Vitamin A, Vitamin D, Iron, and Zinc in Relation to Anemia Risk: Observational Evidence and Mendelian Randomization
Abstract
1. Introduction
2. Methods
2.1. Cross-Sectional Study
2.1.1. Study Design and Participants
2.1.2. Questionnaire Survey and Sample Collection
2.1.3. Exposure and Outcome
2.1.4. Statistical Analysis of Cross-Sectional Study
2.2. MR Analysis
2.2.1. Study Design and Data Sources
2.2.2. Instrumental Variables
2.2.3. Statistical Analysis of MR Analysis
3. Results
3.1. Characteristics of Participants
3.2. Logistic Regression Model for Risk Factors Associated with Anemia
3.3. Associations Between Common Micronutrient Levels and the Risk of Anemia
3.4. Subgroup Analysis
3.5. Causal Relationship Between Serum Iron Status Indicators and Anemia
3.6. Causal Relationship Between Serum 25-Hydroxyvitamin D and Anemia
3.7. Causal Relationship Between Serum Retinol Content and Anemia
3.8. Causal Relationship Between Erythrocyte Zinc and Anemia
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- GBD 2021 Anaemia Collaborators. Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: Findings from the Global Burden of Disease Study 2021. Lancet Haematol. 2023, 10, e713–e734. [Google Scholar] [CrossRef]
- Hu, J.; Song, Z.; Zhao, L.; Gonzalez, S.C.; Wang, E.; Hou, X. The temporal trends of prevalence and years lived with disability of anaemia in China, Japan, and South Korea, from 1990 to 2021: Results from the Global Burden of Disease Study 2021. J. Glob. Health 2024, 14, 4073. [Google Scholar] [CrossRef]
- Stevens, G.A.; Paciorek, C.J.; Flores-Urrutia, M.C.; Borghi, E.; Namaste, S.; Wirth, J.P.; Suchdev, P.S.; Ezzati, M.; Rohner, F.; Flaxman, S.R.; et al. National, regional, and global estimates of anaemia by severity in women and children for 2000X2013;19: A pooled analysis of population-representative data. Lancet Glob. Health 2022, 10, e627–e639. [Google Scholar] [CrossRef]
- Iglesias, V.L.; Valera, E.; Villalobos, M.; Tous, M.; Arija, V. Prevalence of Anemia in Children from Latin America and the Caribbean and Effectiveness of Nutritional Interventions: Systematic Review and Meta–Analysis. Nutrients 2019, 11, 183. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cheng, X.; Zhao, L.; Ren, H. Anemia of School-Age Children in Primary Schools in Southern China Should Be Paid More Attention despite the Significant Improvement at National Level: Based on Chinese Nutrition and Health Surveillance Data (2016–2017). Nutrients 2021, 13, 3705. [Google Scholar] [CrossRef] [PubMed]
- Brittenham, G.M.; Moir-Meyer, G.; Abuga, K.M.; Datta-Mitra, A.; Cerami, C.; Green, R.; Pasricha, S.R.; Atkinson, S.H. Biology of Anemia: A Public Health Perspective. J. Nutr. 2023, 153 (Suppl. S1), S7–S28. [Google Scholar] [CrossRef]
- Birhanu, M.; Gedefaw, L.; Asres, Y. Anemia among School-Age Children: Magnitude, Severity and Associated Factors in Pawe Town, Benishangul-Gumuz Region, Northwest Ethiopia. Ethiop. J. Health Sci. 2018, 28, 259–266. [Google Scholar] [CrossRef]
- Gwetu, T.P.; Taylor, M.; Chhagan, M.; Kauchali, S.; Craib, M. Health and educational achievement of school-aged children: The impact of anaemia and iron status on learning. Health SA Gesondheid. 2019, 24, 1101. [Google Scholar] [CrossRef]
- Gallagher, P.G. Anemia in the pediatric patient. Blood 2022, 140, 571–593. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, Y.; Hu, P.; Ma, J.; Song, Y. Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health. Int. J. Environ. Res. Public Health 2020, 17, 1474. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.J.; Dong, B.; Wang, Z.; Ma, J.; Agardh, A. National Trends in Hemoglobin Concentration and Prevalence of Anemia among Chinese School-Aged Children, 1995–2010. J. Pediatr. 2017, 183, 164–169. [Google Scholar] [CrossRef]
