Maternal Dietary Anthocyanidin, Dietary Inflammatory Potential, and Risk of Small-for-Gestational-Age in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Dietary Anthocyanidin
2.3. Assessment of Dietary Inflammatory Index
2.4. Assessment of Small-for-Gestational-Age
2.5. Assessment of Covariates
2.6. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. Anthocyanidin and Its Food Source
3.3. Anthocyanidin, Dietary Inflammatory Potential, and Small-for-Gestational-Age
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villar, J.; Cheikh Ismail, L.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.; Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014, 384, 857–868. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Fenton, T.R.; Ohuma, E.O.; Ismail, L.C.; Kennedy, S.H. INTERGROWTH-21st very preterm size at birth reference charts. Lancet 2016, 387, 844–845. [Google Scholar] [CrossRef]
- Lee, A.C.; Kozuki, N.; Cousens, S.; Stevens, G.A.; Blencowe, H.; Silveira, M.F.; Sania, A.; Rosen, H.E.; Schmiegelow, C.; Adair, L.S.; et al. Estimates of burden and consequences of infants born small for gestational age in low and middle income countries with INTERGROWTH-21(st) standard: Analysis of CHERG datasets. BMJ 2017, 358, j3677. [Google Scholar] [CrossRef]
- Lawn, J.E.; Ohuma, E.O.; Bradley, E.; Idueta, L.S.; Hazel, E.; Okwaraji, Y.B.; Erchick, D.J.; Yargawa, J.; Katz, J.; Lee, A.C.C.; et al. Small babies, big risks: Global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting. Lancet 2023, 401, 1707–1719. [Google Scholar] [CrossRef]
- Ashorn, P.; Ashorn, U.; Muthiani, Y.; Aboubaker, S.; Askari, S.; Bahl, R.; Black, R.E.; Dalmiya, N.; Duggan, C.P.; Hofmeyr, G.J.; et al. Small vulnerable newborns-big potential for impact. Lancet 2023, 401, 1692–1706. [Google Scholar] [CrossRef]
- Mohiddin, A.; Semrau, K.E.A.; Simon, J.; Langlois, E.V.; Shiffman, J.; Nabwera, H.; Hofmeyr, G.J.; Lawn, J.E.; Black, R.E.; Askari, S.; et al. The ethical, economic, and developmental imperative to prevent small vulnerable newborns and stillbirths: Essential actions to improve the country and global response. Lancet 2023, 401, 1636–1638. [Google Scholar] [CrossRef] [PubMed]
- Hofmeyr, G.J.; Black, R.E.; Rogozińska, E.; Heuer, A.; Walker, N.; Ashorn, P.; Ashorn, U.; Bhandari, N.; Bhutta, Z.A.; Koivu, A.; et al. Evidence-based antenatal interventions to reduce the incidence of small vulnerable newborns and their associated poor outcomes. Lancet 2023, 401, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M.; Wagner, C.L.; Hollis, B.W. Vitamin D Supplementation in Pregnancy and Lactation and Infant Growth. N. Engl. J. Med. 2018, 379, 1880–1881. [Google Scholar] [CrossRef]
- Longo, V.D.; Anderson, R.M. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022, 185, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, R.; Dreibelbis, C.; Kingshipp, B.L.; Wong, Y.P.; Abrams, B.; Gernand, A.D.; Rasmussen, K.M.; Siega-Riz, A.M.; Stang, J.; Casavale, K.O.; et al. Dietary patterns before and during pregnancy and birth outcomes: A systematic review. Am. J. Clin. Nutr. 2019, 109, 729s–756s. [Google Scholar] [CrossRef]
- Hwang, J.; Shin, D.; Kim, H.; Kwon, O. Association of maternal dietary patterns during pregnancy with small-for-gestational-age infants: Korean Mothers and Children’s Environmental Health (MOCEH) study. Am. J. Clin. Nutr. 2022, 115, 471–481. [Google Scholar] [CrossRef]
