Exploring the Impact and Mechanisms of Coffee and Its Active Ingredients on Depression, Anxiety, and Sleep Disorders
Abstract
1. Introduction
2. Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Search Strategy
3. Associations Between SDs and Depression, Anxiety
4. Effects of Coffee and Its Active Ingredients on Depression
4.1. Animal Experimental Study on the Effects of Coffee and Its Active Ingredients on Depression
4.2. Clinical Study on the Effects of Coffee and Its Active Ingredients on Depression
4.3. Epidemiological Study on the Effects of Coffee and Its Active Ingredients on Depression
4.4. The Bidirectional Effects of Coffee and Its Active Ingredients on Depression and Future Research Directions
5. Effects of Coffee and Its Active Ingredients on Anxiety
5.1. Animal Experimental Study on the Effects of Coffee and Its Active Ingredients on Anxiety
5.2. Clinical Study on the Effects of Coffee and Its Active Ingredients on Anxiety
5.3. Epidemiological Study on the Effects of Coffee and Its Active Ingredients on Anxiety
5.4. Bidirectional Regulation of Anxiety by Coffee and Its Active Ingredients Intake and Future Research Directions
6. Effects of Coffee and Its Active Ingredients on SDs
6.1. Animal Experimental Study on the Effects of Coffee and Its Active Ingredients on SDs
6.2. Clinical Study on the Effects of Coffee and Its Active Ingredients on SDs
6.3. Potential Research Directions for Caffeine’s Effects on Sleep
7. Potential Mechanisms of Action of the Main Active Ingredients in Coffee on Depression, Anxiety, and Sleep Disorders
7.1. Caffeine and Adenosine Receptors
7.2. Monoamine Neurotransmitter Regulation
7.2.1. Effects of Caffeine on DA
7.2.2. Effects of Coffee and Its Active Ingredients on Monoamine Mechanisms in Depression
7.2.3. The Effect of Caffeine on Anxiety in the Threat–Fear Circuit
7.2.4. Mechanisms of Caffeine’s Effects on Sleep and Circadian Rhythm (CR)
7.3. Non-Monoamine Neurotransmitter Regulation
7.3.1. Caffeine Regulates Neural Function Through BDNF Signaling Pathway
7.3.2. Caffeine Regulates Neuronal Function via Them Gamma-Aminobutyric Acid (GABA) Pathway
7.4. Oxidative Stress (OS) and Inflammation
7.4.1. The Mechanism of Action of Coffee and Its Active Ingredients on Emotions Under OS
7.4.2. Mechanisms of Action of Coffee and Its Active Ingredients in Inflammation
7.5. Caffeine’s Regulatory Mechanism on the HPA Axis
7.6. Mechanisms of Coffee and Its Active Ingredients Influencing Depression, Anxiety, and SDs via the Microbiota-Gut–Brain Axis (MGB) Axis
7.6.1. MGB Axis and Depression
7.6.2. MGB Axis and Anxiety
7.6.3. Effects of Caffeine on Sleep via Intestinal Flora
8. Conclusions and Outlook
9. Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SDs | Sleep disorders |
MDD | Major depressive disorder |
TCAs | Tricyclic drugs |
5-HT | Serotonin |
SSRIs | Selective Serotonin Reuptake Inhibitor(s) |
NE | Norepinephrine |
SNRI | Serotonin–norepinephrine reuptake inhibitors |
DXT | Duloxetine |
DVS | Desvenlafaxine succinate |
GAD | Generalized Anxiety Disorder |
SAD | Social Anxiety Disorder |
PTSD | Post-traumatic stress disorder |
OCD | Obsessive–compulsive disorder |
PSD | Post-stroke depression |
CGA | Chlorogenic acid |
FA | Ferulic acid |
CA | Caffeic acid |
DA | Dopamine |
PFC | Prefrontal Cortex |
A1R | A1 receptors |
A2AR | A2A receptors |
ACTH | adrenocorticotropic hormone |
DMN | Default mode network |
MAO-A | Monoamine oxidase-A |
DSM-IV | Diagnostic and Statistical Manual of Mental Disorders-IV |
SPT | Sugar preference test |
FST | Forced swim test |
TST | Tail suspension test |
OFT | Open field test |
IL-6 | Interleukin-6 |
TNF-α | Tumor necrosis factor-α |
SOD | Superoxide dismutase |
GPx | Glutathione peroxidase |
PDD | Postpartum Depression |
IDO | Indoleamine 2, 3-dioxygenase |
LPS | Lipopolysaccharide |
UA | Uric acid |
3-HK | 3-Hydroxykynurenine |
KYN | Kynurenine |
KP | Kynurenine pathway |
CNS | Central Nervous System |
CUS | Chronic unpredictable stress |
LTP | Long-term potentiation |
CORT | Corticosterone |
MAPK | Mitogen-activated protein kinase |
ERK | Extracellular regulated protein kinases |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
CWIRS | Chronic water immersion restraint stress |
CMS | Chronic Mild Stress |
PGC-1α | Peroxisome proliferators-activated receptor γ coactivator lα |
KAT | Kynurenine aminotransferase |
KYNA | Kynurenic acid |
SRS | Stress-induced stress |
PGE2 | Prostaglandin E2 |
BrdU | Bromodeoxyuridine |
DCX | Doublecortin |
IL-1β | Interleukin-1β |
SNAP-25 | Synaptosomal-Associated Protein 25 |
IFN-γ | Interferon-gamma |
MDA | Malondialdehyde |
BDNF | Brain-derived neurotrophic factor |
GSH | Glutathione |
GR | Glucocorticoid receptor |
ADRA1A | α1Aadrenoreceptor |
TBARS | Thiobarbituric acid reactive substances |
AChE | Acetylcholinesterase |
OS | Oxidative stress |
Nrf2 | Nuclear factor-erythroid 2 related factor 2 |
EPM | Elevated plus maze test |
LDB | Light/dark box test |
IAT | Inhibitory avoidance test |
FET | Free exploration test |
PNS | Peripheral nervous system |
MWM | Morris water maze |
MBT | Marble burying test |
5-HTP | 5-Hydroxytryptophan |
REM | Rapid eye movement sleep |
NREM | Non-rapid eye movement sleep |
Per1/Per2 | Period Circadian Regulator 1/2 |
α1-AR | α1-adrenergic receptor |
iTBS | Intermittent burst theta stimulation |
dmPFC | Dorsomedial prefrontal cortex |
SBP | Systolic Blood Pressure |
DBP | Diastolic Blood Pressure |
CR | Circadian Rhythm |
EEG | Electroencephalogram |
ICCA | Isochlorogenic acid |
SYG | Syringaresinol-di-O-glucoside |
GSK-3β | Glycogen synthase kinase-3β |
OAB | Overactive bladder |
CSF | Cerebrospinal fluid |
SCN | Suprachiasmatic nucleus |
CREB | Cyclic-AMP response binding protein |
OXRs | Orexin receptor antagonists |
NMDA | N-methyl-d-aspartate |
PKC | Protein kinase C |
cAMP | Cyclic adenosine monophosphate |
LS | Lateral septal |
SNP | Single nucleotide polymorphism |
PAG | Periaqueductal gray |
mPFC | Medial prefrontal cortex |
AANAT | Aryl alkylamine N-acetyltransferase |
CRTC1 | CREB-regulated transcription coactivator 1 |
CRE | cAMP response element |
PI3K | Phosphatidylinositol 3-kinase |
mTOR | Mechanistic target of rapamycin |
TrkB | Tropomyosin-related kinase B |
PLC-γ | Phospholipase C-γ |
AMPAR | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor |
NAc | Nucleus accumbens |
IRS2 | Insulin receptor substrate 2 |
CAFLTP | Caffeine-induced LTP |
P-CaMKII | Phosphorylated calcium calmodulin kinase I |
GABA | Gamma-aminobutyric acid |
CCK | Cholecystokinin |
AvBNST | Anteroventral nucleus of the bed nucleus of the stria terminalis |
VTA | Ventral tegmental area |
DRN | Dorsal raphe nucleus |
BLA | Basal lateral amygdala |
ROS | Reactive oxygen species |
HPA axis | hypothalamic–pituitary–adrenal axis |
GCs | Glucocorticoids |
H2O2 | Hydrogen peroxide |
·OH | Hydroxyl radicals |
ROO· | Peroxyl radicals |
1O2 | Singlet oxygen |
JNK1/2 | c-Jun N-terminal kinase 1/2 |
CCL2 | C-C motif chemokine ligand-2 |
CRP | C-reactive protein |
TDO | Tryptophan 2,3-dioxygenase |
NKA | Na+/K+-ATPase |
IκBα | Inhibitor of nuclear factor kappa-Bα |
CRH | Corticotropin releasing hormone |
CAR | Cortisol awakening response |
CRF | Corticotrophin releasing factor |
MRs | Mineralocorticoid receptors |
MGB axis | Microbiota-Gut–Brain axis |
SCFAs | Short-chain fatty acids |
HIF-1 | Hypoxia-inducible factor-1 |
CUMS | Chronic unpredictable mild stress |
FMT | Fecal microbiota transplantation |
4EPS | 4-Ethylphenyl sulfate |
MP | Muramyl peptides |
EC | Enterochromaffin cells |
References
- Krystal, A.D. Psychiatric disorders and sleep. Neurol. Clin. 2012, 30, 1389–1413. [Google Scholar] [CrossRef]
- Borges, C.; Ellis, J.G.; Ruivo Marques, D. The Role of Sleep Effort as a Mediator Between Anxiety and Depression. Psychol. Rep. 2024, 127, 2287–2306. [Google Scholar] [CrossRef]
- Cui, R. Editorial: A Systematic Review of Depression. Curr. Neuropharmacol. 2015, 13, 480. [Google Scholar] [CrossRef] [PubMed]
- Chellappa, S.L.; Aeschbach, D. Sleep and anxiety: From mechanisms to interventions. Sleep Med. Rev. 2022, 61, 101583. [Google Scholar] [CrossRef]
- Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- Pilcher, J.J.; Huffcutt, A.I. Effects of sleep deprivation on performance: A meta-analysis. Sleep 1996, 19, 318–326. [Google Scholar] [CrossRef]
- Harrison, Y.; Horne, J.A. The impact of sleep deprivation on decision making: A review. J. Exp. Psychol. Appl. 2000, 6, 236–249. [Google Scholar] [CrossRef]
- Pollmächer, T.; Wetter, T.C. Schlafstörungen und Psychische Erkrankungen: Eine Einführung für Ärzte und Psychologen; Kohlhammer: Stuttgart, Germany, 2017. [Google Scholar]
- Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol. 2015, 23, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Cleare, A.; Pariante, C.M.; Young, A.H.; Anderson, I.M.; Christmas, D.; Cowen, P.J.; Dickens, C.; Ferrier, I.N.; Geddes, J.; Gilbody, S.; et al. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. J. Psychopharmacol. 2015, 29, 459–525. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, R.; Stenkrona, P.; Takano, A.; Svensson, J.; Andersson, M.; Nag, S.; Asami, Y.; Hirano, Y.; Halldin, C.; Lundberg, J. Venlafaxine ER Blocks the Norepinephrine Transporter in the Brain of Patients with Major Depressive Disorder: A PET Study Using [18F]FMeNER-D2. Int. J. Neuropsychopharmacol. 2019, 22, 278–285. [Google Scholar] [CrossRef]