- Yusufu, I.; Cliffer, I.R.; Yussuf, M.H.; Anthony, C.; Mapendo, F.; Abdulla, S.; Masanja, M.; Tinkasimile, A.; Ali, A.S.; Mwanyika-Sando, M.; et al. Factors associated with anemia among school-going adolescents aged 10–17 years in Zanzibar, Tanzania: A cross sectional study. BMC Public Health 2023, 23, 1814. [Google Scholar] [CrossRef]
- Gur, E.; Yildiz, I.; Celkan, T.; Can, G.; Akkus, S.; Arvas, A.; Guzeloz, S.; Cifcili, S. Prevalence of anemia and the risk factors among schoolchildren in Istanbul. J. Trop. Pediatr. 2005, 51, 346–350. [Google Scholar] [CrossRef]
- Dumbre, D.; Upendra, S.; Zacharias, B.S. Unraveling the Relationship Between Vitamin D and Noncommunicable Diseases: A Systemic Review and Meta-Analysis. Public Health Nurs. 2025, 42, 1302–1314. [Google Scholar] [CrossRef]
- Liu, T.; Zhong, S.; Liu, L.; Liu, S.; Li, X.; Zhou, T.; Zhang, J. Vitamin D deficiency and the risk of anemia: A meta-analysis of observational studies. Ren. Fail. 2015, 37, 929–934. [Google Scholar] [CrossRef]
- Arabi, S.M.; Ranjbar, G.; Bahrami, L.S.; Vafa, M.; Norouzy, A. The effect of vitamin D supplementation on hemoglobin concentration: A systematic review and meta-analysis. Nutr. J. 2020, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Zaritsky, J.J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Zavala, K.; Nayak, A.; Wesseling-Perry, K.; Westerman, M.; Hollis, B.W.; et al. Suppression of iron-regulatory hepcidin by vitamin D. J. Am. Soc. Nephrol. 2014, 25, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D and sunlight: Strategies for cancer prevention and other health benefits. Clin. J. Am. Soc. Nephrol. 2008, 3, 1548–1554. [Google Scholar] [CrossRef] [PubMed]
- Deicher, R.; Horl, W.H. Hormonal adjuvants for the treatment of renal anaemia. Eur. J. Clin. Investig. 2005, 35 (Suppl. S3), 75–84. [Google Scholar] [CrossRef]
- Da, C.M.; Campos, H.N.; Arruda, S.F. Effect of vitamin A supplementation on iron status in humans: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2019, 59, 1767–1781. [Google Scholar]
- Kania, B.; Sotelo, A.; Ty, D.; Wisco, J.J. The Prevention of Inflammation and the Maintenance of Iron and Hepcidin Homeostasis in the Gut, Liver, and Brain Pathologies. J. Alzheimers Dis. 2023, 92, 769–789. [Google Scholar] [CrossRef]
- Xiao, S.; Li, Q.; Hu, K.; He, Y.; Ai, Q.; Hu, L.; Yu, J. Vitamin A and Retinoic Acid Exhibit Protective Effects on Necrotizing Enterocolitis by Regulating Intestinal Flora and Enhancing the Intestinal Epithelial Barrier. Arch. Med. Res. 2018, 49, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Michelazzo, F.B.; Oliveira, J.M.; Stefanello, J.; Luzia, L.A.; Rondo, P.H. The influence of vitamin A supplementation on iron status. Nutrients 2013, 5, 4399–4413. [Google Scholar] [CrossRef] [PubMed]
- Citelli, M.; Bittencourt, L.L.; Da, S.S.; Pierucci, A.P.; Pedrosa, C. Vitamin A modulates the expression of genes involved in iron bioavailability. Biol. Trace Elem. Res. 2012, 149, 64–70. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Fatima, R.; Farooq, H.; Maham, S.N. Hemoglobin, Ferritin levels and RBC Indices among children entering school and study of their correlation with one another. J. Pak. Med. Assoc. 2020, 70, 1582–1586. [Google Scholar] [CrossRef]