- Emond, J.A.; Karagas, M.R.; Baker, E.R.; Gilbert-Diamond, D. Better Diet Quality during Pregnancy Is Associated with a Reduced Likelihood of an Infant Born Small for Gestational Age: An Analysis of the Prospective New Hampshire Birth Cohort Study. J. Nutr. 2018, 148, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Crovetto, F.; Crispi, F.; Casas, R.; Martín-Asuero, A.; Borràs, R.; Vieta, E.; Estruch, R.; Gratacós, E. Effects of Mediterranean Diet or Mindfulness-Based Stress Reduction on Prevention of Small-for-Gestational Age Birth Weights in Newborns Born to At-Risk Pregnant Individuals: The IMPACT BCN Randomized Clinical Trial. JAMA 2021, 326, 2150–2160. [Google Scholar] [CrossRef]
- Lash, G.; MacPherson, A.; Liu, D.; Smith, D.; Charnock-Jones, S.; Baker, P. Abnormal fetal growth is not associated with altered chorionic villous expression of vascular endothelial growth factor mRNA. Mol. Hum. Reprod. 2001, 7, 1093–1098. [Google Scholar] [CrossRef]
- Witkamp, R.F. Bioactive Components in Traditional Foods Aimed at Health Promotion: A Route to Novel Mechanistic Insights and Lead Molecules? Annu. Rev. Food Sci. Technol. 2022, 13, 315–336. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef]
- Mor, G.; Aldo, P.; Alvero, A.B. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 2017, 17, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res. 2006, 40, 1014–1028. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Zafra-Stone, S.; Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J.A.; Bagchi, D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 2007, 51, 675–683. [Google Scholar] [CrossRef]
- Glover, B.J.; Martin, C. Anthocyanins. Curr. Biol. 2012, 22, R147–R150. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Luján-Barroso, L.; Slimani, N.; Romieu, I.; Touillaud, M.; Kaaks, R.; Teucher, B.; Mattiello, A.; Grioni, S.; et al. Estimation of the intake of anthocyanidins and their food sources in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2011, 106, 1090–1099. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Z.; Zhao, H.; Wang, X.; Pang, J.; Li, Q.; Yang, Y.; Ling, W. Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response manner in subjects with dyslipidemia. Redox Biol. 2020, 32, 101474. [Google Scholar] [CrossRef]
- Chen, L.W.; Aubert, A.M.; Shivappa, N.; Bernard, J.Y.; Mensink-Bout, S.M.; Geraghty, A.A.; Mehegan, J.; Suderman, M.; Polanska, K.; Hanke, W.; et al. Associations of maternal dietary inflammatory potential and quality with offspring birth outcomes: An individual participant data pooled analysis of 7 European cohorts in the ALPHABET consortium. PLoS Med. 2021, 18, e1003491. [Google Scholar] [CrossRef]
- Zhang, B.; Men, K.; Li, C.; Xu, K.; Mi, B.; Cai, J.; Pei, L.; Zhang, S.; Ma, Y.; Li, Y.; et al. Association Between Anti-Inflammatory Diet, Dietary Diversity, and Depressive Symptoms Among Chinese Pregnant Women. Nutrients 2025, 17, 2823. [Google Scholar] [CrossRef]
- Cheng, Y.; Yan, H.; Dibley, M.J.; Shen, Y.; Li, Q.; Zeng, L. Validity and reproducibility of a semi-quantitative food frequency questionnaire for use among pregnant women in rural China. Asia Pac. J. Clin. Nutr. 2008, 17, 166–177. [Google Scholar]