- Morin, C.M.; Vallières, A.; Guay, B.; Ivers, H.; Savard, J.; Mérette, C.; Bastien, C.; Baillargeon, L. Cognitive behavioral therapy, singly and combined with medication, for persistent insomnia: A randomized controlled trial. Jama 2009, 301, 2005–2015. [Google Scholar] [CrossRef] [PubMed]
- Katzman, M.A.; Bleau, P.; Blier, P.; Chokka, P.; Kjernisted, K.; Van Ameringen, M.; Antony, M.M.; Bouchard, S.; Brunet, A.; Flament, M.; et al. Canadian clinical practice guidelines for the management of anxiety, posttraumatic stress and obsessive-compulsive disorders. BMC Psychiatry 2014, 14 (Suppl. 1), S1. [Google Scholar] [CrossRef]
- Carmi, L.; Tendler, A.; Bystritsky, A.; Hollander, E.; Blumberger, D.M.; Daskalakis, J.; Ward, H.; Lapidus, K.; Goodman, W.; Casuto, L.; et al. Efficacy and Safety of Deep Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Prospective Multicenter Randomized Double-Blind Placebo-Controlled Trial. Am. J. Psychiatry 2019, 176, 931–938. [Google Scholar] [CrossRef]
- De Crescenzo, F.; D’Alò, G.L.; Ostinelli, E.G.; Ciabattini, M.; Di Franco, V.; Watanabe, N.; Kurtulmus, A.; Tomlinson, A.; Mitrova, Z.; Foti, F.; et al. Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: A systematic review and network meta-analysis. Lancet 2022, 400, 170–184. [Google Scholar] [CrossRef]
- Rothmore, J. Antidepressant-induced sexual dysfunction. Med. J. Aust. 2020, 212, 329–334. [Google Scholar] [CrossRef]
- Zeng, L.F.; Cao, Y.; Wang, L.; Dai, Y.K.; Hu, L.; Wang, Q.; Zhu, L.T.; Bao, W.H.; Zou, Y.P.; Chen, Y.B.; et al. Role of Medicinal Plants for Liver-Qi Regulation Adjuvant Therapy in Post-stroke Depression: A Systematic Review of Literature. Phytother. Res. PTR 2017, 31, 40–52. [Google Scholar] [CrossRef]
- Dai, W.; Feng, K.; Sun, X.; Xu, L.; Wu, S.; Rahmand, K.; Jia, D.; Han, T. Natural products for the treatment of stress-induced depression: Pharmacology, mechanism and traditional use. J. Ethnopharmacol. 2022, 285, 114692. [Google Scholar] [CrossRef]
- Ernst, E. Herbal remedies for anxiety—A systematic review of controlled clinical trials. Phytomedicine Int. J. Phytother. Phytopharm. 2006, 13, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.M.; Piao, J.H.; Xu, X.L.; Zhu, L.; Yang, L.; Lin, F.L.; Chen, J.; Jiang, J.G. Chinese medicines with sedative-hypnotic effects and their active components. Sleep Med. Rev. 2016, 29, 108–118. [Google Scholar] [CrossRef]
- Hu, G.L.; Wang, X.; Zhang, L.; Qiu, M.H. The sources and mechanisms of bioactive ingredients in coffee. Food Funct. 2019, 10, 3113–3126. [Google Scholar] [CrossRef] [PubMed]
- Frary, C.D.; Johnson, R.K.; Wang, M.Q. Food sources and intakes of caffeine in the diets of persons in the United States. J. Am. Diet. Assoc. 2005, 105, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, Z.H.; Shen, D.; Zhang, P.D.; Song, W.Q.; Zhang, W.T.; Huang, Q.M.; Chen, P.L.; Zhang, X.R.; Mao, C. Association of Sugar-Sweetened, Artificially Sweetened, and Unsweetened Coffee Consumption With All-Cause and Cause-Specific Mortality: A Large Prospective Cohort Study. Ann. Intern. Med. 2022, 175, 909–917. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Bhatti, S.K.; Patil, H.R.; DiNicolantonio, J.J.; Lucan, S.C.; Lavie, C.J. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 1043–1051. [Google Scholar] [CrossRef]
- Muley, A.; Muley, P.; Shah, M. Coffee to reduce risk of type 2 diabetes?: A systematic review. Curr. Diabetes Rev. 2012, 8, 162–168. [Google Scholar] [CrossRef]
- van Dam, R.M.; Hu, F.B. Coffee consumption and risk of type 2 diabetes: A systematic review. Jama 2005, 294, 97–104. [Google Scholar] [CrossRef]
- Iwamoto, H.; Izumi, K.; Natsagdorj, A.; Naito, R.; Makino, T.; Kadomoto, S.; Hiratsuka, K.; Shigehara, K.; Kadono, Y.; Narimoto, K.; et al. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells. Prostate 2019, 79, 468–479. [Google Scholar] [CrossRef]
- Barré, T.; Fontaine, H.; Ramier, C.; Di Beo, V.; Pol, S.; Carrieri, P.; Marcellin, F.; Cagnot, C.; Dorival, C.; Zucman-Rossi, J.; et al. Elevated coffee consumption is associated with a lower risk of elevated liver fibrosis biomarkers in patients treated for chronic hepatitis B (ANRS CO22 Hepather cohort). Clin. Nutr. 2022, 41, 610–619. [Google Scholar] [CrossRef]
- Schmit, S.L.; Rennert, H.S.; Rennert, G.; Gruber, S.B. Coffee Consumption and the Risk of Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2016, 25, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A. Effects of coffee/caffeine on brain health and disease: What should I tell my patients? Pract. Neurol. 2016, 16, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar] [CrossRef]
- Yun, H.; Su, W.; You, T.; Wang, J.; Ying, Y.; Wang, C.; Ren, Y.; Lu, B.; Li, Y.; Liu, C. Boosting physical performance in SD rats through brain-targeted delivery of caffeine-loaded transferrin liposomes. Heliyon 2024, 10, e34617. [Google Scholar] [CrossRef]
- Picó-Pérez, M.; Magalhães, R.; Esteves, M.; Vieira, R.; Castanho, T.C.; Amorim, L.; Sousa, M.; Coelho, A.; Moreira, P.S.; Cunha, R.A.; et al. Coffee consumption decreases the connectivity of the posterior Default Mode Network (DMN) at rest. Front. Behav. Neurosci. 2023, 17, 1176382. [Google Scholar] [CrossRef]
- Magalhães, R.; Picó-Pérez, M.; Esteves, M.; Vieira, R.; Castanho, T.C.; Amorim, L.; Sousa, M.; Coelho, A.; Fernandes, H.M.; Cabral, J.; et al. Habitual coffee drinkers display a distinct pattern of brain functional connectivity. Mol. Psychiatry 2021, 26, 6589–6598. [Google Scholar] [CrossRef]
- Benca, R.M.; Okawa, M.; Uchiyama, M.; Ozaki, S.; Nakajima, T.; Shibui, K.; Obermeyer, W.H. Sleep and mood disorders. Sleep Med. Rev. 1997, 1, 45–56. [Google Scholar] [CrossRef]
- Neckelmann, D.; Mykletun, A.; Dahl, A.A. Chronic insomnia as a risk factor for developing anxiety and depression. Sleep 2007, 30, 873–880. [Google Scholar] [CrossRef]
- Zhai, P.; Liu, H.; Zhang, Y.; Huang, T.; Xiong, C.; Liu, Y.; Wang, G.; Chen, X.; Tan, J.; Jiao, C.; et al. Correlation analysis between sleep quality and the mental health status of female sex workers during the COVID-19 pandemic in Hubei Province. Front. Endocrinol. 2023, 14, 1193266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Huang, T.; Zhou, F.; Huang, A.D.; Ji, X.Q.; He, L.; Geng, Q.; Wang, J.; Mei, C.; Xu, Y.J.; et al. Correlation between Anxiety, Depression, and Sleep Quality in College Students. Biomed. Environ. Sci. BES 2022, 35, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhang, Y.; Huang, T.; Zhou, F.; Xiong, C.; Liu, Y.; Zhai, P.; Wang, G.; Tan, J.; Jiao, C.; et al. A description of the current status of chronic fatigue syndrome and associated factors among university students in Wuhan, China. Front. Psychiatry 2022, 13, 1047014. [Google Scholar] [CrossRef]
- Fava, M.; Rush, A.J.; Alpert, J.E.; Balasubramani, G.K.; Wisniewski, S.R.; Carmin, C.N.; Biggs, M.M.; Zisook, S.; Leuchter, A.; Howland, R.; et al. Difference in treatment outcome in outpatients with anxious versus nonanxious depression: A STAR*D report. Am. J. Psychiatry 2008, 165, 342–351. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Breslau, N.; Roth, T.; Rosenthal, L.; Andreski, P. Sleep disturbance and psychiatric disorders: A longitudinal epidemiological study of young adults. Biol. Psychiatry 1996, 39, 411–418. [Google Scholar] [CrossRef]
- Franzen, P.L.; Buysse, D.J. Sleep disturbances and depression: Risk relationships for subsequent depression and therapeutic implications. Dialogues Clin. Neurosci. 2008, 10, 473–481. [Google Scholar] [CrossRef]
- Oakes, D.J.; Pearce, H.A.; Roberts, C.; Gehrman, P.G.; Lewis, C.; Jones, I.; Lewis, K.J.S. Associations between comorbid anxiety and sleep disturbance in people with bipolar disorder: Findings from actigraphy and subjective sleep measures. J. Affect. Disord. 2022, 309, 165–171. [Google Scholar] [CrossRef]
- Liu, M.Y.; Yin, C.Y.; Zhu, L.J.; Zhu, X.H.; Xu, C.; Luo, C.X.; Chen, H.; Zhu, D.Y.; Zhou, Q.G. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat. Protoc. 2018, 13, 1686–1698. [Google Scholar] [CrossRef] [PubMed]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977, 229, 327–336. [Google Scholar]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef]
- Katz, R.J.; Roth, K.A.; Carroll, B.J. Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neurosci. Biobehav. Rev. 1981, 5, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Castellano, S.; Pajak, A.; Galvano, F. Coffee, tea, caffeine and risk of depression: A systematic review and dose-response meta-analysis of observational studies. Mol. Nutr. Food Res. 2016, 60, 223–234. [Google Scholar] [CrossRef]
- Song, J.; Zhou, N.; Ma, W.; Gu, X.; Chen, B.; Zeng, Y.; Yang, L.; Zhou, M. Modulation of gut microbiota by chlorogenic acid pretreatment on rats with adrenocorticotropic hormone induced depression-like behavior. Food Funct. 2019, 10, 2947–2957. [Google Scholar] [CrossRef]