- Greffeuille, V.; Fortin, S.; Gibson, R.; Rohner, F.; Williams, A.; Young, M.F.; Houghton, L.; Ou, J.; Dijkhuizen, M.A.; Wirth, J.P.; et al. Associations between Zinc and Hemoglobin Concentrations in Preschool Children and Women of Reproductive Age: An Analysis of Representative Survey Data from the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) Project. J. Nutr. 2021, 151, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Kaufer, M.; Casaneuva, E. Relation of pregnancy serum ferritin levels to hemoglobin levels throughout pregnancy. Eur. J. Clin. Nutr. 1990, 44, 709–715. [Google Scholar] [PubMed]
- Yu, X.; Xiong, L.; Zhao, S.; Li, Z.; Xiang, S.; Cao, Y.; Zhou, C.; Dong, J.; Qiu, J. Effect of lead, calcium, iron, zinc, copper and magnesium on anemia in children with BLLs >/= 100 mug/L. J. Trace Elem. Med. Biol. 2023, 78, 127192. [Google Scholar] [CrossRef]
- Chen, L.; Gu, N.; Qiu, K.; Chen, H.; Tian, F.; Chen, Y.; Zeng, L. Serum Vitamin D Levels and Risk of Iron Deficiency Anemia in Adults: A Cross-Sectional Study and Mendelian Randomization Analysis. Food Sci. Nutr. 2025, 13, e4746. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, J.; Hu, W.; Song, X.; Yuan, D.; Yan, X. The Association between Standardized Serum 25-Hydroxyvitamin D Concentration and Risk of Anemia: A Population-Based Cross-Sectional Study. Int. J. Clin. Pract. 2022, 2022, 8384306. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef]
- Zuccolo, L.; Holmes, M.V. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int. J. Epidemiol. 2017, 46, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Zhao, Y.; Yang, P.; Zhang, X.; Giovannucci, E.L. Vitamin D and human health: Evidence from Mendelian randomization studies. Eur. J. Epidemiol. 2024, 39, 467–490. [Google Scholar] [CrossRef] [PubMed]
- Zeitoun, T.; El-Sohemy, A. Using Mendelian Randomization to Study the Role of Iron in Health and Disease. Int. J. Mol. Sci. 2023, 24, 13458. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Zhang, J.; Wei, N.; Zhou, Q.; Wang, C. Association Between Serum 25-Hydroxyvitamin D Level and Risk of Anemia: An Observational and Mendelian Randomization Study. Int. J. Gen. Med. 2024, 17, 3893–3905. [Google Scholar] [CrossRef]
- Huang, X.; Mao, M.; Guo, T.; Wu, Y.; Xu, Q.; Dai, J.; Huang, Y. Iron Status, Thyroid Dysfunction, and Iron Deficiency Anemia: A Two-Sample Mendelian Randomization Study. Ann. Nutr. Metab. 2024, 80, 295–306. [Google Scholar] [CrossRef]
- Gill, D.; Benyamin, B.; Moore, L.; Monori, G.; Zhou, A.; Koskeridis, F.; Evangelou, E.; Laffan, M.; Walker, A.P.; Tsilidis, K.K.; et al. Associations of genetically determined iron status across the phenome: A mendelian randomization study. PLoS Med. 2019, 16, e1002833. [Google Scholar] [CrossRef]
- WS/T 456—2014; Screening Standard for Malnutrition of School-Age Children and Adolescents. National Health Commission of People’s Republic of China: Beijing, China, 2014.
- WS/T 586—2018; Screening for Overweight and Obesity Among School-Age Children and Adolescents. National Health Commission of People’s Republic of China: Beijing, China, 2018.
- WS/T 553—2017; Screening Methods for Vitamin A Deficiency in Populations. National Health Commission of the People’s Republic of China: Beijing, China, 2018.
- WS/T 667—2020; Screening Methods for Vitamin D Deficiency in Populations. National Health Commission of the People’s Republic of China: Beijing, China, 2020.
- WHO. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Available online: https://iris.who.int/bitstream/handle/10665/85839/WHO_NMH_NHD_MNM_11.1_eng.pdf?sequence=22 (accessed on 10 February 2025).
- Reay, W.R.; Kiltschewskij, D.J.; Di Biase, M.A.; Gerring, Z.F.; Kundu, K.; Surendran, P.; Greco, L.A.; Clarke, E.D.; Collins, C.E.; Mondul, A.M.; et al. Genetic influences on circulating retinol and its relationship to human health. Nat. Commun. 2024, 15, 1490. [Google Scholar] [CrossRef]