- Zhang, B.; Xu, K.; Mi, B.; Liu, H.; Wang, Y.; Huo, Y.; Ma, L.; Liu, D.; Jing, H.; Liu, J.; et al. Maternal Dietary Inflammatory Potential and Offspring Birth Outcomes in a Chinese Population. J. Nutr. 2023, 153, 1512–1523. [Google Scholar] [CrossRef] [PubMed]
- Institute of Nutrition and Food Safety; China Center for Disease Control and Prevention. China Food Composition Book 1, 6th ed.; Peking University Medical Press: Beijing, China, 2018. [Google Scholar]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, S.N.; Albert, P.S.; Mendola, P.; Sjaarda, L.A.; Boghossian, N.S.; Yeung, E.; Laughon, S.K. Differences in risk factors for incident and recurrent small-for-gestational-age birthweight: A hospital-based cohort study. BJOG 2014, 121, 1080–1088, discussion 1089. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, J.; Cheng, Y.; Feng, L.; Wang, S.; Dong, G. The relationship between extreme ambient temperature and small for gestational age: A cohort study of 1,436,480 singleton term births in China. Environ. Res. 2023, 232, 116412. [Google Scholar] [CrossRef]
- LIANG, K.-Y.; ZEGER, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Jiang, T.; Zhou, J.; Liu, W.; Tao, W.; He, J.; Jin, W.; Guo, H.; Yang, N.; Li, Y. The anti-inflammatory potential of protein-bound anthocyanin compounds from purple sweet potato in LPS-induced RAW264.7 macrophages. Food Res. Int. 2020, 137, 109647. [Google Scholar] [CrossRef]
- Frond, A.D.; Iuhas, C.I.; Stirbu, I.; Leopold, L.; Socaci, S.; Andreea, S.; Ayvaz, H.; Andreea, S.; Mihai, S.; Diaconeasa, Z.; et al. Phytochemical Characterization of Five Edible Purple-Reddish Vegetables: Anthocyanins, Flavonoids, and Phenolic Acid Derivatives. Molecules 2019, 24, 1536. [Google Scholar] [CrossRef]
- Jennings, A.; Welch, A.A.; Fairweather-Tait, S.J.; Kay, C.; Minihane, A.M.; Chowienczyk, P.; Jiang, B.; Cecelja, M.; Spector, T.; Macgregor, A.; et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am. J. Clin. Nutr. 2012, 96, 781–788. [Google Scholar] [CrossRef]
- Parmenter, B.H.; Thompson, A.S.; Bondonno, N.P.; Jennings, A.; Murray, K.; Perez-Cornago, A.; Hodgson, J.M.; Tresserra-Rimbau, A.; Kühn, T.; Cassidy, A. High diversity of dietary flavonoid intake is associated with a lower risk of all-cause mortality and major chronic diseases. Nat. Food 2025, 6, 668–680. [Google Scholar] [CrossRef]
- Bondonno, N.P.; Lewis, J.R.; Blekkenhorst, L.C.; Bondonno, C.P.; Shin, J.H.; Croft, K.D.; Woodman, R.J.; Wong, G.; Lim, W.H.; Gopinath, B.; et al. Association of flavonoids and flavonoid-rich foods with all-cause mortality: The Blue Mountains Eye Study. Clin. Nutr. 2020, 39, 141–150. [Google Scholar] [CrossRef]
- Goetz, M.E.; Judd, S.E.; Safford, M.M.; Hartman, T.J.; McClellan, W.M.; Vaccarino, V. Dietary flavonoid intake and incident coronary heart disease: The REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Am. J. Clin. Nutr. 2016, 104, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Augustia, V.A.S.; Oktaviani, I.; Setyati, W. Anthocyanin and Flavonoid Extracted from Watermelon Rind (Citrullus lanatus) with Two Different Colors of Watermelon Flesh: Yellow and Red. Mater. Sci. Forum 2020, 998, 261–265. [Google Scholar] [CrossRef]
- Li, G.; Zhu, Y.; Zhang, Y.; Lang, J.; Chen, Y.; Ling, W. Estimated daily flavonoid and stilbene intake from fruits, vegetables, and nuts and associations with lipid profiles in Chinese adults. J. Acad. Nutr. Diet. 2013, 113, 786–794. [Google Scholar] [CrossRef]