- Pechlivanova, D.M.; Tchekalarova, J.D.; Alova, L.H.; Petkov, V.V.; Nikolov, R.P.; Yakimova, K.S. Effect of long-term caffeine administration on depressive-like behavior in rats exposed to chronic unpredictable stress. Behav. Pharmacol. 2012, 23, 339–347. [Google Scholar] [CrossRef]
- Min, J.; Cao, Z.; Cui, L.; Li, F.; Lu, Z.; Hou, Y.; Yang, H.; Wang, X.; Xu, C. The association between coffee consumption and risk of incident depression and anxiety: Exploring the benefits of moderate intake. Psychiatry Res. 2023, 326, 115307. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, S.; Ma, W.; Wang, Q.; Li, Y.; Xia, C.; Xu, Y.; Zhang, T.; Yang, L.; Zhou, M. The Impact of Instant Coffee and Decaffeinated Coffee on the Gut Microbiota and Depression-Like Behaviors of Sleep-Deprived Rats. Front. Microbiol. 2022, 13, 778512. [Google Scholar] [CrossRef]
- Grzelczyk, J.; Budryn, G.; Peña-García, J.; Szwajgier, D.; Gałązka-Czarnecka, I.; Oracz, J.; Pérez-Sánchez, H. Evaluation of the inhibition of monoamine oxidase A by bioactive coffee compounds protecting serotonin degradation. Food Chem. 2021, 348, 129108. [Google Scholar] [CrossRef]
- Hall, S.; Arora, D.; Anoopkumar-Dukie, S.; Grant, G.D. Effect of Coffee in Lipopolysaccharide-Induced Indoleamine 2,3-Dioxygenase Activation and Depressive-like Behavior in Mice. J. Agric. Food Chem. 2016, 64, 8745–8754. [Google Scholar] [CrossRef]
- Kaster, M.P.; Machado, N.J.; Silva, H.B.; Nunes, A.; Ardais, A.P.; Santana, M.; Baqi, Y.; Müller, C.E.; Rodrigues, A.L.; Porciúncula, L.O.; et al. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc. Natl. Acad. Sci. USA 2015, 112, 7833–7838. [Google Scholar] [CrossRef]
- Mao, Z.F.; Ouyang, S.H.; Zhang, Q.Y.; Wu, Y.P.; Wang, G.E.; Tu, L.F.; Luo, Z.; Li, W.X.; Kurihara, H.; Li, Y.F.; et al. New insights into the effects of caffeine on adult hippocampal neurogenesis in stressed mice: Inhibition of CORT-induced microglia activation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 10998–11014. [Google Scholar] [CrossRef]
- Fang, C.; Hayashi, S.; Du, X.; Cai, X.; Deng, B.; Zheng, H.; Ishido, S.; Tsutsui, H.; Sheng, J. Caffeine protects against stress-induced murine depression through activation of PPARγC1α-mediated restoration of the kynurenine pathway in the skeletal muscle. Sci. Rep. 2021, 11, 7287. [Google Scholar] [CrossRef]
- Turgeon, S.M.; Townsend, S.E.; Dixon, R.S.; Hickman, E.T.; Lee, S.M. Chronic caffeine produces sexually dimorphic effects on amphetamine-induced behavior, anxiety and depressive-like behavior in adolescent rats. Pharmacol. Biochem. Behav. 2016, 143, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ullah, S.; Ullah, S.; Ali, N.; Huma, Z.; Yaşar, S.; Khan, S.; Haq, R.U.; Khan, A.; Khan, I. Antidepressant effects of SY-2476: A caffeine derivative’s role in A1/A2(A) gene expression modulation in corticosterone-induced depressed rats. Neurosci. Lett. 2025, 845, 138059. [Google Scholar] [CrossRef] [PubMed]
- Basu Mallik, S.; Mudgal, J.; Hall, S.; Kinra, M.; Grant, G.D.; Nampoothiri, M.; Anoopkumar-Dukie, S.; Arora, D. Remedial effects of caffeine against depressive-like behaviour in mice by modulation of neuroinflammation and BDNF. Nutr. Neurosci. 2022, 25, 1836–1844. [Google Scholar] [CrossRef] [PubMed]
- Machado, N.J.; Simões, A.P.; Silva, H.B.; Ardais, A.P.; Kaster, M.P.; Garção, P.; Rodrigues, D.I.; Pochmann, D.; Santos, A.I.; Araújo, I.M.; et al. Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A(2A) Receptor in Hippocampal Glutamate Synapses. Mol. Neurobiol. 2017, 54, 1552–1563. [Google Scholar] [CrossRef]
- Clark, L.; Chamberlain, S.R.; Sahakian, B.J. Neurocognitive mechanisms in depression: Implications for treatment. Annu. Rev. Neurosci. 2009, 32, 57–74. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Dangi, D.S.; Krishnamurthy, S. Repeated caffeine administration aggravates post-traumatic stress disorder-like symptoms in rats. Physiol. Behav. 2019, 211, 112666. [Google Scholar] [CrossRef] [PubMed]
- Machado, N.J.; Ardais, A.P.; Nunes, A.; Szabó, E.C.; Silveirinha, V.; Silva, H.B.; Kaster, M.P.; Cunha, R.A. Impact of Coffee Intake on Measures of Wellbeing in Mice. Nutrients 2024, 16, 2920. [Google Scholar] [CrossRef]
- Zeni, A.L.; Zomkowski, A.D.; Maraschin, M.; Rodrigues, A.L.; Tasca, C.I. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: Evidence for the involvement of the serotonergic system. Eur. J. Pharmacol. 2012, 679, 68–74. [Google Scholar] [CrossRef]
- Takeda, H.; Tsuji, M.; Miyamoto, J.; Masuya, J.; Iimori, M.; Matsumiya, T. Caffeic acid produces antidepressive- and/or anxiolytic-like effects through indirect modulation of the alpha 1A-adrenoceptor system in mice. Neuroreport 2003, 14, 1067–1070. [Google Scholar] [CrossRef]
- Kasimay Cakir, O.; Ellek, N.; Salehin, N.; Hamamcı, R.; Keleş, H.; Kayalı, D.G.; Akakın, D.; Yüksel, M.; Özbeyli, D. Protective effect of low dose caffeine on psychological stress and cognitive function. Physiol. Behav. 2017, 168, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Güvel, M.C.; Aykan, U.; Paykal, G.; Uluoğlu, C. Chronic administration of caffeine, modafinil, AVL-3288 and CX516 induces time-dependent complex effects on cognition and mood in an animal model of sleep deprivation. Pharmacol. Biochem. Behav. 2024, 241, 173793. [Google Scholar] [CrossRef] [PubMed]
- Stefanello, N.; Schmatz, R.; Pereira, L.B.; Rubin, M.A.; da Rocha, J.B.; Facco, G.; Pereira, M.E.; Mazzanti, C.M.; Passamonti, S.; Rodrigues, M.V.; et al. Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats. Mol. Cell. Biochem. 2014, 388, 277–286. [Google Scholar] [CrossRef]
- Guo, J.T.; Li, H.Y.; Cheng, C.; Shi, J.X.; Ruan, H.N.; Li, J.; Liu, C.M. Isochlorogenic acid A ameliorated lead-induced anxiety-like behaviors in mice by inhibiting ferroptosis-mediated neuroinflammation via the BDNF/Nrf2/GPX4 pathways. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2024, 190, 114814. [Google Scholar] [CrossRef]
- Bouayed, J.; Rammal, H.; Dicko, A.; Younos, C.; Soulimani, R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J. Neurol. Sci. 2007, 262, 77–84. [Google Scholar] [CrossRef]
- Miyazaki, S.; Fujita, Y.; Oikawa, H.; Takekoshi, H.; Soya, H.; Ogata, M.; Fujikawa, T. Combination of syringaresinol-di-O-β-D-glucoside and chlorogenic acid shows behavioral pharmacological anxiolytic activity and activation of hippocampal BDNF-TrkB signaling. Sci. Rep. 2020, 10, 18177. [Google Scholar] [CrossRef]
- El-Sayed, N.S.; Khalil, N.A.; Saleh, S.R.; Aly, R.G.; Basta, M. The Possible Neuroprotective Effect of Caffeic Acid on Cognitive Changes and Anxiety-Like Behavior Occurring in Young Rats Fed on High-Fat Diet and Exposed to Chronic Stress: Role of β-Catenin/GSK-3B Pathway. J. Mol. Neurosci. 2024, 74, 61. [Google Scholar] [CrossRef]
- Deng, L.; Zhou, X.; Tao, G.; Hao, W.; Wang, L.; Lan, Z.; Song, Y.; Wu, M.; Huang, J.Q. Ferulic acid and feruloylated oligosaccharides alleviate anxiety and depression symptom via regulating gut microbiome and microbial metabolism. Food Res. Int. 2022, 162, 111887. [Google Scholar] [CrossRef]
- Huang, Z.L.; Qu, W.M.; Eguchi, N.; Chen, J.F.; Schwarzschild, M.A.; Fredholm, B.B.; Urade, Y.; Hayaishi, O. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 2005, 8, 858–859. [Google Scholar] [CrossRef] [PubMed]
- Aframian, K.; Yousef Yengej, D.; Nwaobi, S.; Raman, S.; Faas, G.C.; Charles, A. Effects of chronic caffeine on patterns of brain blood flow and behavior throughout the sleep-wake cycle in freely behaving mice. PNAS Nexus 2023, 2, pgad303. [Google Scholar] [CrossRef] [PubMed]
- Shinomiya, K.; Omichi, J.; Ohnishi, R.; Ito, H.; Yoshida, T.; Kamei, C. Effects of chlorogenic acid and its metabolites on the sleep-wakefulness cycle in rats. Eur. J. Pharmacol. 2004, 504, 185–189. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Cai, C.; Liu, D.; Kang, Y.; Liu, P. The orexinergic system mediates the excitatory effects of caffeine on the arousal and sympathetic activity. Heliyon 2023, 9, e14170. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, A.; Varga, N.; Dallmann, R.; Rando, G.; Gosselin, P.; Ebrahimjee, F.; Taylor, L.; Mosneagu, D.; Stefaniak, J.; Walsh, S.; et al. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat. Commun. 2021, 12, 2113. [Google Scholar] [CrossRef]
- Frick, A.; Persson, J.; Bodén, R. Habitual caffeine consumption moderates the antidepressant effect of dorsomedial intermittent theta-burst transcranial magnetic stimulation. J. Psychopharmacol. 2021, 35, 1536–1541. [Google Scholar] [CrossRef]
- Tse, W.S.; Chan, C.C.; Shiu, S.Y.; Chung, P.Y.; Cheng, S.H. Caffeinated coffee enhances co-operative behavior in the Mixed Motive Game in healthy volunteers. Nutr. Neurosci. 2009, 12, 21–27. [Google Scholar] [CrossRef]
- Dawkins, L.; Shahzad, F.Z.; Ahmed, S.S.; Edmonds, C.J. Expectation of having consumed caffeine can improve performance and mood. Appetite 2011, 57, 597–600. [Google Scholar] [CrossRef]
- Loke, W.H.; Meliska, C.J. Effects of caffeine use and ingestion on a protracted visual vigilance task. Psychopharmacology 1984, 84, 54–57. [Google Scholar] [CrossRef]
- James, J.E.; Gregg, M.E. Effects of dietary caffeine on mood when rested and sleep restricted. Hum. Psychopharmacol. 2004, 19, 333–341. [Google Scholar] [CrossRef]