- Revez, J.A.; Lin, T.; Qiao, Z.; Xue, A.; Holtz, Y.; Zhu, Z.; Zeng, J.; Wang, H.; Sidorenko, J.; Kemper, K.E.; et al. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat. Commun. 2020, 11, 1647. [Google Scholar] [CrossRef]
- Evans, D.M.; Zhu, G.; Dy, V.; Heath, A.C.; Madden, P.A.; Kemp, J.P.; McMahon, G.; St, P.B.; Timpson, N.J.; Golding, J.; et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum. Mol. Genet. 2013, 22, 3998–4006. [Google Scholar] [CrossRef]
- Bell, S.; Rigas, A.S.; Magnusson, M.K.; Ferkingstad, E.; Allara, E.; Bjornsdottir, G.; Ramond, A.; Sorensen, E.; Halldorsson, G.H.; Paul, D.S.; et al. A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun. Biol. 2021, 4, 156. [Google Scholar] [CrossRef] [PubMed]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipila, T.P.; Kristiansson, K.; Donner, K.M.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023, 613, 508–518. [Google Scholar] [CrossRef]
- Damian, M.T.; Vulturar, R.; Login, C.C.; Damian, L.; Chis, A.; Bojan, A. Anemia in Sports: A Narrative Review. Life 2021, 11, 987. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Xu, J.; Xu, P.; Yang, T.; Gan, Q.; Pan, H.; Hu, X.; Cao, W.; Zhang, Q. Association between milk consumption and the nutritional status of poor rural Chinese students in 2016. Asia Pac. J. Clin. Nutr. 2020, 29, 813–820. [Google Scholar] [PubMed]
- Lien, D.T.; Nhung, B.T.; Khan, N.C.; Hop, L.T.; Nga, N.T.; Hung, N.T.; Kiers, J.; Shigeru, Y.; Te, B.R. Impact of milk consumption on performance and health of primary school children in rural Vietnam. Asia Pac. J. Clin. Nutr. 2009, 18, 326–334. [Google Scholar]
- Oliveira, M.A.; Osorio, M.M. Cow’s milk consumption and iron deficiency anemia in children. J. Pediatr. 2005, 81, 361–367. [Google Scholar] [CrossRef]
- Wu, J.; Hu, Y.; Li, M.; Chen, J.; Mao, D.; Li, W.; Wang, R.; Yang, Y.; Piao, J.; Yang, L.; et al. Prevalence of Anemia in Chinese Children and Adolescents and Its Associated Factors. Int. J. Environ. Res. Public Health 2019, 16, 1416. [Google Scholar] [CrossRef]
- Mou, J.; Zhou, H.; Feng, Z.; Huang, S.; Wang, Z.; Zhang, C.; Wang, Y. A Case-Control Study of the Factors Associated with Anemia in Chinese Children Aged 3–7 years Old. Anemia 2023, 2023, 8316658. [Google Scholar] [CrossRef] [PubMed]
- Joo, E.Y.; Kim, K.Y.; Kim, D.H.; Lee, J.E.; Kim, S.K. Iron deficiency anemia in infants and toddlers. Blood Res. 2016, 51, 268–273. [Google Scholar] [CrossRef]
- Stevens, G.A.; Beal, T.; Mbuya, M.; Luo, H.; Neufeld, L.M. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health 2022, 10, e1590–e1599. [Google Scholar] [CrossRef]
- Meshram, I.I.; Kumar, B.N.; Venkaiah, K.; Longvah, T. Subclinical Vitamin A Deficiency and Anemia among Women and Preschool Children from Northeast India. Indian J. Commun. Med. 2020, 45, 371–374. [Google Scholar] [CrossRef]
- Zhu, J.; Li, W. Role of metabolites in mediating the effect of triacylglycerol on aplastic anemia. Hematology 2024, 29, 2379178. [Google Scholar] [CrossRef]
- Soepnel, L.M.; Mabetha, K.; Draper, C.E.; Silubonde, T.M.; Smuts, C.M.; Pettifor, J.M.; Norris, S.A. A Cross-Sectional Study of the Associations between Biomarkers of Vitamin D, Iron Status, and Hemoglobin in South African Women of Reproductive Age: The Healthy Life Trajectories Initiative, South Africa. Curr. Dev. Nutr. 2023, 7, 100072. [Google Scholar] [CrossRef]
- Braithwaite, V.S.; Crozier, S.R.; D’Angelo, S.; Prentice, A.; Cooper, C.; Harvey, N.C.; Jones, K.S. The Effect of Vitamin D Supplementation on Hepcidin, Iron Status, and Inflammation in Pregnant Women in the United Kingdom. Nutrients 2019, 11, 190. [Google Scholar] [CrossRef]