- Oh, J.S.; Kim, H.; Vijayakumar, A.; Kwon, O.; Kim, Y.; Chang, N. Association of Dietary Flavonoid Intake with Prevalence of Type 2 Diabetes Mellitus and Cardiovascular Disease Risk Factors in Korean Women Aged ≥ 30 Years. J. Nutr. Sci. Vitaminol. 2017, 63, 51–58. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef]
- Igwe, E.O.; Charlton, K.E.; Probst, Y.C. Usual dietary anthocyanin intake, sources and their association with blood pressure in a representative sample of Australian adults. J. Hum. Nutr. Diet. 2019, 32, 578–590. [Google Scholar] [CrossRef]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The Case for Anthocyanin Consumption to Promote Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef] [PubMed]
- Kent, K.; Yousefi, M.; do Rosario, V.A.; Fitzgerald, Z.; Broyd, S.; Visentin, D.; Roodenrys, S.; Walton, K.; Charlton, K.E. Anthocyanin intake is associated with improved memory in older adults with mild cognitive impairment. Nutr. Res. 2022, 104, 36–43. [Google Scholar] [CrossRef]
- Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 2013, 127, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Dummi Mahadevan, G.; Anand Iyer, V.; Mukherjee, T.K.; Haribhai Patel, V.; Kumar, R.; Siddiqui, N.; Nayak, M.; Maurya, P.K.; Kumar, P. Dietary flavonoids in health and diseases: A concise review of their role in homeostasis and therapeutics. Food Chem. 2025, 487, 144674. [Google Scholar] [CrossRef] [PubMed]
- Bell, W.; Thompson, A.S.; Bondonno, N.P.; Jennings, A.; Gaggl, M.; Kühn, T.; Cassidy, A. A flavonoid-rich diet is associated with a lower risk of chronic kidney disease: A prospective cohort study. Clin. Nutr. 2025, 51, 126–135. [Google Scholar] [CrossRef]
- Sen, S.; Rifas-Shiman, S.L.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Gold, D.R.; Gillman, M.W.; Oken, E. Dietary Inflammatory Potential during Pregnancy Is Associated with Lower Fetal Growth and Breastfeeding Failure: Results from Project Viva. J. Nutr. 2016, 146, 728–736. [Google Scholar] [CrossRef]
- de Freitas, N.P.A.; Carvalho, T.R.; Gonçalves, C.; da Silva, P.H.A.; de Melo Romão, L.G.; Kwak-Kim, J.; Cavalcante, M.B. The Dietary Inflammatory Index as a predictor of pregnancy outcomes: Systematic review and meta-analysis. J. Reprod. Immunol. 2022, 152, 103651. [Google Scholar] [CrossRef]
- Toboła-Wróbel, K.; Pietryga, M.; Dydowicz, P.; Napierała, M.; Brązert, J.; Florek, E. Association of Oxidative Stress on Pregnancy. Oxid. Med. Cell. Longev. 2020, 2020, 6398520. [Google Scholar] [CrossRef]
- Marseglia, L.; D’Angelo, G.; Manti, S.; Arrigo, T.; Barberi, I.; Reiter, R.J.; Gitto, E. Oxidative stress-mediated aging during the fetal and perinatal periods. Oxid. Med. Cell. Longev. 2014, 2014, 358375. [Google Scholar] [CrossRef]
- Saenjum, C.; Thim-Uam, A.; Khonthun, C.; Oonlao, P.; Nuntaboon, P.; Surh, Y.J.; Phromnoi, K. Anthocyanins from a new hybrid sweet potato peel cultivated in Northern Thailand mitigate LPS-induced inflammation and RANKL-induced osteoporosis by regulating ROS-mediated pathways. Inflammopharmacology 2025, 33, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.K.; Lee, J.W.; Choi, H.; Yim, S.V. Aronia melanocarpa Fruit Bioactive Fraction Attenuates LPS-Induced Inflammatory Response in Human Bronchial Epithelial Cells. Antioxidants 2020, 9, 816. [Google Scholar] [CrossRef]
