Nutritional Status Is Not a Predictor of Anaphylaxis Severity in a Pediatric Cohort: A Retrospective Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
- A clinical diagnosis of anaphylaxis consistent with the EAACI 2021 guidelines [12].
- Complete medical records of the anaphylactic episode, allowing for a clear assessment of the clinical presentation and classification of severity.
- Availability of complete anthropometric data (body weight and height) necessary for Body Mass Index (BMI) calculation.
- Hospitalization was for conditions other than anaphylaxis.
- Clinical data were incomplete or insufficient to apply the EAACI 2021 diagnostic criteria or to classify severity.
- Anthropometric measurements required for BMI calculation (weight and height) were unavailable.
2.4. Definitions and Variables
- Anaphylaxis diagnosis: Anaphylaxis was defined according to the European Academy of Allergy and Clinical Immunology (EAACI) 2021 criteria [12], requiring acute onset of symptoms with skin/mucosal involvement and either respiratory compromise or cardiovascular instability, or the involvement of ≥2 organ systems after exposure to a likely allergen. Classification was performed retrospectively based on hospital medical records by two independent investigators, with discrepancies resolved by consensus
- Anaphylaxis Severity Grading: The severity of the reaction was assessed using the 5-grade system for systemic allergic reactions proposed by the World Allergy Organization (WAO) Anaphylaxis Committee [13].
- Exposure Variable: The primary exposure variable was the patient’s nutritional status. It was determined using the Body Mass Index (BMI), calculated as weight in kilograms divided by the square of height in meters (kg/m2). Patients were then categorized based on the age- and sex-specific BMI percentiles from the Centers for Disease Control and Prevention (CDC) growth charts into four groups: underweight (<5th percentile), normal weight (5th to <85th percentile), overweight (85th to <95th percentile), and obesity (≥95th percentile).
- Outcome Variables: The primary outcome variables were the clinical presentation and severity of anaphylaxis.
- Clinical Presentation: Assessed based on the recorded presence or absence of symptoms in five organ systems: cutaneous, respiratory, cardiovascular, gastrointestinal, and neurological.
- Anaphylaxis Severity: Graded from 1 to 5 according to the WAO grading system [13].
- Comorbidities: Asthma and atopic dermatitis were collected as baseline characteristics in order to describe the study population and assess potential confounders. Information on these conditions was obtained from the medical history provided by caregivers and verified, when available, by prior hospital records.
2.5. Study Size
2.6. Statistical Methods
3. Results
3.1. Participant Characteristics
3.2. Association Between Nutritional Status and Anaphylaxis Severity
3.3. Association Between Nutritional Status and Clinical Presentation by Organ System
3.4. Symptom Frequency Distribution Within BMI Categories
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearce, N.; Aït-Khaled, N.; Beasley, R.; Mallol, J.; Keil, U.; Mitchell, E.A.; Robertson, C.; Anderson, H.R.; Asher, M.I.; Björkstén, B.; et al. Worldwide Trends in the Prevalence of Asthma Symptoms: Phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2007, 62, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Shailesh, H.; Noor, S.; Hayati, L.; Belavendra, A.; Van Panhuys, N.; Abou-Samra, A.B.; Worgall, S.; Janahi, I. Asthma and Obesity Increase Inflammatory Markers in Children. Front. Allergy 2024, 5, 1536168. [Google Scholar] [CrossRef] [PubMed]