- Nikooyeh, B.; Neyestani, T.R. Poor vitamin D status increases the risk of anemia in school children: National Food and Nutrition Surveillance. Nutrition 2018, 47, 69–74. [Google Scholar] [CrossRef]
- Delrue, C.; Speeckaert, M.M. Vitamin D and Vitamin D Binding Protein in Health and Disease 2.0. Int. J. Mol. Sci. 2023, 24, 10316. [Google Scholar] [CrossRef] [PubMed]
- Gowele, V.F.; Kinabo, J.; Jumbe, T.; Rybak, C.; Stuetz, W. High Prevalence of Stunting and Anaemia Is Associated with Multiple Micronutrient Deficiencies in School Children of Small-Scale Farmers from Chamwino and Kilosa Districts, Tanzania. Nutrients 2021, 13, 1576. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Naess-Andresen, M.L.; Eggemoen, A.R.; Berg, J.P.; Falk, R.S.; Jenum, A.K. Serum ferritin, soluble transferrin receptor, and total body iron for the detection of iron deficiency in early pregnancy: A multiethnic population-based study with low use of iron supplements. Am. J. Clin. Nutr. 2019, 109, 566–575. [Google Scholar] [CrossRef]
- Houghton, L.A.; Parnell, W.R.; Thomson, C.D.; Green, T.J.; Gibson, R.S. Serum Zinc Is a Major Predictor of Anemia and Mediates the Effect of Selenium on Hemoglobin in School-Aged Children in a Nationally Representative Survey in New Zealand. J. Nutr. 2016, 146, 1670–1676. [Google Scholar] [CrossRef] [PubMed]
- Atasoy, H.I.; Bugdayci, G. Zinc deficiency and its predictive capacity for anemia: Unique model in school children. Pediatr. Int. 2018, 60, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, C. Zinc: Physiology, deficiency, and parenteral nutrition. Nutr. Clin. Pract. 2015, 30, 371–382. [Google Scholar] [CrossRef]
- Jeng, S.S.; Chen, Y.H. Association of Zinc with Anemia. Nutrients 2022, 14, 4918. [Google Scholar] [CrossRef]
- Chen, Y.H.; Feng, H.L.; Jeng, S.S. Zinc Supplementation Stimulates Red Blood Cell Formation in Rats. Int. J. Mol. Sci. 2018, 19, 2824. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Jeng, S.S.; Hsu, Y.C.; Liao, Y.M.; Wang, Y.X.; Cao, X.; Huang, L.J. In anemia zinc is recruited from bone and plasma to produce new red blood cells. J. Inorg. Biochem. 2020, 210, 111172. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 1725) | Anemia Status | χ2/t | p Value | |
---|---|---|---|---|---|
Yes (n = 155) | No (n = 1570) | ||||
Gender | 3.772 | 0.052 | |||
Male | 874 (50.7) | 67 (7.7) | 807 (92.3) | ||
Female | 851 (49.3) | 88 (10.3) | 763 (89.7) | ||
Ethnicity | 2.508 | 0.113 | |||
Han | 1301 (75.4) | 125 (9.6) | 1176 (90.4) | ||
Minority | 424 (24.6) | 30 (7.1) | 394 (92.9) | ||
School segments | 2.091 | 0.148 | |||
Primary school | 952 (55.2) | 77 (8.1) | 875 (91.9) | ||
Middle school | 773 (44.8) | 78 (10.1) | 695 (89.9) | ||
Age (years) | 3.161 | 0.206 | |||
6–10 | 651 (37.7) | 66 (10.1) | 585 (89.9) | ||
11–13 | 796 (46.1) | 61 (7.7) | 735 (92.3) | ||
14–17 | 278 (16.1) | 28 (10.1) | 250 (89.9) | ||
Nutritional status | 3.823 | 0.430 | |||
Normal weight | 1144 (66.3) | 109 (9.5) | 1035 (90.5) | ||
Growth retardation | 4 (0.2) | 1 (25.0) | 3 (75.0) | ||
Underweight | 99 (5.7) | 8 (8.1) | 91 (91.9) | ||
Overweight | 211 (12.2) | 13 (6.2) | 198 (93.8) | ||
Obesity | 267 (15.5) | 24 (9.0) | 243 (91.0) | ||
Left behind-children | 1.677 | 0.195 | |||
Yes | 905 (7.7) | 89 (9.8) | 816 (90.2) | ||
No | 820 (7.7) | 66 (8.0) | 754 (92.0) | ||
Common micronutrient levels | |||||
Serum vitamin A (μg/mL) | 0.39 ± 0.09 | 0.38 ± 0.10 | 0.39 ± 0.09 | 1.892 | 0.059 |
Serum vitamin D (ng/mL) | 18.99 ± 5.88 | 18.21 ± 5.57 | 19.06 ± 5.90 | 1.720 | 0.086 |
Serum ferritin (µg/L) | 68.31 ± 49.42 | 58.70 ± 43.78 | 69.26 ± 49.85 | 2.542 | 0.011 |