- do Rosario, V.A.; Chang, C.; Spencer, J.; Alahakone, T.; Roodenrys, S.; Francois, M.; Weston-Green, K.; Hölzel, N.; Nichols, D.S.; Kent, K.; et al. Anthocyanins attenuate vascular and inflammatory responses to a high fat high energy meal challenge in overweight older adults: A cross-over, randomized, double-blind clinical trial. Clin. Nutr. 2021, 40, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, L.; Wu, Z.; Yao, L.; Wu, Y.; Huang, L.; Liu, K.; Zhou, X.; Gou, D. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci. Rep. 2014, 4, 6234. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | n = 2244 | Quartiles of Anthocyanidins, mg/d | p | |||
---|---|---|---|---|---|---|
Q1 (n = 561) | Q2 (n = 561) | Q3 (n = 561) | Q4 (n = 561) | |||
Anthocyanidin, range, mg/d | (0, 990.7) | (0, 13.3) | (13.3, 28.7) | (28.7, 67.8) | (67.8, 990.7) | |
Anthocyanidin, median (P25, P75) | 28.7 (13.3, 67.8) | 6.2 (3.7, 9.9) | 20.5 (16.7, 24.2) | 39.4 (34.3, 52.7) | 131.8 (103.1, 198.6) | |
Season of birth | <0.001 | |||||
Spring (March-May), n (%) | 467 (20.8) | 114 (25.7) | 144 (25.7) | 77 (13.7) | 48 (8.56) | |
Summer (June-August), n (%) | 509 (22.7) | 114 (20.3) | 114 (20.3) | 137 (24.4) | 133 (23.7) | |
Autumn (September-November), n (%) | 661 (29.5) | 149 (26.6) | 149 (26.6) | 194 (34.6) | 223 (39.8) | |
Winter (December-February), n (%) | 607 (27.1) | 154 (27.5) | 154 (27.5) | 153 (27.3) | 157 (28.0) | |
Multivitamin supplement, n (%) | 0.931 | |||||
Folic acid | 814 (36.3) | 201 (35.8) | 214 (38.2) | 206 (36.7) | 193 (34.4) | |
Folic acid plus iron | 704 (31.4) | 176 (31.4) | 158 (28.2) | 177 (31.6) | 193 (34.4) | |
Folic acid plus B-complex vitamins | 726 (32.4) | 184 (32.8) | 189 (33.7) | 178 (31.7) | 175 (31.2) | |
Maternal age (years), mean ± SD | 25.8 ± 4.1 | 26.0 ± 4.4 | 25.8 ± 4.2 | 25.5 ± 3.6 | 25.9 ± 4.1 | 0.193 |
Parity, n (%) | <0.001 | |||||
Nulliparous | 1095 (48.8) | 279 (49.7) | 296 (52.8) | 265 (47.2) | 255 (45.5) | |
Multiparous | 1149 (51.2) | 282 (50.3) | 365 (47.2) | 296 (52.8) | 306 (54.6) | |
Socioeconomic status a, n (%) | 0.800 | |||||
Lower | 747 (33.3) | 190 (33.9) | 178 (31.7) | 183 (32.6) | 196 (34.9) | |
Medium | 747 (33.3) | 195 (34.8) | 184 (32.8) | 198 (35.3) | 170 (30.3) | |
Upper | 750 (33.4) | 176 (31.4) | 199 (35.5) | 180 (32.1) | 195 (34.8) | |
Body mass index (kg/m2), mean ± SD | 21.4 ± 2.7 | 21.4 ± 2.8 | 21.5 ± 2.7 | 21.5 ± 2.7 | 21.4 ± 2.5 | 0.631 |
Passive smoking b, n (%) | 248 (11.1) | 67 (11.9) | 61 (10.9) | 54 (9.6) | 66 (11.8) | 0.354 |
Pregnancy complication c, n (%) | 70 (3.1) | 29 (5.2) | 17 (3.0) | 7 (1.3) | 17 (3.0) | <0.001 |
Birthweight, gram, mean ± SD | 3240.2 ± 430.3 | 3234.8 ± 428.5 | 3219.0 ± 435.6 | 3251.9 ± 427.5 | 3255.1 ± 429.8 | 0.114 |
Gestational age, weeks, mean ± SD | 39.7 ± 1.2 | 39.7 ± 1.2 | 39.6 ± 1.3 | 39.7 ± 1.2 | 39.7 ± 1.3 | 0.210 |
Small-for-gestational-age, n (%) | 234 (10.4) | 62 (11.1) | 57 (10.2) | 64 (11.4) | 51 (9.1) | 0.033 |
EDII, mean ± SD | −0.002 ± 1.805 | 0.63 ± 1.77 | 0.21 ± 1.74 | −0.11 ± 1.74 | 0.75 ± 1.69 | <0.001 |
Food Parameters | Correlation with Anthocyanidin | Quartiles of Anthocyanidin, mg/d | ||||
---|---|---|---|---|---|---|