- Staack, A.; Distelberg, B.; Moldovan, C.; Belay, R.E.; Sabaté, J. The Impact of Caffeine Intake on Mental Health Symptoms in Postmenopausal Females with Overactive Bladder Symptoms: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Women’s Health 2022, 31, 819–825. [Google Scholar] [CrossRef]
- Quinlan, P.; Lane, J.; Aspinall, L. Effects of hot tea, coffee and water ingestion on physiological responses and mood: The role of caffeine, water and beverage type. Psychopharmacology 1997, 134, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Hayashida, H.; Murata, M.; Takamatsu, J. Effect of ferulic acid and Angelica archangelica extract on behavioral and psychological symptoms of dementia in frontotemporal lobar degeneration and dementia with Lewy bodies. Geriatr. Gerontol. Int. 2011, 11, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, R.; Tomonobu, K.; Ikushima, I. Effect of chlorogenic acids on fatigue and sleep in healthy males: A randomized, double-blind, placebo-controlled, crossover study. Food Sci. Nutr. 2018, 6, 2530–2536. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Ochiai, R.; Ogata, H.; Kayaba, M.; Hari, S.; Hibi, M.; Katsuragi, Y.; Satoh, M.; Tokuyama, K. Effects of subacute ingestion of chlorogenic acids on sleep architecture and energy metabolism through activity of the autonomic nervous system: A randomised, placebo-controlled, double-blinded cross-over trial. Br. J. Nutr. 2017, 117, 979–984. [Google Scholar] [CrossRef]
- Burke, T.M.; Markwald, R.R.; McHill, A.W.; Chinoy, E.D.; Snider, J.A.; Bessman, S.C.; Jung, C.M.; O’Neill, J.S.; Wright, K.P., Jr. Effects of caffeine on the human circadian clock in vivo and in vitro. Sci. Transl. Med. 2015, 7, 305ra146. [Google Scholar] [CrossRef]
- Ramos-Campo, D.J.; Pérez, A.; Ávila-Gandía, V.; Pérez-Piñero, S.; Rubio-Arias, J. Impact of Caffeine Intake on 800-m Running Performance and Sleep Quality in Trained Runners. Nutrients 2019, 11, 2040. [Google Scholar] [CrossRef]
- Weibel, J.; Lin, Y.S.; Landolt, H.P.; Kistler, J.; Rehm, S.; Rentsch, K.M.; Slawik, H.; Borgwardt, S.; Cajochen, C.; Reichert, C.F. The impact of daily caffeine intake on nighttime sleep in young adult men. Sci. Rep. 2021, 11, 4668. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Green Tea, Coffee, and Caffeine Consumption Are Inversely Associated with Self-Report Lifetime Depression in the Korean Population. Nutrients 2018, 10, 1201. [Google Scholar] [CrossRef] [PubMed]
- Lucas, M.; Mirzaei, F.; Pan, A.; Okereke, O.I.; Willett, W.C.; O’Reilly, É.J.; Koenen, K.; Ascherio, A. Coffee, caffeine, and risk of depression among women. Arch. Intern. Med. 2011, 171, 1571–1578. [Google Scholar] [CrossRef]
- Lucas, M.; O’Reilly, E.J.; Pan, A.; Mirzaei, F.; Willett, W.C.; Okereke, O.I.; Ascherio, A. Coffee, caffeine, and risk of completed suicide: Results from three prospective cohorts of American adults. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2014, 15, 377–386. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Gui, P.; Zhang, B.; Xie, Y. Coffee and caffeine intake and depression in postpartum women: A cross-sectional study from the National Health and Nutrition Examination Survey 2007-2018. Front. Psychol. 2023, 14, 1134522. [Google Scholar] [CrossRef]
- Narita, Z.; Hidese, S.; Kanehara, R.; Tachimori, H.; Hori, H.; Kim, Y.; Kunugi, H.; Arima, K.; Mizukami, S.; Tanno, K.; et al. Association of sugary drinks, carbonated beverages, vegetable and fruit juices, sweetened and black coffee, and green tea with subsequent depression: A five-year cohort study. Clin. Nutr. 2024, 43, 1395–1404. [Google Scholar] [CrossRef]
- Xie, J.; Huang, Z.; Mo, Y.; Pan, Y.; Ruan, Y.; Cao, W.; Chen, Y.; Li, Y.; Li, K.; Yu, D.; et al. Ages-specific beverage consumption and its association with depression and anxiety disorders: A prospective cohort study in 188,355 participants. J. Affect. Disord. 2024, 371, 224–233. [Google Scholar] [CrossRef]
- Kumar, V.; Bhat, Z.A.; Kumar, D. Animal models of anxiety: A comprehensive review. J. Pharmacol. Toxicol. Methods 2013, 68, 175–183. [Google Scholar] [CrossRef]
- Silverman, K.; Evans, S.M.; Strain, E.C.; Griffiths, R.R. Withdrawal syndrome after the double-blind cessation of caffeine consumption. Engl. J. Med. 1992, 327, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Chait, L.D.; Griffiths, R.R. Effects of caffeine on cigarette smoking and subjective response. Clin. Pharmacol. Ther. 1983, 34, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Nardi, A.E.; Valença, A.M.; Nascimento, I.; Freire, R.C.; Veras, A.B.; de-Melo-Neto, V.L.; Lopes, F.L.; King, A.L.; Soares-Filho, G.L.; Mezzasalma, M.A.; et al. A caffeine challenge test in panic disorder patients, their healthy first-degree relatives, and healthy controls. Depress. Anxiety 2008, 25, 847–853. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, B.; Ye, J.; Qi, X.; Cheng, S.; Meng, P.; Chen, Y.; Yang, X.; Yao, Y.; Zhang, H.; et al. Understanding the Complex Interactions between Coffee, Tea Intake and Neurologically Relevant Tissues Proteins in the Development of Anxiety and Depression. J. Nutr. Health Aging 2022, 26, 1070–1077. [Google Scholar] [CrossRef]
- Castro, A.; Gili, M.; Visser, M.; Penninx, B.; Brouwer, I.A.; Montaño, J.J.; Pérez-Ara, M.; García-Toro, M.; Watkins, E.; Owens, M.; et al. Soft Drinks and Symptoms of Depression and Anxiety in Overweight Subjects: A Longitudinal Analysis of an European Cohort. Nutrients 2023, 15, 3865. [Google Scholar] [CrossRef]
- Klevebrant, L.; Frick, A. Effects of caffeine on anxiety and panic attacks in patients with panic disorder: A systematic review and meta-analysis. Gen. Hosp. Psychiatry 2022, 74, 22–31. [Google Scholar] [CrossRef]
- Gardiner, C.; Weakley, J.; Burke, L.M.; Roach, G.D.; Sargent, C.; Maniar, N.; Townshend, A.; Halson, S.L. The effect of caffeine on subsequent sleep: A systematic review and meta-analysis. Sleep Med. Rev. 2023, 69, 101764. [Google Scholar] [CrossRef]
- Revel, F.G.; Gottowik, J.; Gatti, S.; Wettstein, J.G.; Moreau, J.L. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neurosci. Biobehav. Rev. 2009, 33, 874–899. [Google Scholar] [CrossRef]
- Cunha, R.A. How does adenosine control neuronal dysfunction and neurodegeneration? J. Neurochem. 2016, 139, 1019–1055. [Google Scholar] [CrossRef]
- Drapeau, C.; Hamel-Hébert, I.; Robillard, R.; Selmaoui, B.; Filipini, D.; Carrier, J. Challenging sleep in aging: The effects of 200 mg of caffeine during the evening in young and middle-aged moderate caffeine consumers. J. Sleep Res. 2006, 15, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Marcus, G.M.; Rosenthal, D.G.; Nah, G.; Vittinghoff, E.; Fang, C.; Ogomori, K.; Joyce, S.; Yilmaz, D.; Yang, V.; Kessedjian, T.; et al. Acute Effects of Coffee Consumption on Health among Ambulatory Adults. Engl. J. Med. 2023, 388, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Pacher, P.; Haskó, G. Adenosine and inflammation: It’s time to (re)solve the problem. Trends Pharmacol. Sci. 2022, 43, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Yegutkin, G.G.; Boison, D. ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain. Pharmacol. Rev. 2022, 74, 797–822. [Google Scholar] [CrossRef]
- Sarasola, L.I.; Del Torrent, C.L.; Pérez-Arévalo, A.; Argerich, J.; Casajuana-Martín, N.; Chevigné, A.; Fernández-Dueñas, V.; Ferré, S.; Pardo, L.; Ciruela, F. The ADORA1 mutation linked to early-onset Parkinson’s disease alters adenosine A(1)-A(2A) receptor heteromer formation and function. Biomed. Pharmacother. = Biomed. Pharmacother. 2022, 156, 113896. [Google Scholar] [CrossRef]
- Dunwiddie, T.V.; Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 2001, 24, 31–55. [Google Scholar] [CrossRef]
- Proctor, W.R.; Dunwiddie, T.V. Pre- and postsynaptic actions of adenosine in the in vitro rat hippocampus. Brain Res. 1987, 426, 187–190. [Google Scholar] [CrossRef]
- Rebola, N.; Lujan, R.; Cunha, R.A.; Mulle, C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 2008, 57, 121–134. [Google Scholar] [CrossRef]
- Lopes, L.V.; Cunha, R.A.; Kull, B.; Fredholm, B.B.; Ribeiro, J.A. Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience 2002, 112, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Aghajanian, G.K. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012, 338, 68–72. [Google Scholar] [CrossRef]
- Wang, M.; Li, P.; Li, Z.; da Silva, B.S.; Zheng, W.; Xiang, Z.; He, Y.; Xu, T.; Cordeiro, C.; Deng, L.; et al. Lateral septum adenosine A(2A) receptors control stress-induced depressive-like behaviors via signaling to the hypothalamus and habenula. Nat. Commun. 2023, 14, 1880. [Google Scholar] [CrossRef]
- Zhong, Z.; Dong, H.; Zhou, S.; Lin, C.; Huang, P.; Li, X.; Zhang, J.; Xie, J.; Wu, Y.; Li, P. Caffeine’s Neuroprotective Effect on Memory Impairment: Suppression of Adenosine A(2)A Receptor and Enhancement of Tyrosine Hydroxylase in Dopaminergic Neurons Under Hypobaric Hypoxia Conditions. CNS Neurosci. Ther. 2024, 30, e70134. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Kirtipal, N.; Lee, S.; Malý, P.; Bharadwaj, S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother. Res. PTR 2023, 37, 5558–5598. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.P.; Pliássova, A.; Cunha, R.A. The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A(1) and A(2A) receptors. Biochem. Pharmacol. 2019, 166, 313–321. [Google Scholar] [CrossRef]
