Yoon, S.; Ho, L.Y.C.; Huang, C.W.; Chew, E.H.; Thumboo, J.; Østbye, T.; Low, L.L. A systematic review of nudge theories and strategies used to influence adult health behaviour and outcome in diabetes management. Diabetes Metab. 2020, 46, 450–460. [Google Scholar] [CrossRef]
- Demetrowitsch, T.J.; Schlicht, K.; Knappe, C.; Zimmermann, J.; Jensen-Kroll, J.; Pisarevskaja, A.; Brix, F.; Brandes, J.; Geisler, C.; Marinos, G.; et al. Precision Nutrition in Chronic Inflammation. Front. Immunol. 2020, 11, 587895. [Google Scholar] [CrossRef]
- Murray, E.; Hekler, E.B.; Andersson, G.; Collins, L.M.; Doherty, A.; Hollis, C.; Rivera, D.E.; West, R.; Wyatt, J.C. Evaluating Digital Health Interventions: Key Questions and Approaches. Am. J. Prev. Med. 2016, 51, 843–851. [Google Scholar]
- Grady, A.; Pearson, N.; Lamont, H.; Leigh, L.; Wolfenden, L.; Barnes, C.; Wyse, R.; Finch, M.; Mclaughlin, M.; Delaney, T.; et al. The Effectiveness of Strategies to Improve User Engagement With Digital Health Interventions Targeting Nutrition, Physical Activity, and Overweight and Obesity: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2023, 25, e47987. [Google Scholar]
- Tang, H.; Spreckley, M.; van Sluijs, E.; Ahern, A.L.; Smith, A.D. The impact of social media interventions on eating behaviours and diet in adolescents and young adults: A mixed methods systematic review protocol. BMJ Open 2024, 14, e083465. [Google Scholar] [CrossRef]
- Ma, T.; Wang, H.; Wei, M.; Lan, T.; Wang, J.; Bao, S.; Ge, Q.; Fang, Y.; Sun, X. Application of smart-phone use in rapid food detection, food traceability systems, and personalized diet guidance, making our diet more health. Food Res. Int. 2022, 152, 110918. [Google Scholar] [CrossRef]
- Kaiser, C.K.; Edwards, Z.; Austin, E.W. Media Literacy Practices to Prevent Obesity and Eating Disorders in Youth. Curr. Obes. Rep. 2024, 13, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.P.; Gibney, E.R.; O’Sullivan, A.M. Moving towards more sustainable diets: Is there potential for a per-sonalised approach in practice? J. Hum. Nutr. Diet. 2023, 36, 2256–2267. [Google Scholar] [CrossRef] [PubMed]
- Yap, H.J.; Lim, J.J.J.; Tan, S.D.; Ang, C.S. Effectiveness of digital health interventions on adherence and control of hypertension: A systematic review and meta-analysis. J. Hypertens. 2024, 42, 1490–1502. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Hu, F.B. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018, 6, 416–426. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, X.; Sun, L.; Guo, Z.; Lai, J.; Kang, L.; Li, J. Effectiveness of personalized meal recommendation in improving dietary behaviors of Chinese community-dwelling elders: Study protocol for a cluster randomized controlled trial. Trials 2024, 25, 252. [Google Scholar] [CrossRef]