Pearson’s r | p | Q1 | Q2 | Q3 | Q4 | |
Energy (kcal/d) | 0.24 | <0.001 | 2041.2 ± 678.8 | 2231.1 ± 675.6 | 2373.4 ± 678.6 | 2534.8 ± 719.3 |
Carbohydrate (g/d) | 0.22 | <0.001 | 322.1 ± 126.3 | 355.3 ± 125.6 | 383.3 ± 124 | 407.1 ± 132.5 |
Protein (g/d) | 0.18 | <0.001 | 58.1 ± 22.1 | 64.6 ± 22.3 | 67.7 ± 22.7 | 72.2 ± 24.1 |
Total fat (g/d) | 0.18 | <0.001 | 64.4 ± 21.9 | 68.7 ± 22.1 | 71.2 ± 24.7 | 76.9 ± 24.6 |
Saturated fat (g/d) | 0.13 | <0.001 | 13.8 ± 6.6 | 15.2 ± 6.7 | 15.7 ± 7.0 | 16.9 ± 7.5 |
MUFA (g/d) | 0.14 | <0.001 | 27.6 ± 7.0 | 29.3 ± 7.0 | 30.1 ± 8.0 | 31.3 ± 8.0 |
PUFA (g/d) | 0.17 | <0.001 | 17.6 ± 10.1 | 18.8 ± 10.4 | 19.8 ± 12.3 | 22.6 ± 11.9 |
n-3 fatty acids (g/d) | 0.15 | <0.001 | 5.2 ± 3.9 | 5.4 ± 4.0 | 5.7 ± 4.8 | 6.7 ± 4.7 |
n-6 fatty acids (g/d) | 0.17 | <0.001 | 17.7 ± 10.1 | 18.8 ± 10.5 | 19.9 ± 12.4 | 22.7 ± 12.0 |
Cholesterol (mg/d) | 0.04 | 0.064 | 197.8 ± 144.9 | 218.2 ± 142.3 | 217.7 ± 143.9 | 223.7 ± 152.9 |
Fiber (g/d) | 0.31 | <0.001 | 8.6 ± 4.8 | 10.1 ± 5.0 | 11.1 ± 5.4 | 13.6 ± 6.3 |
Vitamin A (μg/d, RAE) | 0.15 | <0.001 | 294.6 ± 259.5 | 336.8 ± 207.6 | 359.0 ± 219.2 | 435.3 ± 371.7 |
β-Carotene (μg/d) | 0.27 | <0.001 | 1613.5 ± 1166.4 | 1989.1 ± 1309.2 | 2246.2 ± 1431 | 2755.7 ± 1481.8 |
Thiamin (mg/d) | 0.29 | <0.001 | 0.7 ± 0.3 | 0.8 ± 0.3 | 0.9 ± 0.3 | 1.0 ± 0.3 |
Riboflavin (mg/d) | 0.25 | <0.001 | 0.9 ± 0.6 | 1.0 ± 0.5 | 1.1 ± 0.5 | 1.3 ± 0.6 |
Niacin (mg/d) | 0.29 | <0.001 | 11.3 ± 4.2 | 12.9 ± 4.3 | 13.8 ± 4.9 | 15.5 ± 5.3 |
Vitamin B6 (mg/d) | 0.35 | <0.001 | 1.1 ± 0.5 | 1.2 ± 0.5 | 1.4 ± 0.6 | 1.7 ± 0.6 |
Vitamin B12 (μg/d) | 0.004 | 0.842 | 4.0 ± 4.5 | 4.5 ± 4.3 | 4.8 ± 4.0 | 4.7 ± 5.0 |
Folic acid (μg/d) | 0.26 | <0.001 | 234.4 ± 119.6 | 270.8 ± 125.3 | 295.2 ± 142.4 | 351.5 ± 152.8 |
Vitamin C (mg/d) | 0.34 | <0.001 | 89.4 ± 56.7 | 103.3 ± 54.3 | 116.6 ± 58.4 | 148.7 ± 67 |
Vitamin D (μg/d) | 0.08 | <0.001 | 1.8 ± 1.5 | 2.0 ± 1.5 | 1.9 ± 1.4 | 2.2 ± 1.5 |
Vitamin E (mg/d) | 0.18 | <0.001 | 35.4 ± 18.8 | 37.6 ± 19.2 | 39.7 ± 23 | 45.1 ± 22.7 |
Mg (mg/d) | 0.23 | <0.001 | 369 ± 157.9 | 411.2 ± 159.6 | 442.6 ± 156.2 | 488.1 ± 168.1 |
Fe (mg/d) | 0.25 | <0.001 | 16.7 ± 6.3 | 18.7 ± 6.3 | 20.2 ± 7.6 | 22.7 ± 8.4 |
Zn (mg/d) | 0.21 | <0.001 | 5.8 ± 2.4 | 6.6 ± 2.4 | 6.9 ± 2.8 | 7.7 ± 3 |
Se (μg/d) | 0.14 | <0.001 | 26.9 ± 12.3 | 29.9 ± 12.9 | 32.1 ± 14.7 | 33.7 ± 15.2 |
Isoflavones (mg/d) | 0.12 | <0.001 | 0.8 ± 0.5 | 0.9 ± 0.5 | 0.9 ± 0.9 | 1.0 ± 0.8 |
Caffeine (g/d) | 0.04 | 0.070 | 1.0 ± 7.0 | 1.3 ± 8.0 | 1.2 ± 4.3 | 1.3 ± 4.7 |
Alcohol (g/d) | 0.02 | 0.449 | 0.01 ± 0.10 | 0.01 ± 0.08 | 0.003 ± 0.047 | 0.02 ± 0.34 |
Green/black tea (g/d) | 0.003 | 0.903 | 3.5 ± 34.7 | 3.9 ± 39.1 | 3.7 ± 20.5 | 3.3 ± 20.5 |
Onion (g/d) | 0.14 | <0.001 | 4.0 ± 9.6 | 5.1 ± 8.4 | 7.2 ± 12.2 | 8.9 ± 16.7 |
Garlic (g/d) | 0.02 | 0.336 | 3.7 ± 10.7 | 3.3 ± 5.5 | 4.8 ± 12.5 | 4.1 ± 5.7 |
Food Source | R2 | Model R2 |
---|---|---|
Anthocyanidins | ||
Watermelon | 0.986 | 0.986 |
Sweet potato | 0.006 | 0.991 |
Grapes | 0.004 | 0.995 |
Plum/apricot | 0.003 | 0.999 |
Eggplant | 0.001 | 1.000 |
Delphinidin | ||
Eggplant | 0.495 | 0.495 |
Sweet potato | 0.307 | 0.802 |
Grapes | 0.166 | 0.968 |
Persimmon | 0.031 | 0.999 |
Banana | 0.001 | 1.000 |
Cyanidin | ||
Watermelon | 0.995 | 0.995 |
Plum/apricot | 0.003 | 0.999 |
Eggplant | 0.001 | 1.000 |