- Unsal, S.; Sanlier, N. Longitudinal Effects of Lifetime Caffeine Consumption on Levels of Depression, Anxiety, and Stress: A Comprehensive Review. Curr. Nutr. Rep. 2025, 14, 26. [Google Scholar] [CrossRef]
- Hamilton, S.P.; Slager, S.L.; De Leon, A.B.; Heiman, G.A.; Klein, D.F.; Hodge, S.E.; Weissman, M.M.; Fyer, A.J.; Knowles, J.A. Evidence for genetic linkage between a polymorphism in the adenosine 2A receptor and panic disorder. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2004, 29, 558–565. [Google Scholar] [CrossRef]
- Oliveira, S.; Ardais, A.P.; Bastos, C.R.; Gazal, M.; Jansen, K.; de Mattos Souza, L.; da Silva, R.A.; Kaster, M.P.; Lara, D.R.; Ghisleni, G. Impact of genetic variations in ADORA2A gene on depression and symptoms: A cross-sectional population-based study. Purinergic Signal. 2019, 15, 37–44. [Google Scholar] [CrossRef]
- Acquas, E.; Tanda, G.; Di Chiara, G. Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2002, 27, 182–193. [Google Scholar] [CrossRef]
- Szopa, A.; Poleszak, E.; Wyska, E.; Serefko, A.; Wośko, S.; Wlaź, A.; Pieróg, M.; Wróbel, A.; Wlaź, P. Caffeine enhances the antidepressant-like activity of common antidepressant drugs in the forced swim test in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389, 211–221. [Google Scholar] [CrossRef]
- Popoli, P.; Giménez-Llort, L.; Pezzola, A.; Reggio, R.; Martínez, E.; Fuxe, K.; Ferré, S. Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci. Lett. 1996, 218, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Garção, P.; Szabó, E.C.; Wopereis, S.; Castro, A.A.; Tomé, Â.R.; Prediger, R.D.; Cunha, R.A.; Agostinho, P.; Köfalvi, A. Functional interaction between pre-synaptic α6β2-containing nicotinic and adenosine A2A receptors in the control of dopamine release in the rat striatum. Br. J. Pharmacol. 2013, 169, 1600–1611. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Choi, D.S.; Cunha, R.A. Striatopallidal adenosine A(2A) receptor modulation of goal-directed behavior: Homeostatic control with cognitive flexibility. Neuropharmacology 2023, 226, 109421. [Google Scholar] [CrossRef] [PubMed]
- Quarta, D.; Ferré, S.; Solinas, M.; You, Z.B.; Hockemeyer, J.; Popoli, P.; Goldberg, S.R. Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J. Neurochem. 2004, 88, 1151–1158. [Google Scholar] [CrossRef]
- Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Kaltenboeck, A.; Harmer, C. The neuroscience of depressive disorders: A brief review of the past and some considerations about the future. Brain Neurosci. Adv. 2018, 2, 2398212818799269. [Google Scholar] [CrossRef] [PubMed]
- Mössner, R.; Albert, D.; Persico, A.M.; Hennig, T.; Bengel, D.; Holtmann, B.; Schmitt, A.; Keller, F.; Simantov, R.; Murphy, D.; et al. Differential regulation of adenosine A(1) and A(2A) receptors in serotonin transporter and monoamine oxidase A-deficient mice. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2000, 10, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Yokogoshi, H.; Iwata, T.; Ishida, K.; Yoshida, A. Effect of amino acid supplementation to low protein diet on brain and plasma levels of tryptophan and brain 5-hydroxyindoles in rats. J. Nutr. 1987, 117, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Wang, X.; Yu, J.; Ma, F.; Li, Z.; Zhou, Y.; Zeng, S.; Ma, X.; Li, Y.R.; Neal, A.; et al. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat. Commun. 2021, 12, 3530. [Google Scholar] [CrossRef]
- Robinson, O.J.; Pike, A.C.; Cornwell, B.; Grillon, C. The translational neural circuitry of anxiety. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1353–1360. [Google Scholar] [CrossRef]
- Smith, J.E.; Lawrence, A.D.; Diukova, A.; Wise, R.G.; Rogers, P.J. Storm in a coffee cup: Caffeine modifies brain activation to social signals of threat. Soc. Cogn. Affect. Neurosci. 2012, 7, 831–840. [Google Scholar] [CrossRef]
- Kenwood, M.M.; Kalin, N.H.; Barbas, H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2022, 47, 260–275. [Google Scholar] [CrossRef]
- Simões, A.P.; Machado, N.J.; Gonçalves, N.; Kaster, M.P.; Simões, A.T.; Nunes, A.; Pereira de Almeida, L.; Goosens, K.A.; Rial, D.; Cunha, R.A. Adenosine A(2A) Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2016, 41, 2862–2871. [Google Scholar] [CrossRef]
- Riera-Sampol, A.; Rodas, L.; Martínez, S.; Moir, H.J.; Tauler, P. Caffeine Intake among Undergraduate Students: Sex Differences, Sources, Motivations, and Associations with Smoking Status and Self-Reported Sleep Quality. Nutrients 2022, 14, 1661. [Google Scholar] [CrossRef]
- Park, J.; Han, J.W.; Lee, J.R.; Byun, S.; Suh, S.W.; Kim, T.; Yoon, I.Y.; Kim, K.W. Lifetime coffee consumption, pineal gland volume, and sleep quality in late life. Sleep 2018, 41, zsy127. [Google Scholar] [CrossRef]
- Zhou, X.; He, Y.; Xu, T.; Wu, Z.; Guo, W.; Xu, X.; Liu, Y.; Zhang, Y.; Shang, H.; Huang, L.; et al. 40 Hz light flickering promotes sleep through cortical adenosine signaling. Cell Res. 2024, 34, 214–231. [Google Scholar] [CrossRef]
- Barde, Y.A.; Edgar, D.; Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1982, 1, 549–553. [Google Scholar] [CrossRef]
- Costa, R.O.; Martins, L.F.; Tahiri, E.; Duarte, C.B. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. Wiley Interdiscip. Rev. RNA 2022, 13, e1713. [Google Scholar] [CrossRef] [PubMed]
- Leal, G.; Bramham, C.R.; Duarte, C.B. BDNF and Hippocampal Synaptic Plasticity. Vitam. Horm. 2017, 104, 153–195. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Martinowich, K.; Lee, F.S. BDNF at the synapse: Why location matters. Mol. Psychiatry 2017, 22, 1370–1375. [Google Scholar] [CrossRef]
- Tanaka, J.; Horiike, Y.; Matsuzaki, M.; Miyazaki, T.; Ellis-Davies, G.C.; Kasai, H. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 2008, 319, 1683–1687. [Google Scholar] [CrossRef]
- Frisén, J.; Verge, V.M.; Fried, K.; Risling, M.; Persson, H.; Trotter, J.; Hökfelt, T.; Lindholm, D. Characterization of glial trkB receptors: Differential response to injury in the central and peripheral nervous systems. Proc. Natl. Acad. Sci. USA 1993, 90, 4971–4975. [Google Scholar] [CrossRef]
- Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 2009, 10, 850–860. [Google Scholar] [CrossRef]
- Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022, 185, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Turrigiano, G.G. The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell 2008, 135, 422–435. [Google Scholar] [CrossRef]
- Reimers, J.M.; Loweth, J.A.; Wolf, M.E. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons. Eur. J. Neurosci. 2014, 39, 1159–1169. [Google Scholar] [CrossRef]
- Lu, B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 2003, 10, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021, 184, 1299–1313.e1219. [Google Scholar] [CrossRef]
- Martín, E.D.; Buño, W. Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 2003, 89, 3029–3038. [Google Scholar] [CrossRef] [PubMed]
- Lao-Peregrín, C.; Ballesteros, J.J.; Fernández, M.; Zamora-Moratalla, A.; Saavedra, A.; Gómez Lázaro, M.; Pérez-Navarro, E.; Burks, D.; Martín, E.D. Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling. Addict. Biol. 2017, 22, 1706–1718. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, K.H.; Srivareerat, M.; Aleisa, A.M.; Alkadhi, K.A. Chronic caffeine treatment prevents stress-induced LTP impairment: The critical role of phosphorylated CaMKII and BDNF. J. Mol. Neurosci. 2013, 49, 11–20. [Google Scholar] [CrossRef]
- Zoratto, F.; Fiore, M.; Ali, S.F.; Laviola, G.; Macrì, S. Neonatal tryptophan depletion and corticosterone supplementation modify emotional responses in adult male mice. Psychoneuroendocrinology 2013, 38, 24–39. [Google Scholar] [CrossRef]
- Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2001, 2, 24–32. [Google Scholar] [CrossRef]
- Chao, M.V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci. 2003, 4, 299–309. [Google Scholar] [CrossRef]
- Wei, C.J.; Augusto, E.; Gomes, C.A.; Singer, P.; Wang, Y.; Boison, D.; Cunha, R.A.; Yee, B.K.; Chen, J.F. Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain. Biol. Psychiatry 2014, 75, 855–863. [Google Scholar] [CrossRef]
- Florén Lind, S.; Stam, F.; Zelleroth, S.; Meurling, E.; Frick, A.; Grönbladh, A. Acute caffeine differently affects risk-taking and the expression of BDNF and of adenosine and opioid receptors in rats with high or low anxiety-like behavior. Pharmacol. Biochem. Behav. 2023, 227–228, 173573. [Google Scholar] [CrossRef] [PubMed]
- Oketch-Rabah, H.A.; Madden, E.F.; Roe, A.L.; Betz, J.M. United States Pharmacopeia (USP) Safety Review of Gamma-Aminobutyric Acid (GABA). Nutrients 2021, 13, 2742. [Google Scholar] [CrossRef] [PubMed]
- Asim, M.; Wang, H.; Waris, A.; He, J. Basolateral amygdala parvalbumin and cholecystokinin-expressing GABAergic neurons modulate depressive and anxiety-like behaviors. Transl. Psychiatry 2024, 14, 418. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.; Jefferson, S.J.; Hooper, A.; Yee, P.H.; Maguire, J.; Luscher, B. Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol. Psychiatry 2017, 22, 920–930. [Google Scholar] [CrossRef]