- Rein, M.; Ben-Yacov, O.; Godneva, A.; Shilo, S.; Zmora, N.; Kolobkov, D.; Cohen-Dolev, N.; Wolf, B.C.; Kosower, N.; Lotan-Pompan, M.; et al. Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: A randomized dietary intervention pilot trial. BMC Med. 2022, 20, 56. [Google Scholar] [CrossRef]
- Toledo, R.Y.; Alzahrani, A.A.; Martinez, L. A Food Recommender System Considering Nutritional Information and User Preferences. IEEE Access 2019, 7, 96695–96711. [Google Scholar] [CrossRef]
- Michie, S. Designing and implementing behaviour change interventions to improve population health. J. Health Serv. Res. Policy 2008, 13, 64–69. [Google Scholar]
- Craveiro, D.; Marques, S.; Bell, R.; Khan, M.; Godinho, C.; Peixeiro, F. Behavioural change box? Applying the COM-B model to understand be-havioural triggers that support consumption of fruits and vegetable among subscribers of a fruit and vegetable box scheme. Public Health Nutr. 2021, 24, 6488–6498. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Zhang, R.; Schwarzer, R.; Hagger, M.S. A meta-analysis of the health action process approach. Health Psychol. 2019, 38, 623–637. [Google Scholar]
- Lorbeer, N.; Schwarzer, R.; Keller, J.; Di Maio, S.; Domke, A.; Armbrecht, G.; Börst, H.; Martus, P.; Ertel, W.; Luszczynska, A.; et al. Volitional processes in changing physical activity: A randomized con-trolled trial with individuals with knee osteoarthritis. Health Psychol. 2025, 44, 597–607. [Google Scholar]
- Wu, J.R.; Chan, F.; Ditchman, N. The health action process approach to promote regular physical activity among people with disabilities: A hierarchical regression analysis. Rehabil. Psychol. 2025, 70, 341–353. [Google Scholar]
- Tang, C.; Raat, H.; Yan, M.; Zhang, Q.; Li, K.; Jiang, M.; Tang, W.; Chen, J.; Zhao, Y.; Liu, Q. Application of the health action process approach model for reducing excessive internet use behaviors among rural adolescents in China: A school-based intervention pilot study. BMC Public Health 2021, 21, 986. [Google Scholar] [CrossRef]
- Moghaddam, F.; Sargeran, K.; Gholami, M.; Jamali, J.; Shamshiri, A.R. Application of health action process approach model to promote toothbrushing behavior among Iranian elderly population: A cluster randomized controlled trial. BMC Geriatr. 2025, 25, 92. [Google Scholar] [CrossRef]
- Parkinson, J.; Hannan, T.; McDonald, N.; Moriarty, S.; Nguyen, T.M.; Hamilton, K. Health action process approach: Promoting physical activity, and fruit and vegetable intake among Australian adults. Health Promot. Int. 2023, 38, daad095. [Google Scholar] [CrossRef]
- Duan, Y.P.; Wienert, J.; Hu, C.; Si, G.Y.; Lippke, S. Web-Based Intervention for Physical Activity and Fruit and Vegetable Intake Among Chinese University Students: A Randomized Controlled Trial. J. Med. Internet Res. 2017, 19, e106. [Google Scholar] [CrossRef]