Peonidin | ||
Sweet potato | 0.584 | 0.584 |
Grapes | 0.417 | 1.000 |
Continuous | Quartile of Anthocyanidin or EDII | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Total anthocyanidin | |||||
Cases/subjects | 234/2244 | 62/561 | 57/561 | 64/561 | 51/561 |
Median (25th, 75th), mg/d | 28.67 (13.29, 67.78) | 6.21 (3.68, 9.86) | 20.45 (16.65, 24.18) | 39.43 (34.32, 52.73) | 131.82 (103.12, 198.56) |
Model 1, OR (95%CI) | 0.96 (0.95, 0.97) | referent | 0.91 (0.69, 1.19) | 1.04 (0.88, 1.23) | 0.80 (0.66, 0.97) |
Model 2, OR (95%CI) | 0.96 (0.95, 0.97) | referent | 0.91 (0.70, 1.18) | 1.04 (0.89, 1.21) | 0.81 (0.66, 0.98) |
Individual anthocyanidin | |||||
Delphinidin | |||||
Cases/subjects | 234/2244 | 60/561 | 58/561 | 58/561 | 58/561 |
Median (25th, 75th), mg/d | 0.83 (0.44, 1.69) | 0.24 (0.15, 0.35) | 0.60 (0.51, 0.71) | 1.14 (0.99, 1.35) | 2.75 (2.26, 3.62) |
Model 1, OR (95%CI) | 1.02 (0.98, 1.06) | referent | 0.96 (0.85, 1.09) | 0.96 (0.84, 1.10) | 0.96 (0.88, 1.06) |
Model 2, OR (95%CI) | 1.03 (0.99, 1.07) | referent | 0.97 (0.85, 1.10) | 0.96 (0.84, 1.11) | 0.99 (0.93, 1.07) |
Cyanidin | |||||
Cases/subjects | 234/2244 | 60/561 | 57/561 | 66/561 | 51/561 |
Median (25th, 75th), mg/d | 23.56 (8.40, 62.56) | 3.53 (1.96, 5.40) | 15.30 (12.29, 19.99) | 33.89 (28.93, 45.81) | 125.08 (95.01, 188.15) |
Model 1, OR (95%CI) | 0.96 (0.95, 0.97) | referent | 0.94 (0.78, 1.14) | 1.11 (0.91, 1.36) | 0.84 (0.72, 0.97) |
Model 2, OR (95%CI) | 0.96 (0.95, 0.97) | referent | 0.93 (0.77, 1.12) | 1.10 (0.97, 1.34) | 0.83 (0.71, 0.97) |
Peonidin | |||||
Cases/subjects | 234/2244 | 65/554 | 55/566 | 56/571 | 58/553 |
Median (25th, 75th), mg/d | 2.20 (0.88, 4.64) | 0.27 (0.00, 0.53) | 1.51 (1.14, 1.85) | 3.06 (2.64, 3.65) | 9.85 (6.75, 13.40) |
Model 1, OR (95%CI) | 0.96 (0.94, 0.97) | referent | 0.81 (0.75, 0.87) | 0.81 (0.69, 0.95) | 0.88 (0.80, 0.97) |
Model 2, OR (95%CI) | 0.96 (0.96, 0.97) | referent | 0.81 (0.74, 0.89) | 0.80 (0.67, 0.95) | 0.89 (0.79, 1.00) |
EDII | |||||
Cases/subjects | 234/2244 | 42/561 | 68/561 | 63/561 | 61/561 |
Means ± SD | −0.002 ± 1.805 | 0.63 ± 1.77 | 0.21 ± 1.74 | −0.11 ± 1.74 | 0.75 ± 1.69 |
Model 1, OR (95%CI) | 1.08 (1.03, 1.12) | referent | 1.70 (1.43, 2.03) | 1.56 (1.22, 2.00) | 1.51 (1.11, 2.04) |
Model 2, OR (95%CI) | 1.08 (1.03, 1.12) | referent | 1.73 (1.43, 2.10) | 1.56 (1.19, 2.05) | 1.50 (1.08, 2.08) |
Continuous | Quartile of Anthocyanidin, mg/d | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Total anthocyanidin | |||||
Median (25th, 75th), mg/d | 28.67 (13.29, 67.78) | 6.21 (3.68, 9.86) | 20.45 (16.65, 24.18) | 39.43 (34.32, 52.73) | 131.82 (103.12, 198.56) |
Model 1, β (95%CI) | −0.36 (−0.41, −0.33) | referent | −0.42 (−0.58, −0.26) | −0.74 (−1.03, −0.45) | −1.39 (−1.76, −1.02) |
Model 2, β (95%CI) | −0.40 (−0.46, −0.34) | referent | −0.48 (−0.62, −0.34) | −0.88 (−1.17, −0.59) | −1.56 (−1.98, −1.14) |
Individual anthocyanidin | |||||
Delphinidin | |||||
Median (25th, 75th), mg/d | 0.44 (0.83, 1.69) | 0.24 (0.15, 0.35) | 0.60 (0.51, 0.71) | 1.14 (0.99, 1.35) | 2.75 (2.26, 3.62) |
Model 1, β (95%CI) | −0.65 (−0.70, −0.60) | referent | −0.56 (−0.65, −0.47) | −1.42 (−1.54, −1.30) | −1.94 (−2.04, −1.84) |
Model 2, β (95%CI) | −0.74 (−0.78, −0.69) | referent | −0.66 (−0.78, −0.55) | −1.56 (−1.72, −1.41) | −2.20 (−2.35, −2.05) |