- Peters, U.; Dixon, A.E.; Forno, E. Obesity and Asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Pühringer, V.; Jilma, B.; Herkner, H. Population-based incidence of all-cause anaphylaxis and its development over time: A systematic review and meta-analysis. Front. Allergy 2023, 4, 1249280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Allen, K.J.; Suaini, N.H.A.; McWilliam, V.; Peters, R.L.; Koplin, J.J. The global incidence and prevalence of anaphylaxis in children in the general population: A systematic review. Allergy 2019, 74, 1063–1080. [Google Scholar] [CrossRef] [PubMed]
- De Miguel-Díez, J.; Lopez-de-Andres, A.; Caballero-Segura, F.J.; Jimenez-Garcia, R.; Hernández-Barrera, V.; Carabantes-Alarcon, D.; Zamorano-Leon, J.J.; Omaña-Palanco, R.; Cuadrado-Corrales, N. Trends and hospital outcomes in hospital admissions for anaphylaxis in children with and without asthma in Spain (2016–2021). J. Clin. Med. 2023, 12, 6387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, J.; Ni, Y.; Yi, C.; Fang, Y.; Ning, Q.; Shen, B.; Zhang, K.; Liu, Y.; Yang, L.; et al. Global Prevalence of Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2024, 178, 800–813. [Google Scholar] [CrossRef] [PubMed]
- Di Palmo, E.; Filice, E.; Cavallo, A.; Caffarelli, C.; Maltoni, G.; Miniaci, A.; Ricci, G.; Pession, A. Childhood Obesity and Respiratory Diseases: Which Link? Children 2021, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Davidson, W.J.; Mackenzie-Rife, K.A.; Witmans, M.B.; Montgomery, M.D.; Ball, G.D.C.; Egbogah, S.; Eves, N.D. Obesity Negatively Impacts Lung Function in Children and Adolescents. Pediatr. Pulmonol. 2014, 49, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Sadleir, P.H.M.; Clarke, R.C.; Goddard, C.E.; Day, C.; Weightman, W.; Middleditch, A.; Platt, P.R. Relationship of Perioperative Anaphylaxis to Neuromuscular Blocking Agents, Obesity, and Pholcodine Consumption: A Case-Control Study. Br. J. Anaesth. 2021, 126, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Pouessel, G.; Tacquard, C.; Tanno, L.K.; Mertes, P.M.; Lezmi, G. Anaphylaxis Mortality in the Perioperative Setting: Epidemiology, Elicitors, Risk Factors and Knowledge Gaps. Clin. Exp. Allergy 2024, 54, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; Worm, M.; Alviani, C.; Cardona, V.; DunnGalvin, A.; Garvey, L.H.; Riggioni, C.; de Silva, D.; Angier, E.; Arasi, S.; et al. EAACI Guidelines: Anaphylaxis (2021 Update). Allergy Eur. J. Allergy Clin. Immunol. 2022, 77, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.J.; Ansotegui, I.J.; Campbell, D.E.; Cardona, V.; Carr, S.; Custovic, A.; Durham, S.; Ebisawa, M.; Geller, M.; Gonzalez-Estrada, A.; et al. Updated Grading System for Systemic Allergic Reactions: Joint Statement of the World Allergy Organization Anaphylaxis Committee and Allergen Immunotherapy Committee. World Allergy Organ. J. 2024, 17, 100876. [Google Scholar] [CrossRef] [PubMed]
- Motosue, M.S.; Bellolio, M.F.; Van Houten, H.K.; Shah, N.D.; Campbell, R.L. Risk Factors for Severe Anaphylaxis in the United States. Ann. Allergy Asthma Immunol. 2017, 119, 356–361.e2. [Google Scholar] [CrossRef] [PubMed]