Serum zinc (µmol/L) | 9.39 ± 5.63 | 8.98 ± 4.90 | 9.44 ± 5.69 | 0.972 | 0.331 |
Variables | Model 1 a | Model 2 b | Model 3 c | |||
---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | |
Serum vitamin A (μg/mL) | 0.167 (0.026–1.067) | 0.059 | 0.158 (0.023–1.076) | 0.059 | 0.215 (0.030–1.535) | 0.125 |
Serum vitamin A quartile (μg/mL) | ||||||
Q1 (<0.33) | 1.000 (Ref) | 1.000 (Ref) | 1.000 (Ref) | |||
Q2 (0.33–0.38) | 0.712 (0.453–1.121) | 0.142 | 0.695 (0.438–1.102) | 0.122 | 0.718 (0.451–1.143) | 0.162 |
Q3 (0.38–0.44) | 0.732 (0.472–1.137) | 0.165 | 0.699 (0.446–1.097) | 0.120 | 0.746 (0.472–1.181) | 0.212 |
Q4 (>0.44) | 0.544 (0.340–0.872) | 0.012 | 0.514 (0.316–0.836) | 0.007 | 0.548 (0.332–0.903) | 0.018 |
Ptrend | 0.016 | 0.010 | 0.027 | |||
Serum vitamin D (ng/mL) | 0.975 (0.947–1.004) | 0.086 | 0.981 (0.951–1.012) | 0.230 | 0.993 (0.961–1.025) | 0.655 |
Serum vitamin D quartile (ng/mL) | ||||||
Q1 (<14.74) | 1.000 (Ref) | 1.000 (Ref) | 1.000 (Ref) | |||
Q2 (14.74–18.69) | 0.847 (0.534–1.344) | 0.482 | 0.856 (0.536–1.369) | 0.517 | 0.938 (0.583–1.508) | 0.791 |
Q3 (18.69–22.73) | 1.096 (0.708–1.696) | 0.681 | 1.187 (0.754–1.868) | 0.460 | 1.348 (0.845–2.151) | 0.210 |
Q4 (>22.73) | 0.630 (0.384–1.035) | 0.068 | 0.697 (0.413–1.176) | 0.176 | 0.848 (0.495–1.454) | 0.549 |
Ptrend | 0.191 | 0.443 | 0.997 | |||
Serum ferritin (µg/L) | 0.993 (0.988–0.998) | 0.003 | 0.994 (0.989–0.999) | 0.012 | 0.994 (0.989–0.999) | 0.025 |
Serum ferritin quartile (µg/L) | ||||||
Q1 (<38.90) | 1.000 (Ref) | 1.000 (Ref) | 1.000 (Ref) | |||
Q2 (38.90–61.03) | 0.604 (0.388–0.940) | 0.025 | 0.652 (0.414–1.028) | 0.066 | 0.638 (0.405–1.004) | 0.052 |
Q3 (61.03–88.43) | 0.606 (0.389–0.942) | 0.026 | 0.628 (0.397–0.993) | 0.047 | 0.609 (0.386–0.961) | 0.033 |
Q4 (>88.43) | 0.445 (0.275–0.720) | 0.001 | 0.481 (0.293–0.791) | 0.004 | 0.470 (0.287–0.772) | 0.003 |
Ptrend | 0.001 | 0.004 | 0.011 | |||
Serum zinc (µmol/L) | 0.850 (0.614–1.177) | 0.328 | 0.885 (0.639–1.224) | 0.459 | 0.923 (0.670–1.272) | 0.624 |
Serum zinc quartile (µmol/L) | ||||||
Q1 (<6.50) | 1.000 (Ref) | 1.000 (Ref) | 1.000 (Ref) | |||
Q2 (6.50–8.20) | 0.997 (0.644–1.544) | 0.991 | 1.074 (0.688–1.677) | 0.753 | 1.098 (0.701–1.721) | 0.682 |
Q3 (8.20–10.20) | 0.647 (0.401–1.043) | 0.074 | 0.713 (0.438–1.159) | 0.172 | 0.787 (0.481–1.288) | 0.340 |
Q4 (>10.20) | 0.740 (0.464–1.181) | 0.207 | 0.836 (0.515–1.356) | 0.467 | 0.916 (0.561–1.495) | 0.726 |
Ptrend | 0.076 | 0.215 | 0.447 |
Phenotype | Whether to Remove Outliers | IVs | F Value | MR Method | β | Se | p Value | OR (95%CI) |
---|---|---|---|---|---|---|---|---|
Serum ferritin | No | 55 | 76.487 | MR Egger | −0.458 | 0.116 | <0.001 | 0.633 (0.504–0.794) |
Weighted median | −0.448 | 0.084 | <0.001 | 0.639 (0.542–0.753) | ||||
IVW | −0.442 | 0.062 | <0.001 | 0.643 (0.570–0.726) | ||||
Simple mode | −0.471 | 0.185 | 0.014 | 0.625 (0.434–0.898) | ||||
Weighted mode | −0.471 | 0.102 | <0.001 | 0.625 (0.511–0.763) | ||||
Serum ferritin | Yes | 54 | 76.841 | MR Egger | −0.439 | 0.104 | <0.001 | 0.645 (0.526–0.790) |
Weighted median | −0.447 | 0.084 | <0.001 | 0.640 (0.543–0.754) | ||||
IVW | −0.422 | 0.055 | <0.001 | 0.656 (0.588–0.731) | ||||
Simple mode | −0.464 | 0.178 | 0.012 | 0.629 (0.443–0.892) | ||||
Weighted mode | −0.471 | 0.106 | 0.000 | 0.624 (0.507–0.768) | ||||
Serum iron | No | 21 | 129.068 | MR Egger | −0.118 | 0.145 | 0.427 | 0.889 (0.669–1.181) |
Weighted median | −0.210 | 0.093 | 0.024 | 0.811 (0.676–0.973) | ||||
IVW | −0.197 | 0.090 | 0.029 | 0.821 (0.688–0.980) | ||||
Simple mode | −0.236 | 0.195 | 0.240 | 0.790 (0.539–1.157) | ||||
Weighted mode | −0.201 | 0.097 | 0.052 | 0.818 (0.675–0.990) | ||||