- Li, R.; Yang, Y.; Wang, L.; Tang, G.; Yang, J.; Gao, S.; Liu, J. Blockade of pre- and post-synaptic GABA(B) receptors in the anteroventral bed nucleus of stria terminalis produces anxiolytic-like and anxiety-like effects in parkinsonian rats respectively. Neuropharmacology 2024, 257, 110033. [Google Scholar] [CrossRef]
- Jacobson, L.H.; Vlachou, S.; Slattery, D.A.; Li, X.; Cryan, J.F. The Gamma-Aminobutyric Acid B Receptor in Depression and Reward. Biol. Psychiatry 2018, 83, 963–976. [Google Scholar] [CrossRef]
- Alasmari, F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2020, 28, 445–451. [Google Scholar] [CrossRef]
- Isokawa, M. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity. Neural Plast. 2016, 2016, 1239629. [Google Scholar] [CrossRef]
- Yang, J.; Yang, G.; Ren, J.; Zhao, J.; Li, S.J.N. Caffeine suppresses GABA receptor-mediated current in rat primary sensory neurons via inhibition of intracellular phosphodiesterase. Neurophysiology 2015, 47, 108–114. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Poddar, M.K. Is GABA involved in the development of caffeine tolerance? Neurochem. Res. 1998, 23, 63–68. [Google Scholar] [CrossRef]
- Bagga, P.; Chugani, A.N.; Patel, A.B. Neuroprotective effects of caffeine in MPTP model of Parkinson’s disease: A (13)C NMR study. Neurochem. Int. 2016, 92, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Bhatt, S.; Nagappa, A.N.; Patil, C.R. Role of oxidative stress in depression. Drug Discov. Today 2020, 25, 1270–1276. [Google Scholar] [CrossRef]
- Bouayed, J.; Rammal, H.; Soulimani, R. Oxidative stress and anxiety: Relationship and cellular pathways. Oxidative Med. Cell. Longev. 2009, 2, 63–67. [Google Scholar] [CrossRef]
- Trifunovic, S.; Stevanovic, I.; Milosevic, A.; Ristic, N.; Janjic, M.; Bjelobaba, I.; Savic, D.; Bozic, I.; Jakovljevic, M.; Tesovic, K.; et al. The Function of the Hypothalamic-Pituitary-Adrenal Axis During Experimental Autoimmune Encephalomyelitis: Involvement of Oxidative Stress Mediators. Front. Neurosci. 2021, 15, 649485. [Google Scholar] [CrossRef]
- Du, J.; Wang, Y.; Hunter, R.; Wei, Y.; Blumenthal, R.; Falke, C.; Khairova, R.; Zhou, R.; Yuan, P.; Machado-Vieira, R.; et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl. Acad. Sci. USA 2009, 106, 3543–3548. [Google Scholar] [CrossRef]
- Spiers, J.G.; Chen, H.J.; Sernia, C.; Lavidis, N.A. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front. Neurosci. 2014, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.S.; Cardoso, A.; Vale, N. Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants 2023, 12, 470. [Google Scholar] [CrossRef]
- Dutta, A.; Sarkar, P.; Shrivastava, S.; Chattopadhyay, A. Effect of Hypoxia on the Function of the Human Serotonin(1A) Receptor. ACS Chem. Neurosci. 2022, 13, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Rammal, H.; Bouayed, J.; Younos, C.; Soulimani, R. Evidence that oxidative stress is linked to anxiety-related behaviour in mice. Brain Behav. Immun. 2008, 22, 1156–1159. [Google Scholar] [CrossRef]
- Wang, H.; Jin, M.; Xie, M.; Yang, Y.; Xue, F.; Li, W.; Zhang, M.; Li, Z.; Li, X.; Jia, N.; et al. Protective role of antioxidant supplementation for depression and anxiety: A meta-analysis of randomized clinical trials. J. Affect. Disord. 2023, 323, 264–279. [Google Scholar] [CrossRef]
- Hall, S.; Desbrow, B.; Anoopkumar-Dukie, S.; Davey, A.K.; Arora, D.; McDermott, C.; Schubert, M.M.; Perkins, A.V.; Kiefel, M.J.; Grant, G.D. A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression. Food Res. Int. 2015, 76, 626–636. [Google Scholar] [CrossRef]
- Devasagayam, T.P.; Kamat, J.P.; Mohan, H.; Kesavan, P.C. Caffeine as an antioxidant: Inhibition of lipid peroxidation induced by reactive oxygen species. Biochim. Et Biophys. Acta 1996, 1282, 63–70. [Google Scholar] [CrossRef]
- Azam, S.; Hadi, N.; Khan, N.U.; Hadi, S.M. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2003, 9, Br325-30. [Google Scholar]
- Kanski, J.; Aksenova, M.; Stoyanova, A.; Butterfield, D.A. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: Structure-activity studies. J. Nutr. Biochem. 2002, 13, 273–281. [Google Scholar] [CrossRef]
- Búfalo, M.C.; Ferreira, I.; Costa, G.; Francisco, V.; Liberal, J.; Cruz, M.T.; Lopes, M.C.; Batista, M.T.; Sforcin, J.M. Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages. J. Ethnopharmacol. 2013, 149, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.C.; Kim, H.G.; Lee, S.A.; Lim, S.; Park, E.H.; Kim, S.J.; Lim, C.J. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of mitochondrial pathway. Biochem. Pharmacol. 2005, 70, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Cheong, Y.K.; Kim, N.H.; Chung, H.T.; Kang, D.G.; Pae, H.O. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J. Signal Transduct. 2011, 2011, 792639. [Google Scholar] [CrossRef]
- Han, Z.; Wang, L.; Zhu, H.; Tu, Y.; He, P.; Li, B. Uncovering the effects and mechanisms of tea and its components on depression, anxiety, and sleep disorders: A comprehensive review. Food Res. Int. 2024, 197, 115191. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Z.; Cheng, L.; Zhang, X.; Yang, H. The role of the intestinal microbiota in the pathogenesis of host depression and mechanism of TPs relieving depression. Food Funct. 2021, 12, 7651–7663. [Google Scholar] [CrossRef]
- Dahchour, A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol. Res. 2022, 184, 106421. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Gibbons, A.J. Neuroinflammation, Sleep, and Circadian Rhythms. Front. Cell. Infect. Microbiol. 2022, 12, 853096. [Google Scholar] [CrossRef]
- Kofod, J.; Elfving, B.; Nielsen, E.H.; Mors, O.; Köhler-Forsberg, O. Depression and inflammation: Correlation between changes in inflammatory markers with antidepressant response and long-term prognosis. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2022, 54, 116–125. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Yin, Y.; Ju, T.; Zeng, D.; Duan, F.; Zhu, Y.; Liu, J.; Li, Y.; Lu, W. “Inflamed” depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol. Res. 2024, 207, 107322. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Noble, S.; Rosenblatt, M.; Dai, W.; Ye, J.; Liu, S.; Qi, S.; Calhoun, V.D.; Sui, J.; Scheinost, D. The brain structure, inflammatory, and genetic mechanisms mediate the association between physical frailty and depression. Nat. Commun. 2024, 15, 4411. [Google Scholar] [CrossRef]
- Boukezzi, S.; Costi, S.; Shin, L.M.; Kim-Schulze, S.; Cathomas, F.; Collins, A.; Russo, S.J.; Morris, L.S.; Murrough, J.W. Exaggerated amygdala response to threat and association with immune hyperactivity in depression. Brain Behav. Immun. 2022, 104, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Dong, W.; Lin, X.; Xu, K.; Li, K.; Xiong, S.; Wang, Z.; Nie, X.; Bian, J.S. Disruption of the Na(+)/K(+)-ATPase-purinergic P2X7 receptor complex in microglia promotes stress-induced anxiety. Immunity 2024, 57, 495–512.e411. [Google Scholar] [CrossRef] [PubMed]
- Horrigan, L.A.; Kelly, J.P.; Connor, T.J. Caffeine suppresses TNF-alpha production via activation of the cyclic AMP/protein kinase A pathway. Int. Immunopharmacol. 2004, 4, 1409–1417. [Google Scholar] [CrossRef]
- Shen, W.; Qi, R.; Zhang, J.; Wang, Z.; Wang, H.; Hu, C.; Zhao, Y.; Bie, M.; Wang, Y.; Fu, Y.; et al. Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res. Bull. 2012, 88, 487–494. [Google Scholar] [CrossRef]
- Hirata, A.; Murakami, Y.; Atsumi, T.; Shoji, M.; Ogiwara, T.; Shibuya, K.; Ito, S.; Yokoe, I.; Fujisawa, S. Ferulic acid dimer inhibits lipopolysaccharide-stimulated cyclooxygenase-2 expression in macrophages. Vivo 2005, 19, 849–853. [Google Scholar]
- Hosoda, A.; Ozaki, Y.; Kashiwada, A.; Mutoh, M.; Wakabayashi, K.; Mizuno, K.; Nomura, E.; Taniguchi, H. Syntheses of ferulic acid derivatives and their suppressive effects on cyclooxygenase-2 promoter activity. Bioorganic Med. Chem. 2002, 10, 1189–1196. [Google Scholar] [CrossRef]
- Gerritsen, L.; Staufenbiel, S.M.; Penninx, B.; van Hemert, A.M.; Noppe, G.; de Rijke, Y.B.; van Rossum, E.F.C. Long-term glucocorticoid levels measured in hair in patients with depressive and anxiety disorders. Psychoneuroendocrinology 2019, 101, 246–252. [Google Scholar] [CrossRef]
- Guerry, J.D.; Hastings, P.D. In search of HPA axis dysregulation in child and adolescent depression. Clin. Child Fam. Psychol. Rev. 2011, 14, 135–160. [Google Scholar] [CrossRef]
- Karabatsiakis, A.; de Punder, K.; Manrique, J.-S.; Todt, M.; Dietrich, D.E. Hair Cortisol as a Predictive Biochemical Indicator for the Preventive and Personalised Evaluation of Suicide Risk in Depression? An Exploratory Comparison Study Between Mentally-Stable Control Subjects, Depressed Individuals and Individuals After Completing Suicide; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Staufenbiel, S.M.; Penninx, B.W.; de Rijke, Y.B.; van den Akker, E.L.; van Rossum, E.F. Determinants of hair cortisol and hair cortisone concentrations in adults. Psychoneuroendocrinology 2015, 60, 182–194. [Google Scholar] [CrossRef]