- Skalidis, I.; Maurizi, N.; Salihu, A.; Fournier, S.; Cook, S.; Iglesias, J.F.; Laforgia, P.; D’Angelo, L.; Garot, P.; Hovasse, T.; et al. Artificial Intelligence and Advanced Digital Health for Hypertension: Evolving Tools for Precision Cardiovascular Care. Medicina 2025, 61, 1597–1610. [Google Scholar] [CrossRef]
- Heerman, W.J.; Rothman, R.L.; Sanders, L.M.; Schildcrout, J.S.; Flower, K.B.; Delamater, A.M.; Kay, M.C.; Wood, C.T.; Gross, R.S.; Bian, A.; et al. A Digital Health Behavior Intervention to Prevent Childhood Obesity: The Greenlight Plus Randomized Clinical Trial. JAMA 2024, 332, 2068–2080. [Google Scholar] [CrossRef]
- Wang, M.; Xu, J.; Zhou, X.; Li, X.; Zheng, Y. Effectiveness of Gamification Interventions to Improve Physical Activity and Sedentary Behavior in Children and Adolescents: Systematic Review and Meta-Analysis. JMIR Serious Games 2025, 13, e68151. [Google Scholar] [CrossRef]
- Choi, J.; Chung, C.; Woo, H. Diet-Related Mobile Apps to Promote Healthy Eating and Proper Nutrition: A Content Analysis and Quality Assessment. Int. J. Environ. Res. Public Health 2021, 18, 3496. [Google Scholar] [CrossRef]
- Lu, T.; Lin, Q.; Yu, B.; Hu, J. A systematic review of strategies in digital technologies for motivating adherence to chronic illness self-care. NPJ Health Syst. 2025, 2, 13. [Google Scholar] [CrossRef]
- Browne, S.; Kechadi, M.T.; O’Donnell, S.; Dow, M.; Tully, L.; Doyle, G.; O’Malley, G. Mobile Health Apps in Pediatric Obesity Treatment: Process Outcomes From a Feasibility Study of a Multicomponent Intervention. JMIR Mhealth Uhealth 2020, 8, e16925. [Google Scholar] [CrossRef]
- Wang, J.; Mahe, J.; Huo, Y.; Huang, W.; Liu, X.; Zhao, Y.; Huang, J.; Shi, F.; Li, Z.; Jiang, D.; et al. Framework Development for Reducing Attrition in Digital Dietary Interventions: Systematic Review and Thematic Synthesis. J. Med. Internet Res. 2024, 26, e58735. [Google Scholar] [CrossRef]
- Wu, W.; Hu, L.; Chen, Y.; Cao, F.; Ding, S.; Wu, T.; Xu, J. Effectiveness of an online application of the health action process approach (HAPA) theory on oral hygiene intervention in young adults with fixed orthodontic appliances: A randomized controlled trial. BMC Oral Health 2022, 22, 111–192. [Google Scholar] [CrossRef]
- Maghsoodlo, M.; Shakibazadeh, E.; Barzin, M.; Salimi, Y.; Mokhtari, Z.; Yaseri, M. Covariates of a healthy diet and physical activity self-management one year after Bariatric surgery: A cross-sectional study. PLoS ONE 2023, 18, e0287137. [Google Scholar] [CrossRef]
- Li, Y.; Ding, J.; Wang, Y.; Tang, C.; Zhang, P. Nutrition-Related Mobile Apps in the China App Store: Assessment of Functionality and Quality. JMIR Mhealth Uhealth 2019, 7, e13261. [Google Scholar] [CrossRef]