Serum iron | Yes | 19 | 130.911 | MR Egger | −0.146 | 0.118 | 0.234 | 0.864 (0.686–1.090) |
Weighted median | −0.235 | 0.093 | 0.012 | 0.790 (0.658–0.949) | ||||
IVW | −0.231 | 0.078 | 0.003 | 0.793 (0.681–0.925) | ||||
Simple mode | −0.242 | 0.178 | 0.192 | 0.785 (0.554–1.114) | ||||
Weighted mode | −0.228 | 0.091 | 0.022 | 0.796 (0.666–0.952) | ||||
Total iron-binding capacity | No | 23 | 63.239 | MR Egger | 0.388 | 0.347 | 0.276 | 1.474 (0.747–2.907) |
Weighted median | 0.153 | 0.112 | 0.169 | 1.166 (0.937–1.451) | ||||
IVW | 0.188 | 0.116 | 0.106 | 1.207 (0.961–1.515) | ||||
Simple mode | 0.097 | 0.209 | 0.647 | 1.102 (0.732–1.658) | ||||
Weighted mode | 0.182 | 0.204 | 0.381 | 1.200 (0.804–1.790) | ||||
Total iron-binding capacity | Yes | 21 | 64.098 | MR Egger | −0.203 | 0.288 | 0.490 | 0.816 (0.464–1.436) |
Weighted median | 0.152 | 0.111 | 0.171 | 1.164 (0.937–1.446) | ||||
IVW | 0.069 | 0.091 | 0.447 | 1.071 (0.897–1.280) | ||||
Simple mode | 0.125 | 0.218 | 0.574 | 1.133 (0.739–1.736) | ||||
Weighted mode | 0.219 | 0.225 | 0.344 | 1.244 (0.800–1.935) | ||||
Transferrin saturation | No | 18 | 161.776 | MR Egger | −0.102 | 0.124 | 0.423 | 0.903 (0.708–1.152) |
Weighted median | −0.126 | 0.070 | 0.072 | 0.882 (0.769–1.011) | ||||
IVW | −0.115 | 0.071 | 0.103 | 0.891 (0.776–1.024) | ||||
Simple mode | −0.046 | 0.159 | 0.774 | 0.955 (0.699–1.303) | ||||
Weighted mode | −0.149 | 0.067 | 0.041 | 0.861 (0.755–0.983) | ||||
Transferrin saturation | Yes | 16 | 90.621 | MR Egger | 0.278 | 0.163 | 0.110 | 1.321 (0.960–1.816) |
Weighted median | 0.111 | 0.092 | 0.225 | 1.118 (0.934–1.338) | ||||
IVW | 0.008 | 0.081 | 0.920 | 1.008 (0.860–1.181) | ||||
Simple mode | 0.018 | 0.175 | 0.918 | 1.019 (0.723–1.434) | ||||
Weighted mode | 0.133 | 0.094 | 0.179 | 1.142 (0.950–1.373) | ||||
Serum 25-hydroxyvitamin D | No | 84 | 94.495 | MR Egger | −0.217 | 0.178 | 0.227 | 0.805 (0.567–1.142) |
Weighted median | −0.156 | 0.116 | 0.178 | 0.855 (0.681–1.074) | ||||
IVW | −0.086 | 0.094 | 0.360 | 0.918 (0.764–1.103) | ||||
Simple mode | −0.078 | 0.204 | 0.705 | 0.925 (0.620–1.381) | ||||
Weighted mode | −0.055 | 0.118 | 0.642 | 0.946 (0.751–1.193) | ||||
Serum 25-hydroxyvitamin D | Yes | 82 | 95.867 | MR Egger | −0.133 | 0.129 | 0.304 | 0.875 (0.680–1.127) |
Weighted median | −0.157 | 0.110 | 0.155 | 0.855 (0.689–1.061) | ||||
IVW | −0.146 | 0.068 | 0.030 | 0.864 (0.757–0.986) | ||||
Simple mode | −0.067 | 0.213 | 0.752 | 0.935 (0.616–1.419) | ||||
Weighted mode | −0.055 | 0.114 | 0.633 | 0.947 (0.757–1.184) | ||||
Serum retinol content | No | 6 | 45.982 | MR Egger | −0.117 | 0.239 | 0.651 | 0.890 (0.558–1.421) |
Weighted median | 0.034 | 0.078 | 0.658 | 1.035 (0.889–1.205) | ||||
IVW | 0.031 | 0.062 | 0.617 | 1.031 (0.914–1.164) | ||||
Simple mode | 0.135 | 0.109 | 0.271 | 1.144 (0.924–1.417) | ||||
Weighted mode | 0.038 | 0.102 | 0.727 | 1.038 (0.850–1.268) | ||||
Erythrocyte Zinc | No | 2 | 61.254 | MR Egger | NA | NA | NA | NA |
Weighted median | NA | NA | NA | NA | ||||
IVW | 0.026 | 0.038 | 0.491 | 1.027 (0.953–1.107) | ||||
Simple mode | NA | NA | NA | NA | ||||
Weighted mode | NA | NA | NA | NA |
Phenotype | Whether to Remove Outliers | Method | Heterogeneity | Pleiotropy | ||||
---|---|---|---|---|---|---|---|---|
Q Value | df | p Value | egg_intercept | Se | p Value | |||
Serum ferritin | No | MR Egger | 78.787 | 53 | 0.012 | 0.001 | 0.004 | 0.869 |
IVW | 78.828 | 54 | 0.015 | - | - | - | ||
Serum ferritin | Yes | MR Egger | 61.460 | 52 | 0.173 | 0.001 | 0.004 | 0.848 |
IVW | 61.504 | 53 | 0.198 | - | - | - | ||
Serum iron | No | MR Egger | 42.052 | 19 | 0.002 | −0.006 | 0.008 | 0.490 |