- Zerroug, Y.; Marin, M.F.; Porter-Vignola, E.; Garel, P.; Herba, C.M. Differences in hair cortisol to cortisone ratio between depressed and non-depressed adolescent women. Stress 2025, 28, 2459726. [Google Scholar] [CrossRef]
- Schatzberg, A.F.; Lindley, S. Glucocorticoid antagonists in neuropsychiatric [corrected] disorders. Eur. J. Pharmacol. 2008, 583, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Scher, A.; Hall, W.A.; Zaidman-Zait, A.; Weinberg, J. Sleep quality, cortisol levels, and behavioral regulation in toddlers. Dev. Psychobiol. 2010, 52, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Rabl, U.; Bartova, L.; Sezen, P.; Keller, J.; Schatzberg, A.; Pezawas, L. HPA axis in psychotic and non-psychotic major depression: Cortisol plasma levels and hippocampal volume. J. Affect. Disord. 2025, 377, 14–22. [Google Scholar] [CrossRef]
- Kokras, N.; Hodes, G.E.; Bangasser, D.A.; Dalla, C. Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development? Br. J. Pharmacol. 2019, 176, 4090–4106. [Google Scholar] [CrossRef]
- Dickerson, S.S.; Kemeny, M.E. Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychol. Bull. 2004, 130, 355–391. [Google Scholar] [CrossRef]
- Füzesi, T.; Daviu, N.; Wamsteeker Cusulin, J.I.; Bonin, R.P.; Bains, J.S. Hypothalamic CRH neurons orchestrate complex behaviours after stress. Nat. Commun. 2016, 7, 11937. [Google Scholar] [CrossRef]
- McEwen, B.S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev. 2007, 87, 873–904. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hu, W.; Liu, Y.; Guo, K.; Liu, Y.; Yang, J. Separating the influences of means and daily variations of sleep on the stress-induced salivary cortisol response. Psychoneuroendocrinology 2023, 151, 106059. [Google Scholar] [CrossRef] [PubMed]
- Okun, M.L.; Segerstrom, S.; Jackman, S.; Ross, K.; Schetter, C.D.; Coussons-Read, M. Variability in perinatal sleep quality is associated with an atypical cortisol awakening response and increased mood symptoms. Psychoneuroendocrinology 2025, 172, 107248. [Google Scholar] [CrossRef] [PubMed]
- Hansen, Å.M.; Thomsen, J.F.; Kaergaard, A.; Kolstad, H.A.; Kaerlev, L.; Mors, O.; Rugulies, R.; Bonde, J.P.; Andersen, J.H.; Mikkelsen, S.J.P. Salivary cortisol and sleep problems among civil servants. Psychoneuroendocrinology 2012, 37, 1086–1095. [Google Scholar] [CrossRef]
- Huang, T.W.; Cheung, D.S.T.; Xu, X.; Loh, E.W.; Lai, J.H.; Su, W.W.; Wu, S.S.; Lin, C.C. Relationship between diurnal cortisol profile and sleep quality in patients with hepatocellular carcinoma. Biol. Res. Nurs. 2020, 22, 139–147. [Google Scholar] [CrossRef]
- Backhaus, J.; Junghanns, K.; Hohagen, F.J.P. Sleep disturbances are correlated with decreased morning awakening salivary cortisol. Psychoneuroendocrinology 2004, 29, 1184–1191. [Google Scholar] [CrossRef]
- Patz, M.D.; Day, H.E.; Burow, A.; Campeau, S. Modulation of the hypothalamo-pituitary-adrenocortical axis by caffeine. Psychoneuroendocrinology 2006, 31, 493–500. [Google Scholar] [CrossRef]
- O’Neill, C.E.; Newsom, R.J.; Stafford, J.; Scott, T.; Archuleta, S.; Levis, S.C.; Spencer, R.L.; Campeau, S.; Bachtell, R.K. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling. Psychoneuroendocrinology 2016, 67, 40–50. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Morris, G.; Berk, M.; Carvalho, A.; Caso, J.R.; Sanz, Y.; Walder, K.; Maes, M. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Mol. Neurobiol. 2017, 54, 4432–4451. [Google Scholar] [CrossRef]
- Zhang, Q.; Bi, Y.; Zhang, B.; Jiang, Q.; Mou, C.K.; Lei, L.; Deng, Y.; Li, Y.; Yu, J.; Liu, W.; et al. Current landscape of fecal microbiota transplantation in treating depression. Front. Immunol. 2024, 15, 1416961. [Google Scholar] [CrossRef]
- Rothenberg, D.O.; Zhang, L. Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients 2019, 11, 1361. [Google Scholar] [CrossRef]
- Radford-Smith, D.E.; Anthony, D.C. Prebiotic and Probiotic Modulation of the Microbiota-Gut-Brain Axis in Depression. Nutrients 2023, 15, 1880. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, R.; Madempudi, R.S.; Neelamraju, J.; Ahire, J.J.; Vinay, H.R.; Lal, A.; Thomas, G.; Stephen, S. Effect of Multi-strain Probiotic Formulation on Students Facing Examination Stress: A Double-Blind, Placebo-Controlled Study. Probiotics Antimicrob. Proteins 2021, 13, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Anand, N.; Gorantla, V.R.; Chidambaram, S.B. The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022, 12, 54. [Google Scholar] [CrossRef]
- Cai, T.; Zheng, S.P.; Shi, X.; Yuan, L.Z.; Hu, H.; Zhou, B.; Xiao, S.L.; Wang, F. Therapeutic effect of fecal microbiota transplantation on chronic unpredictable mild stress-induced depression. Front. Cell. Infect. Microbiol. 2022, 12, 900652. [Google Scholar] [CrossRef]
- Saygili, S.; Hegde, S.; Shi, X.Z. Effects of Coffee on Gut Microbiota and Bowel Functions in Health and Diseases: A Literature Review. Nutrients 2024, 16, 3155. [Google Scholar] [CrossRef] [PubMed]
- Cowan, T.E.; Palmnäs, M.S.; Yang, J.; Bomhof, M.R.; Ardell, K.L.; Reimer, R.A.; Vogel, H.J.; Shearer, J. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 2014, 25, 489–495. [Google Scholar] [CrossRef]
- Jang, H.M.; Lee, H.J.; Jang, S.E.; Han, M.J.; Kim, D.H. Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunol. 2018, 11, 1386–1397. [Google Scholar] [CrossRef] [PubMed]
- Needham, B.D.; Funabashi, M.; Adame, M.D.; Wang, Z.; Boktor, J.C.; Haney, J.; Wu, W.L.; Rabut, C.; Ladinsky, M.S.; Hwang, S.J.; et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 2022, 602, 647–653. [Google Scholar] [CrossRef]
- Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 2015, 51, 164–175. [Google Scholar] [CrossRef]
- Lyte, J.M. Eating for 3.8 × 10(13): Examining the Impact of Diet and Nutrition on the Microbiota-Gut-Brain Axis Through the Lens of Microbial Endocrinology. Front. Endocrinol. 2018, 9, 796. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Zeevi, D.; Levy, M.; Zilberman-Schapira, G.; Suez, J.; Tengeler, A.C.; Abramson, L.; Katz, M.N.; Korem, T.; Zmora, N.; et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014, 159, 514–529. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez Lopez, D.E.; Lashinger, L.M.; Weinstock, G.M.; Bray, M.S. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab. 2021, 33, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Matenchuk, B.A.; Mandhane, P.J.; Kozyrskyj, A.L. Sleep, circadian rhythm, and gut microbiota. Sleep Med. Rev. 2020, 53, 101340. [Google Scholar] [CrossRef]
- Song, Z.; Liu, L.; Xu, Y.; Cao, R.; Lan, X.; Pan, C.; Zhang, S.; Zhao, H. Caffeine-Induced Sleep Restriction Alters the Gut Microbiome and Fecal Metabolic Profiles in Mice. Int. J. Mol. Sci. 2022, 23, 14837. [Google Scholar] [CrossRef]
- Vaccaro, A.; Kaplan Dor, Y.; Nambara, K.; Pollina, E.A.; Lin, C.; Greenberg, M.E.; Rogulja, D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020, 181, 1307–1328.e1315. [Google Scholar] [CrossRef]
Mental Diseases | Coffee and Its Active Ingredients | Animal Models | Dose and Duration | Behavioral Manifestations | Results and Mechanisms | References |
---|---|---|---|---|---|---|
Depression | Caffeinated and decaffeinated coffee (Coffee Extracts) | PDD inbred male Wistar rats | 200 mg/kg (p.o.), 7 d | Sports activities↑(OFT) Sucrose consumption↑ (SPT) Immobility time↓ (FST) Immobility time↓ (TST) | IL-6↓ TNF-α↓ SOD↑ GPx↑ Akkermansia (Verrucomicrobia)↑ Phylum Bacteroidetes (Bacteroidetes)↓ | [53] |
Caffeinated coffee (Coffee extracts) | Male C57BL/6J mice | 140 mg/kg (p.o.), 14 d | Sports activities↑ (OFT) Immobility time↓ (FST) Immobility time↓ (TST) | IDO↑ PGE2↓ Neopterin/biopterin ratio↑ UA/3-HK, UA/KYN↑ | [55] | |
Caffeine (Pure ingredients) | Male C57BL/6 mice (10–12 weeks old) | 6 g/L/week (p.o.), 3 weeks | Immobility time↓ (FST) Immobility time↓ (TST) Pleasure deficit-like behavior↓ (SPT) memory impairment↓ | synaptic marker↓ hippocampal density of syntaxin↓ amplitude of hippocampal LTP↓ | [56] | |
Caffeine (Pure ingredients) | Male C57BL/6J mice (Chronic MildStress) | 0.5 mg/mL (p.o.), 6 weeks | Immobility time↓ (FST) Immobility time↓ (TST) | KYN↓ KYNA↑ KAT↑ PGC-1α↑ | [58] | |
Caffeine (Pure ingredients) | Kunming male mice (Chronic Water Immression Restraint Stress) | 10, 20 mg/kg (p.o.), 4 weeks | Immobility time↓ (FST) Immobility time↓ (TST) | 5-HT↑ BrdU+/DCX+ cells↑ TNF-α↓ IL-1β↓ | [57] | |
Caffeine (Pure ingredients) | Sprague-Dawley rats | 0.25 g/L (p.o.), 14 d | Upright behavior of male rats↓ Immobility time of male rats↓(FST) Struggling behavior of female rats↑ | Changes in 5-HT levels Regulation of NE | [59] | |
Depression | Caffeine (Pure ingredients) | Swiss albino CD1 mice (Helpless Mice) | 0.3 g/L (p.o.), 4 weeks | Immobility time↑ (FST) Immobility time↑ (TST) Time spent in the open arms↓ Length of stay in the central area↓ Memory recovery↑ | density of synaptophysin, SNAP-25↓ Restored loss of hippocampal synaptic markers | [62] |
Caffeine (Pure ingredients) | Male C57BL/6J mice | 10 mg/kg (p.o.), 14 d | Immobility time↓ (FST) Immobility time↓ (TST) | TNF-α↓ IL-6↓ IL-1β↓ IFN-γ↓ MDA↓ BDNF↑ | [61] | |