- West, J.H.; Belvedere, L.M.; Andreasen, R.; Frandsen, C.; Hall, P.C.; Crookston, B.T. Controlling Your “App”etite: How Diet and Nutrition-Related Mobile Apps Lead to Behavior Change. JMIR Mhealth Uhealth 2017, 5, e95. [Google Scholar] [CrossRef]
- Deshmukh-Taskar, P.; Nicklas, T.A.; Radcliffe, J.D.; O’Neil, C.E.; Liu, Y. The relationship of breakfast skipping and type of breakfast consumed with overweight/obesity, abdominal obesity, other cardiometabolic risk factors and the metabolic syndrome in young adults. The National Health and Nutrition Examination Survey (NHANES): 1999–2006. Public Health Nutr. 2013, 16, 2073–2082. [Google Scholar]
- Leidy, H.J.; Gwin, J.A.; Roenfeldt, C.A.; Zino, A.Z.; Shafer, R.S. Evaluating the Intervention-Based Evidence Surrounding the Causal Role of Breakfast on Markers of Weight Management, with Specific Focus on Breakfast Composition and Size. Adv. Nutr. 2016, 7, 563S–575S. [Google Scholar] [CrossRef]
- Maki, K.C.; Phillips-Eakley, A.K.; Smith, K.N. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism. Adv. Nutr. 2016, 7, 613S–621S. [Google Scholar] [CrossRef]
- Tucker, L.A. Association between fruit intake and abdominal adiposity in 1,707 randomly selected U.S. children. Front. Nutr. 2025, 12, 1592654. [Google Scholar] [CrossRef]
- Tucker, L.A. Legume Intake, Body Weight, and Abdominal Adiposity: 10-Year Weight Change and Cross-Sectional Results in 15,185 U.S. Adults. Nutrients 2023, 15, 460. [Google Scholar] [CrossRef]
Characteristics | Control Group (n = 40) | DHI Group (n = 40) | PHBG Group (n = 40) | DHI + PHBG Group (n = 40) | χ2/F | p Value |
---|---|---|---|---|---|---|
Sex, n (%) | 0.202 | 0.977 | ||||
Male | 18 (45.0) | 17 (42.5) | 19 (47.5) | 18 (45.0) | ||
Female | 22 (55.0) | 23 (57.5) | 21 (52.5) | 22 (55.0) | ||
Age, years, ± s | 20.7 ± 2.1 | 21.2 ± 2.8 | 21.4 ± 2.5 | 21.3 ± 2.7 | 0.613 | 0.607 |
Level of education, n (%) | 0.402 | 0.94 | ||||
Senior high school | 32 (80.0) | 30 (75.0) | 32 (80.0) | 31 (77.5) | ||
Undergraduate | 8 (20.0) | 10 (25.0) | 8 (20.0) | 9 (22.5) | ||
Living expenses, n (%) | 4.638 | 0.591 | ||||
≤¥1500/m | 12 (30.0) | 8 (20.0) | 9 (22.5) | 12 (30.0) | ||
¥1500/m~ | 14 (35.0) | 20 (50.0) | 17 (42.5) | 20 (50.0) | ||
≥¥2000/m | 14 (35.0) | 12 (30.0) | 14 (35.0) | 8 (20.0) |
Main Outcomes | Group | Baseline | 1 Month | χ2/H | p Value |
---|---|---|---|---|---|
Good breakfast behavior, n (%) | Control group | 0 (0.0) | 3 (7.50) | 3.117 | 0.077 |
DHI group | 0 (0.0) | 20 (50.0) # | 26.667 | <0.001 | |
PHBG group | 0 (0.0) | 29 (72.5) # | 45.490 | <0.001 | |
DHI + PHBG group | 0 (0.0) | 32 (80.0) #,* | 53.333 | <0.001 | |
Number of breakfast food categories per day, M (P25, P75) | Control group | 2.0 (2.0, 3.0) | 3.0 (2.0, 3.0) | 1472.000 | 0.126 |
DHI group | 2.0 (2.0, 3.0) | 3.5 (2.0, 4.0) # | 1286.000 | <0.001 | |
PHBG group | 2.0 (1.0, 3.0) | 4.0 (3.0, 4.0) # | 1002.000 | <0.001 | |