- Triggiani, M.; Patella, V.; Staiano, R.I.; Granata, F.; Marone, G. Allergy and the Cardiovascular System. Clin. Exp. Immunol. 2008, 153 (Suppl. S1), 7–11. [Google Scholar] [CrossRef] [PubMed]
- Tejedor-Alonso, M.A.; Farias-Aquino, E.; Pérez-Fernández, E.; Grifol-Clar, E.; Moro-Moro, M.; Rosado-Ingelmo, A. Relationship Between Anaphylaxis and Use of Beta-Blockers and Angiotensin-Converting Enzyme Inhibitors: A Systematic Review and Meta-Analysis of Observational Studies. J. Allergy Clin. Immunol. Pract. 2019, 7, 879–897.e5. [Google Scholar] [CrossRef] [PubMed]
- Pouessel, G.; Turner, P.J.; Worm, M.; Cardona, V.; Deschildre, A.; Beaudouin, E.; Renaudin, J.M.; Demoly, P.; Tanno, L.K. Food-Induced Fatal Anaphylaxis: From Epidemiological Data to General Prevention Strategies. Clin. Exp. Allergy 2018, 48, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.J.; Jerschow, E.; Umasunthar, T.; Lin, R.; Campbell, D.E.; Boyle, R.J. Fatal Anaphylaxis: Mortality Rate and Risk Factors. J. Allergy Clin. Immunol. Pract. 2017, 5, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Vassilopoulou, E.; Venter, C.; Roth-Walter, F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. J. Clin. Med. 2024, 13, 4713. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Underweight (n = 6) | Normal Weight (n = 158) | Overweight (n = 22) | Obese (n = 13) | Total (N = 199) | p-Value |
---|---|---|---|---|---|---|
Age (years), mean ± SD 1 | 2.4 ± 2.9 | 4.2 ± 4.5 | 4.6 ± 4.9 | 4.5 ± 5.9 | 4.2 ± 4.6 | 0.519 |
Sex, n (%) | 0.096 | |||||
Male | 5 (83.3) | 104 (65.8) | 18 (81.8) | 12 (92.3) | 139 (69.8) | |
Female | 1 (16.7) | 54 (34.2) | 4 (18.2) | 1 (7.7) | 60 (30.2) | |
Asthma, n (%) | 0 (0.0) | 34 (21.5) | 6 (27.3) | 5 (38.5) | 45 (22.6) | 0.261 |
Atopic Dermatitis, n (%) | 2 (33.3) | 75 (47.5) | 10 (45.5) | 8 (61.5) | 95 (47.7) | 0.673 |
BMI Category | Cardiovascular | Respiratory | Skin | Digestive | Neurological |
---|---|---|---|---|---|
Underweight (n = 6) | 1 (16.7) | 4 (66.7) | 5 (83.3) | 4 (66.7) | 1 (16.7) |
Normal weight (n = 158) | 10 (6.3) | 88 (55.7) | 156 (98.7) | 75 (47.5) | 38 (24.1) |
Overweight (n = 22) | 2 (9.1) | 18 (81.8) | 21 (95.5) | 16 (72.7) | 3 (13.6) |
Obese (n = 13) | 0 (0.0) | 7 (53.8) | 12 (92.3) | 8 (61.5) | 5 (38.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucharek, I.; Przystał-Dyszyński, K.; Godyńska, A.; Gregorczyk, M.; Sybilski, A.J. Nutritional Status Is Not a Predictor of Anaphylaxis Severity in a Pediatric Cohort: A Retrospective Analysis. Nutrients 2025, 17, 3023. https://doi.org/10.3390/nu17183023
Kucharek I, Przystał-Dyszyński K, Godyńska A, Gregorczyk M, Sybilski AJ. Nutritional Status Is Not a Predictor of Anaphylaxis Severity in a Pediatric Cohort: A Retrospective Analysis. Nutrients. 2025; 17(18):3023. https://doi.org/10.3390/nu17183023
Chicago/Turabian StyleKucharek, Izabela, Krzysztof Przystał-Dyszyński, Aleksandra Godyńska, Maria Gregorczyk, and Adam J. Sybilski. 2025. "Nutritional Status Is Not a Predictor of Anaphylaxis Severity in a Pediatric Cohort: A Retrospective Analysis" Nutrients 17, no. 18: 3023. https://doi.org/10.3390/nu17183023
APA StyleKucharek, I., Przystał-Dyszyński, K., Godyńska, A., Gregorczyk, M., & Sybilski, A. J. (2025). Nutritional Status Is Not a Predictor of Anaphylaxis Severity in a Pediatric Cohort: A Retrospective Analysis. Nutrients, 17(18), 3023. https://doi.org/10.3390/nu17183023