IVW | 43.149 | 20 | 0.002 | - | - | - | ||
Serum iron | Yes | MR Egger | 24.642 | 17 | 0.103 | −0.007 | 0.007 | 0.346 |
IVW | 26.003 | 18 | 0.100 | - | - | - | ||
Total iron-binding capacity | No | MR Egger | 57.451 | 21 | 0.000 | −0.009 | 0.015 | 0.546 |
IVW | 58.480 | 22 | 0.000 | - | - | - | ||
Total iron-binding capacity | Yes | MR Egger | 27.886 | 19 | 0.086 | 0.012 | 0.012 | 0.333 |
IVW | 29.337 | 20 | 0.081 | - | - | - | ||
Transferrin saturation | No | MR Egger | 38.986 | 16 | 0.001 | −0.001 | 0.009 | 0.900 |
IVW | 39.025 | 17 | 0.002 | - | - | - | ||
Transferrin saturation | Yes | MR Egger | 18.501 | 14 | 0.185 | −0.016 | 0.009 | 0.083 |
IVW | 23.120 | 15 | 0.082 | - | - | - | ||
Serum 25-hydroxyvitamin D | No | MR Egger | 182.453 | 82 | 0.000 | 0.004 | 0.004 | 0.389 |
IVW | 184.121 | 83 | 0.000 | - | - | - | ||
Serum 25-hydroxyvitamin D | Yes | MR Egger | 92.339 | 80 | 0.163 | −3.58 × 10−4 | 0.003 | 0.907 |
IVW | 92.355 | 81 | 0.183 | - | - | - | ||
Serum retinol content | No | MR Egger | 2.862 | 4 | 0.581 | 0.014 | 0.022 | 0.557 |
IVW | 3.272 | 5 | 0.658 | - | - | - | ||
Erythrocyte Zinc | No | MR Egger | NA | NA | NA | NA | NA | NA |
IVW | 0.004 | 1 | 0.947 | NA | NA | NA |
Exposure Phenotype | Outcome Phenotype | IVs | F Value | MR Method | β | Se | p Value | OR (95%CI) |
---|---|---|---|---|---|---|---|---|
Anemia | Serum ferritin | 5 | 51.756 | MR Egger | −0.041 | 0.055 | 0.514 | 0.960 (0.862–1.070) |
Weighted median | −0.023 | 0.025 | 0.355 | 0.977 (0.931–1.026) | ||||
IVW | −0.012 | 0.021 | 0.563 | 0.988 (0.948–1.029) | ||||
Simple mode | −0.032 | 0.036 | 0.419 | 0.968 (0.902–1.039) | ||||
Weighted mode | −0.025 | 0.029 | 0.436 | 0.975 (0.921–1.032) | ||||
Anemia | Serum iron | 6 | 60.016 | MR Egger | 0.018 | 0.056 | 0.765 | 1.018 (0.913–1.136) |
Weighted median | −0.009 | 0.027 | 0.723 | 0.991 (0.940–1.044) | ||||
IVW | −0.032 | 0.020 | 0.106 | 0.969 (0.932–1.007) | ||||
Simple mode | −0.010 | 0.042 | 0.820 | 0.990 (0.912–1.074) | ||||
Weighted mode | −0.006 | 0.040 | 0.883 | 0.994 (0.919–1.075) | ||||
Anemia | Serum 25-hydroxyvitamin D | 5 | 51.796 | MR Egger | 0.062 | 0.048 | 0.291 | 1.064 (0.968–1.170) |
Weighted median | 0.018 | 0.017 | 0.301 | 1.018 (0.984–1.052) | ||||
IVW | 0.013 | 0.020 | 0.526 | 1.013 (0.974–1.053) | ||||
Simple mode | 0.029 | 0.024 | 0.303 | 1.029 (0.981–1.079) | ||||
Weighted mode | 0.031 | 0.019 | 0.173 | 1.031 (0.994–1.070) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Tan, Y.; Chen, Y.; Wang, F.; Wang, T.; Sun, M.; Luo, M.; Chen, Y.; Wen, Y.; Li, Z.; et al. Vitamin A, Vitamin D, Iron, and Zinc in Relation to Anemia Risk: Observational Evidence and Mendelian Randomization. Nutrients 2025, 17, 3220. https://doi.org/10.3390/nu17203220
Tang J, Tan Y, Chen Y, Wang F, Wang T, Sun M, Luo M, Chen Y, Wen Y, Li Z, et al. Vitamin A, Vitamin D, Iron, and Zinc in Relation to Anemia Risk: Observational Evidence and Mendelian Randomization. Nutrients. 2025; 17(20):3220. https://doi.org/10.3390/nu17203220
Chicago/Turabian StyleTang, Jiapeng, Yaqing Tan, Yanhua Chen, Fei Wang, Tingting Wang, Mengting Sun, Manjun Luo, Ye Chen, Yuting Wen, Zhanwen Li, and et al. 2025. "Vitamin A, Vitamin D, Iron, and Zinc in Relation to Anemia Risk: Observational Evidence and Mendelian Randomization" Nutrients 17, no. 20: 3220. https://doi.org/10.3390/nu17203220
APA StyleTang, J., Tan, Y., Chen, Y., Wang, F., Wang, T., Sun, M., Luo, M., Chen, Y., Wen, Y., Li, Z., Chen, K., Luo, K., & Qin, J. (2025). Vitamin A, Vitamin D, Iron, and Zinc in Relation to Anemia Risk: Observational Evidence and Mendelian Randomization. Nutrients, 17(20), 3220. https://doi.org/10.3390/nu17203220