DHI + PHBG group | 2.0 (2.0, 3.0) | 4.0 (4.0, 4.0) #,* | 970.500 | <0.001 |
Model 1 | Model 2 | |||
---|---|---|---|---|
Constructs | OR (95% CI) | p Value | OR (95% CI) | p Value |
Risk perception | 1.075 (1.003, 1.151) | 0.042 | 1.088 (1.009, 1.174) | 0.029 |
Outcome expectancies | 1.003 (0.886, 1.135) | 0.968 | 0.984 (0.865, 1.121) | 0.813 |
Self-efficacy | 1.428 (1.224, 1.665) | <0.001 | 1.443 (1.230, 1.692) | <0.001 |
Intention | 1.108 (0.881, 1.394) | 0.380 | 1.069 (0.840, 1.361) | 0.585 |
Planning | 0.997 (0.872, 1.139) | 0.960 | 1.012 (0.882, 1.162) | 0.864 |
Perceived social support | 1.045 (0.932, 1.170) | 0.451 | 1.038 (0.923, 1.168) | 0.530 |
Self-monitoring | 1.225 (1.051, 1.427) | 0.009 | 1.225 (1.051, 1.427) | 0.009 |
Indicators | Baseline | 1 Month | D-Value | Model 1 β (95% CI) | p Value |
---|---|---|---|---|---|
BMI (kg·m−2) | |||||
Control group | 21.67 ± 3.53 | 21.67 ± 3.43 | −0.00 ± 0.48 | 0 (Ref) | |
DHI group | 22.00 ± 3.18 | 21.86 ± 3.35 | −0.14 ± 0.58 | −0.232 (−0.514, 0.050) | 0.106 |
PHBG group | 22.70 ± 3.47 | 22.56 ± 3.51 | −0.14 ± 0.55 | −0.141 (−0.422, 0.139) | 0.106 |
DHI + PHBG group | 22.11 ± 3.00 | 21.94 ± 3.02 | −0.17 ± 0.56 | −0.162 (−0.444, 0.119) | 0.258 |
WHR | |||||
Control group | 0.80 ± 0.06 | 0.81 ± 0.05 | 0.01 ± 0.03 | 0 (Ref) | |
DHI group | 0.81 ± 0.05 | 0.81 ± 0.05 | −0.01 ± 0.01 * | −0.014 (−0.020, −0.000) | 0.039 |
PHBG group | 0.82 ± 0.05 | 0.82 ± 0.05 | −0.01 ± 0.02 * | −0.013 (−0.023, −0.005) | 0.002 |
DHI + PHBG group | 0.82 ± 0.04 | 0.81 ± 0.04 | −0.00 ± 0.01 * | −0.015 (−0.024, −0.005) | 0.002 |
PBF (%) | |||||
Control group | 21.62 ± 8.89 | 22.00 ± 8.67 | 0.38 ± 3.58 | 0 (Ref) | |
DHI group | 21.65 ± 7.87 | 21.01 ± 7.82 | −0.64 ± 1.82 | −1.017 (−2.116, 0.081) | 0.069 |
PHBG group | 22.09 ± 8.73 | 21.89 ± 8.77 | −0.20 ± 2.07 | −0.572 (−1.671, 0.526) | 0.305 |
DHI + PHBG group | 21.19 ± 7.35 | 20.87 ± 6.77 | −0.32 ± 2.08 | −0.695 (−1.793, 0.403) | 0.213 |
VFA (cm2) | |||||
Control group | 47.48 ± 27.17 | 49.02 ± 25.86 | 1.54 ± 9.62 | 0 (Ref) | |
DHI group | 40.23 ± 25.22 | 40.46 ± 24.48 | 0.23 ± 15.06 | −1.310 (−6.783, 4.163) | 0.637 |
PHBG group | 42.87 ± 29.39 | 43.07 ± 28.15 | 0.20 ± 13.17 | −1.337 (−6.811, 4.136) | 0.630 |
DHI + PHBG group | 39.48 ± 20.40 | 39.50 ± 20.53 | 0.01 ± 11.03 | −1.525 (−6.998, 3.948) | 0.582 |
TBW (%) | |||||
Control group | 33.73 ± 8.26 | 33.45 ± 8.20 | −0.28 ± 1.57 | 0 (Ref) | |
DHI group | 35.62 ± 7.95 | 35.15 ± 7.48 | −0.47 ± 2.44 | −0.193 (−0.999, 0.614) | 0.637 |
PHBG group | 36.24 ± 8.16 | 35.61 ± 8.10 | −0.62 ± 1.96 | −0.343 (−1.149, 0.464) | 0.402 |
DHI + PHBG group | 35.35 ± 8.18 | 35.10 ± 7.87 | −0.25 ± 1.03 | 0.032 (−0.774, 0.839) | 0.936 |
BMR (KJ·m−2·h−1) | |||||
Control group | 1364.00 ± 242.83 | 1356.22 ± 241.69 | −7.78 ±44.97 | 0 (Ref) | |
DHI group | 1420.75 ± 234.01 | 1405.75 ± 220.03 | −15.00 ± 70.91 | −7.225 (−30.644, 16.194) | 0.543 |