Cyanidin | |||||
Median (25th, 75th), mg/d | 8.40 (23.56, 62.56) | 3.53 (1.96, 5.40) | 15.30 (12.29, 19.99) | 33.89 (28.93, 45.81) | 125.08 (95.01, 188.15) |
Model 1, β (95%CI) | −0.33 (−0.37, −0.29) | referent | −0.01 (−0.26, 0.24) | −0.44 (−0.66, −0.23) | −1.07 (−1.56, −0.59) |
Model 2, β (95%CI) | −0.36 (−0.41, −0.30) | referent | −0.07 (−0.27, 0.14) | −0.55 (−0.72, −0.39) | −1.21 (−1.70, −0.71) |
Peonidin | |||||
Median (25th, 75th), mg/d | 0.88 (2.20, 4.64) | 0.27 (0.00, 0.53) | 1.51 (1.14, 1.85) | 3.06 (2.64, 3.65) | 9.85 (6.75, 13.40) |
Model 1, β (95%CI) | −0.53 (−0.57, −0.51) | referent | −0.36 (−0.53, −0.18) | −1.06 (−1.13, −0.98) | −1.67 (−1.71, −1.63) |
Model 2, β (95%CI) | −0.58 (−0.61, −0.54) | referent | −0.37 (−0.57, −0.18) | −1.12 (−1.21, −1.02) | −1.78 (−1.87, −1.70) |
OR (95%CI) | p | |
---|---|---|
EDII | 1.08 (1.03, 1.12) | <0.001 |
Total anthocyanidin | ||
Anthocyanidin | 0.97 (0.97, 0.98) | <0.001 |
EDII | 1.10 (1.04, 1.17) | 0.002 |
Anthocyanidin × EDII | 0.96 (0.94, 0.98) | <0.001 |
Individual anthocyanidin | ||
Delphinidin | 1.05 (1.02, 1.09) | 0.005 |
EDII | 1.15 (1.12, 1.19) | <0.001 |
Delphinidin × EDII | 0.95 (0.93, 0.96) | <0.001 |
Cyanidin | 0.97 (0.97, 0.98) | <0.001 |
EDII | 1.10 (1.03, 1.17) | 0.004 |
Cyanidin × EDII | 0.97 (0.94, 0.99) | 0.010 |
Peonidin | 0.96 (0.92, 1.01) | 0.093 |
EDII | 1.11 (1.09, 1.14) | <0.001 |
Peonidin × EDII | 0.95 (0.92, 0.98) | 0.004 |
Tertiles of Energy-Adjusted Dietary Inflammatory Index | |||
---|---|---|---|
T1 | T2 | T3 | |
Total anthocyanidin | |||
Median (25th, 75th), mg/d | 41.24 (18.92, 112.50) | 30.66 (13.85, 67.83) | 21.12 (8.40, 36.39) |
OR (95%CI) | 1.08 (0.96, 1.21) | 1.04 (0.89, 1.22) | 0.67 (0.65, 0.68) |
Individual anthocyanidin | |||
Delphinidin | |||
Median (25th, 75th), mg/d | 1.35 (0.77, 2.61) | 0.84 (0.49, 1.52) | 0.49 (0.25, 0.91) |
OR (95%CI) | 1.10 (1.00, 1.45) | 1.02 (0.88, 1.18) | 0.88 (0.69, 1.10) |
Cyanidin | |||
Median (25th, 75th), mg/d | 32.95 (13.23, 107.22) | 25.10 (8.96, 63.72) | 17.03 (5.47, 33.31) |
OR (95%CI) | 1.10 (0.94, 1.29) | 0.95 (0.81, 1.11) | 0.91 (0.82, 1.02) |
Peonidin | |||
Median (25th, 75th), mg/d | 3.45 (1.57, 7.74) | 2.28 (1.05, 4.64) | 1.23 (0.53, 2.55) |
OR (95%CI) | 1.06 (0.97, 1.15) | 0.97 (0.90, 1.06) | 0.93 (0.87, 0.99) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Xu, K.; Mi, B.; Yan, H.; Wang, D.; Dang, S.; Men, K. Maternal Dietary Anthocyanidin, Dietary Inflammatory Potential, and Risk of Small-for-Gestational-Age in China. Nutrients 2025, 17, 3187. https://doi.org/10.3390/nu17203187
Zhang B, Xu K, Mi B, Yan H, Wang D, Dang S, Men K. Maternal Dietary Anthocyanidin, Dietary Inflammatory Potential, and Risk of Small-for-Gestational-Age in China. Nutrients. 2025; 17(20):3187. https://doi.org/10.3390/nu17203187
Chicago/Turabian StyleZhang, Binyan, Kun Xu, Baibing Mi, Hong Yan, Duolao Wang, Shaonong Dang, and Ke Men. 2025. "Maternal Dietary Anthocyanidin, Dietary Inflammatory Potential, and Risk of Small-for-Gestational-Age in China" Nutrients 17, no. 20: 3187. https://doi.org/10.3390/nu17203187
APA StyleZhang, B., Xu, K., Mi, B., Yan, H., Wang, D., Dang, S., & Men, K. (2025). Maternal Dietary Anthocyanidin, Dietary Inflammatory Potential, and Risk of Small-for-Gestational-Age in China. Nutrients, 17(20), 3187. https://doi.org/10.3390/nu17203187