SY-2476 (Caffeine derivative, pure ingredients) | Wistar rats | 10, 30 mg/kg (p.o.), 21 d | Sucrose consumption↑ (SPT) Immobility time↓ (FST) | Serum cortisol levels↓ MDA↓ SOD↑ GSH↑ A1R expression↑ A2ARexpression↓ | [60] | |
caffeine (Pure ingredients) | Male Wistar rats (Stress Re-stress) | 10, 20, 30 mg/kg (i.p.), 24 d | Immobility time (20, 30 mg/kg)↑ (FST) | Plasma CORT levels, 5-HT levels, GR and MR levels were not changed | [64] | |
CGA (Pure ingredients) | Male Wistar rats | 500 mg kg−1 (p.o.), 14 d | Sucrose consumption↑ (SPT) Sports activities↑ (OFT) Immobility time↓ (FST) Immobility time↓ (TST) | IL-6 and TNF-α↓ Microbiome diversity↑ Serum pro-inflammatory cytokine↓ Serum monoamine neurotransmitter↑ IL-8↓ | [50] | |
FA (Pure ingredients) | Male Swiss mice | 0.01, 0.1, 1, 10 mg/kg (p.o.), 1 h | Immobility time↓ (FST) Immobility time↓ (TST) | 5-HT↑ SNRIs↑ | [66] | |
CA (Pure ingredients) | Male ICR mice and ddY mice | 4 mg/kg (i.p.), 1 d | Immobility time↓ (FST) | Indirect regulation of the ADRA1A system | [67] | |
Anxiety | Caffeine (Pure ingredients) | Male Sprague Dawley rats | 3 mg/kg (i.p.), 10 min (acute stress) or 14 d (Chronic variable stress) | Head Down Frequency↑ | Cognitive Differences Score↑ MDA↓ SOD (acute)↑ GSH (acute)↑ | [68] |
Caffeine (Pure ingredients) | Male C57BL/6 mice | 5 mg/kg (i.p.), 24 d | Open arm dwell time (short-term effect) ↑(EPM) | MDA↓NO↓ | [69] | |
Caffeine (Pure ingredients) | Male Wistar rats (Stress Re-stress) | 10, 20, 30 mg/kg (i.p.), 24 d | Open arm dwell time (20, 30 mg/kg) ↓(EPM) | Plasma CORT levels, 5-HT levels, GR and MR levels were not changed | [64] | |
CGA, Caffeine (Pure ingredients) Coffee (Coffee Extracts) | Adult male Wistar rats | CGA: 5 mg/kg (p.o.), Caffeine: 15 mg/kg (p.o.), Coffee: 0.5 g/kg (p.o.), 29 d | Step-down latencies↑ (IAT) | TBARS Level↓ AChE activity↓ Nerve damage↓ | [70] | |
ICCA (Coffee Extracts) | Male ICR mice | 20, 40 mg/kg (p.o.), 3 months | Open arm dwell time and access frequency↑ (EPM) Light box dwell time↑ (LDB) | SH-SY5Y cells, B16 cells, H9C2 cells↓ OS↓ TNF-α and IL-6↓ Nrf2↑ | [71] | |
CGA (Coffee Extracts) | Swiss albino male mice | 20 mg/kg (i.p.), 1 h | Light box dwell time↑ (LDB) Time spent in the open arms and frequency of entering the open arms↑ (EPM) Feeding behavior, exercise ability↑ (FET) | Benzodiazepine receptors↑ OS↓ | [72] | |
Anxiety | CGA SYG (Pure ingredients) | Male Sprague Dawley rats | CGA: 40 mg/kg (p.o.), 7 d SYG: 32 mg/kg (p.o.), 7 d | Time spent in open arms↑ (EPM) | Hippocampal BDNF signaling↑ PNS activity↑ | [73] |
CGA (Pure ingredients) | Male Wistar rats | 50 mg/kg (p.o.), 8 weeks | Average time to reach the underwater platform↓ The average swimming distance↓ (MWM) Light box dwell time↑ (LDB) Number of marbles buried↓ (MBT) | MDA↓ BDNF↑ IL-1β↓ IL-2↓ TNF-α↓ INF-γ↓ | [74] | |
FA (Pure ingredients) | Male C57BL/6J mice | 20 mg/kg (p.o.) | Sports activities↑ (OFT) Immobility time↓ (FST) Immobility time↓ (TST) Sucrose consumption↑ (SPT) Open arm dwell time and access frequency↑ (EPM) | Firmicutes/Bacteroidetes ratio↑ 5-HTP↑ | [75] | |
SDs | Caffeine (Pure ingredients) | Male A1R knockout mice, A2AR knockout mice, wild-type C57BL/6 mice | 2.5, 5, 10, 15 mg/kg (i.p.), 3 h | Wake up time (5, 10, 15 mg/kg) ↑ NREM and REM↓ | A2AR-mediated | [76] |
Caffeine (Pure ingredients) | Wild-type C57Bl6 mice | 0.3, 0.6, 0.9 and 1.2 mg/mL (p.o.), 21 d | Resting phase wakefulness block↓ Quiescent phase↓ Active period↑ REM↓ Sleep delay↑ | Fluctuation of adenosine receptor antagonism | [77] | |
SDs | CGA, CA and caffeine (Pure ingredients) | Male Wistar rats | CGA: 50, 100, 200, 500 mg/kg CA:20, 50, 100, 200 mg/kg; caffeine: 1, 2, 5, 10 mg/kg, (p.o.), 35 d | Sleep latency↑ Wake up time↑ NREM↓ | Activation of the α1-AR system | [78] |
Caffeine (Pure ingredients) | C57BL/6 mice | 0.13, 0.26 g/kg (i.p.), 12 min | Level of spontaneous activity↓ | sympathetic nervous system activity↑ | [79] | |
well-being | Caffeinated and decaffeinated coffee (Coffee Extracts) | C57BL/6J mice | 1 g/L (p.o.), 3 weeks | Caffeinated coffee: Males: Open arm dwell time ↓(EPM) Upright behavior and climbing time ↑ Grooming time and social time↑ Number of buried glass spheres↑ Females: Selfcare ↑ | Caffeinated: A1R Increased in striatum (Males) A1R increased in the ventral hippocampus (Females) Males and Females: MDA↓ GSH↑ | [80] |
Mental Diseases | Types of Studies | Coffee or Its Active Ingredients | Participants | Dose and Duration | Results and Conclusions | References |
---|---|---|---|---|---|---|
Depression | Randomized, double-blind, sham-controlled trial | caffeine | N = 40 (age: 18–59 years) | Self-reported number of cups of coffee and energy drinks consumed, 10–15 d | Antidepressant effect of dorsomedial iTBS↑ Depression↓ | [81] |
Randomized, double-blind, crossover study | Caffeinated and decaffeinated coffee | N = 77 (mean age: 20.38 ± 1.28 years) | 150 mg (caffeinated coffee), 1 d | Post-treatment self-report questionnaire scores↑ SBP and DBP↑ Depression↓ | [82] | |
Randomized, double-blind, controlled trial | Caffeinated and decaffeinated coffee | N = 88 (age: 18–47 years) | 75 mg/d (caffeinated coffee), 1 d | Stroop task accuracy↑ Card arrangement rewards responsiveness and sorting speed↑ Depressed mood↓ | [83] | |
Anxiety | Randomized, double-blind, controlled study | caffeine | N = 56 (mean age: 69.2 years, female) | 200 mg/d, 400 mg/d, 7 d | Anxiety symptoms↓ Low or moderate caffeine may reduce anxiety | [86] |
Randomized, controlled, crossover study | caffeine | N = 16 (Caffeine withdrawal subjects) | 100 mg/d, 1 d | SBP and DBP↑ Anxiety symptoms↓ | [87] | |
Prospective, open-label trial | Feru-guard | N = 20 (patients with frontotemporal lobar degeneration or dementia with Lewy bodies) | 3 g/d (Feru-guard), 4 weeks | Neuropsychiatric Scale Total Score↓ Dementia, anxiety symptoms↓ May be effective for treating frontotemporal lobar degeneration or Lewy body | [88] | |
SDs | Randomized, double-blind, controlled, crossover study | CGA | N = 16 (age: 30–54 years, Healthy male) | 300 mg/d, 14 d | Awakening fatigue↓ Sleep quality↑ Sleep quality↑ | [89] |
Randomized, double-blind, controlled, crossover study | CGA | N = 9 (mean age: 25.7 years, healthy adults) | 600 mg/d, 5 d | Sleep latency↓ Parasympathetic activity↑ No adverse effect on sleep quality | [90] | |
Randomized, double-blind, controlled, crossover study | caffeine | N = 5 (mean age: 24.0 ± 2.8 years) | 2.9 mg/kg, 49 d | The CR is delayed | [91] | |
Randomized, double-blind, controlled, crossover study | caffeine | N = 15 (mean age: 23.7 ± 8.2 years) | 6 mg/kg, 1 d | sleep quality↓ | [92] | |
Randomized, double-blind, controlled, crossover study | caffeine | N = 20 (mean age: 26.4 ± 4 years) | 450 mg/d, 9 d | EEG power density↓ Nocturnal sleep structure or subjective sleep quality is not greatly affected | [93] |
Mental Diseases | Participants | Coffee or Its Active Ingredients | Conclusions | References |
---|---|---|---|---|
Depression | N = 9576 (age: ≥19 years) | Coffee and Caffeine | Regular coffee or caffeine consumption is associated with lower self-reported lifetime depression prevalence in adults | [94] |
N = 50,739 (mean age: 63, female) | Caffeinated coffee | Depression risk decreases with increasing caffeinated coffee intake, with 2–3 cups being most effective | [95] | |
N = 821 (Postpartum women) | Caffeinated coffee | Moderate coffee consumption (1–2 cups per day) may reduce the risk of PDD, while higher consumption (3 cups per day or more) has no significant effect | [97] | |
N = 80,497 | Black Coffee | Moderate drinking of black coffee (4–6 times/week) may have a certain preventive effect on depression | [98] | |
Anxiety | N = 146,566 (from UK Biobank) | Coffee | Moderate coffee consumption (1–4 cups/day) showed a trend of reducing the risk of anxiety | [52] |
188,355 (age: 37–73, from UK Biobank) | Coffee | For individuals aged ≥ 60 years, higher coffee intake was negatively associated with anxiety disorders | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Luan, J.; Zhang, Y.; Wang, G.; Mei, C.; Chen, L.; Zhou, W.; Xiong, C.; Huang, T.; Zhan, J.; et al. Exploring the Impact and Mechanisms of Coffee and Its Active Ingredients on Depression, Anxiety, and Sleep Disorders. Nutrients 2025, 17, 3037. https://doi.org/10.3390/nu17193037
Shi Z, Luan J, Zhang Y, Wang G, Mei C, Chen L, Zhou W, Xiong C, Huang T, Zhan J, et al. Exploring the Impact and Mechanisms of Coffee and Its Active Ingredients on Depression, Anxiety, and Sleep Disorders. Nutrients. 2025; 17(19):3037. https://doi.org/10.3390/nu17193037
Chicago/Turabian StyleShi, Zijun, Jin Luan, Yating Zhang, Guiping Wang, Can Mei, Linwanyue Chen, Weiji Zhou, Change Xiong, Tao Huang, Jianbo Zhan, and et al. 2025. "Exploring the Impact and Mechanisms of Coffee and Its Active Ingredients on Depression, Anxiety, and Sleep Disorders" Nutrients 17, no. 19: 3037. https://doi.org/10.3390/nu17193037
APA StyleShi, Z., Luan, J., Zhang, Y., Wang, G., Mei, C., Chen, L., Zhou, W., Xiong, C., Huang, T., Zhan, J., & Cheng, J. (2025). Exploring the Impact and Mechanisms of Coffee and Its Active Ingredients on Depression, Anxiety, and Sleep Disorders. Nutrients, 17(19), 3037. https://doi.org/10.3390/nu17193037