PHBG group | 1439.22 ± 239.51 | 1419.95 ± 238.17 | −19.27 ± 57.17 | −11.500 (−34.919, 11.919) | 0.333 |
DHI + PHBG group | 1411.80 ± 240.83 | 1405.47 ± 231.67 | −6.33 ± 30.43 | 1.450 (−21.969, 24.869) | 0.902 |
SLM (%) | |||||
Control group | 43.35 ± 10.64 | 43.05 ± 10.59 | −0.31 ± 1.99 | 0 (Ref) | |
DHI group | 45.82 ± 10.28 | 45.18 ± 9.66 | −0.64 ± 3.15 | −0.330 (−1.358, 0.698) | 0.527 |
PHBG group | 46.62 ± 10.51 | 45.80 ± 10.45 | −0.82 ± 2.48 | −0.515 (−1.543, 0.513) | 0.324 |
DHI + PHBG group | 45.43 ± 10.54 | 45.17 ± 10.13 | −0.26 ± 1.31 | 0.045 (−0.983, 1.073) | 0.931 |
FFM (kg) | |||||
Control group | 46.04 ± 11.24 | 45.68 ± 11.18 | −0.35 ± 2.07 | 0 (Ref) | |
DHI group | 48.66 ± 10.83 | 47.98 ± 10.19 | −0.68 ± 3.28 | −0.327 (−1.409, 0.754) | 0.550 |
PHBG group | 49.52 ± 11.09 | 48.63 ± 11.02 | −0.89 ± 2.64 | −0.540 (−1.622, 0.542) | 0.325 |
DHI + PHBG group | 48.26 ± 11.14 | 47.96 ± 10.74 | −0.30 ± 1.41 | 0.055 (−1.027, 1.137) | 0.920 |
SMM (kg) | |||||
Control group | 25.37 ± 6.77 | 25.27 ± 6.80 | −0.10 ± 1.25 | 0 (Ref) | |
DHI group | 27.03 ± 6.63 | 26.52 ± 6.24 | −0.51 ± 2.02 | −0.405 (−1.054, 0.244) | 0.219 |
PHBG group | 27.54 ± 6.73 | 26.96 ± 6.68 | −0.59 ± 1.52 | −0.482 (−1.131, 0.166) | 0.144 |
DHI + PHBG group | 26.71 ± 6.71 | 26.62 ± 6.45 | −0.09 ± 0.84 | 0.015 (−0.634, 0.664) | 0.963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Huang, L.; Fu, Z.; Liu, Q.; Yu, X.; Zhao, X.; Luo, R.; Wang, F.; Xiao, J.; Xue, J.; et al. Digital Health Intervention Combined with Personalized Healthy Breakfast Guidance Improves Breakfast Behavior Among Chinese Young Adults: A Randomized Controlled Trial. Nutrients 2025, 17, 3219. https://doi.org/10.3390/nu17203219
Wei X, Huang L, Fu Z, Liu Q, Yu X, Zhao X, Luo R, Wang F, Xiao J, Xue J, et al. Digital Health Intervention Combined with Personalized Healthy Breakfast Guidance Improves Breakfast Behavior Among Chinese Young Adults: A Randomized Controlled Trial. Nutrients. 2025; 17(20):3219. https://doi.org/10.3390/nu17203219
Chicago/Turabian StyleWei, Xinru, Li Huang, Zequn Fu, Qianfeng Liu, Xinyue Yu, Xinrui Zhao, Rong Luo, Feijie Wang, Jiaxin Xiao, Jiayan Xue, and et al. 2025. "Digital Health Intervention Combined with Personalized Healthy Breakfast Guidance Improves Breakfast Behavior Among Chinese Young Adults: A Randomized Controlled Trial" Nutrients 17, no. 20: 3219. https://doi.org/10.3390/nu17203219
APA StyleWei, X., Huang, L., Fu, Z., Liu, Q., Yu, X., Zhao, X., Luo, R., Wang, F., Xiao, J., Xue, J., Wang, F., Tian, X., Qiu, S., Zhang, M., & Liu, H. (2025). Digital Health Intervention Combined with Personalized Healthy Breakfast Guidance Improves Breakfast Behavior Among Chinese Young Adults: A Randomized Controlled Trial. Nutrients, 17(20), 3219. https://doi.org/10.3390/nu17203219