Screen Time as a Determinant of Chosen Aspects of Lifestyle: A Cross-Sectional Study of 10- to 12-Year-Old Schoolchildren in Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Design and Data Collection
2.3. Ethics Approval
2.4. Screen Time
2.5. Unhealthy Dietary Patterns
2.6. Physical Activity
2.7. Sleep Duration
2.8. Anthropometric Data
2.9. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 95% CI | Confidence Intervals |
| BMI | Body Mass Index |
| BW | Body Weight |
| BWS | Body Weight Status |
| FF | Fast Foods |
| FM | Family Meals |
| HC | Hip Circumference |
| OR | Odds Ratio |
| PA | Physical Activity |
| SD | Sleep Duration |
| SS | Salty Snacks |
| SSB | Sugar-sweetened Beverages |
| ST | Screen Time |
| WC | Waist Circumference |
| WHtR | Waist-to-Height Ratio |
References
- Harvey, D.L.; Milton, K.; Jones, A.P.; Atkin, A.J. International trends in screen-based behaviours from 2012 to 2019. Prev. Med. 2022, 154, 106909. [Google Scholar] [CrossRef]
- Runacres, A.; Mackintosh, K.A.; Knight, R.L.; Sheeran, L.; Thatcher, R.; Shelley, J.; McNarry, M.A. Impact of the COVID-19 Pandemic on Sedentary Time and Behaviour in Children and Adults: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 11286. [Google Scholar] [CrossRef]
- Trott, M.; Driscoll, R.; Irlado, E.; Pardhan, S. Changes and correlates of screen time in adults and children during the COVID-19 pandemic: A systematic review and meta-analysis. eClinicalMedicine 2022, 48, 101452. [Google Scholar] [CrossRef] [PubMed]
- Madigan, S.; Eirich, R.; Pador, P.; McArthur, B.A.; Neville, R.D. Assessment of Changes in Child and Adolescent Screen Time During the COVID-19 Pandemic: A Systematic Review and Meta-analysis. JAMA Pediatr. 2022, 176, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Hale, L.; Guan, S. Screen time and sleep among school-aged children and adolescents: A systematic literature review. Sleep Med. Rev. 2015, 21, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.; Rees, P.; Hale, L.; Bhattacharjee, D.; Paradkar, M.S. Association Between Portable Screen-Based Media Device Access or Use and Sleep Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2016, 170, 1202–1208. [Google Scholar] [CrossRef]
- Li, C.; Cheng, G.; Sha, T.; Cheng, W.; Yan, Y. The Relationships between Screen Use and Health Indicators among Infants, Toddlers, and Preschoolers: A Meta-Analysis and Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 7324. [Google Scholar] [CrossRef]
- Madigan, S.; McArthur, B.A.; Anhorn, C.; Eirich, R.; Christakis, D.A. Associations Between Screen Use and Child Language Skills: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Eirich, R.; McArthur, B.A.; Anhorn, C.; McGuinness, C.; Christakis, D.A.; Madigan, S. Association of Screen Time With Internalizing and Externalizing Behavior Problems in Children 12 Years or Younger: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022, 79, 393–405. [Google Scholar] [CrossRef]
- Liu, M.; Wu, L.; Yao, S. Dose–response association of screen time-based sedentary behaviour in children and adolescents and depression: A meta-analysis of observational studies. Br. J. Sports Med. 2016, 50, 1252–1258. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.; Huang, M.; Yu, X.; Gan, Y.; Wang, J.; Chen, Q.; Nie, Z.; Ge, H. Screen time and childhood attention deficit hyperactivity disorder: A meta-analysis. Rev. Environ. Health 2023, 39, 643–650. [Google Scholar] [CrossRef]
- Twenge, J.M.; Campbell, W.K. Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Prev. Med. Rep. 2018, 12, 271–283. [Google Scholar] [CrossRef]
- Adelantado-Renau, M.; Moliner-Urdiales, D.; Cavero-Redondo, I.; Beltran-Valls, M.R.; Martínez-Vizcaíno, V.; Álvarez-Bueno, C. Association Between Screen Media Use and Academic Performance Among Children and Adolescents: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 1058–1067. [Google Scholar] [CrossRef]
- Jahangiry, L.; Aune, D.; Farhangi, M.A. Screen time and the risk of metabolic syndrome among children and adolescents: A systematic review and dose-response meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2483–2492. [Google Scholar] [CrossRef]
- Hardy, L.L.; Ding, D.; Peralta, L.R.; Mihrshahi, S.; Merom, D. Association Between Sitting, Screen Time, Fitness Domains, and Fundamental Motor Skills in Children Aged 5–16 Years: Cross-Sectional Population Study. J. Phys. Act. Health 2018, 15, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Song, Y.; Cai, Z.; Zhang, Q. Are active video games useful in the development of gross motor skills among non-typically developing children? A meta-analysis. BMC Sports Sci. Med. Rehabil. 2022, 14, 140. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, N.; McDonough, D.J.; Gao, Z. Effect of Active Video Games on Healthy Children’s Fundamental Motor Skills and Physical Fitness: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8264. [Google Scholar] [CrossRef]
- Mineshita, Y.; Kim, H.K.; Chijiki, H.; Nanba, T.; Shinto, T.; Furuhashi, S.; Oneda, S.; Kuwahara, M.; Suwama, A.; Shibata, S. Screen time duration and timing: Effects on obesity, physical activity, dry eyes, and learning ability in elementary school children. BMC Public Health 2021, 21, 422. [Google Scholar] [CrossRef]
- Sanders, T.; Parker, P.D.; Del Pozo-Cruz, B.; Noetel, M.; Lonsdale, C. Type of screen time moderates effects on outcomes in 4013 children: Evidence from the Longitudinal Study of Australian Children. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 117. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Y.; Jiang, F.; Ip, P.; Ho, F.K.W.; Zhang, Y.; Huang, H. Excessive Screen Time and Psychosocial Well-Being: The Mediating Role of Body Mass Index, Sleep Duration, and Parent-Child Interaction. J. Pediatr. 2018, 202, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Tambalis, K.D.; Panagiotakos, D.B.; Psarra, G.; Sidossis, L.S. Insufficient sleep duration is associated with dietary habits, screen time, and obesity in children. J. Clin. Sleep Med. 2018, 14, 1689–1696. [Google Scholar] [CrossRef]
- Askari, M.; Heshmati, J.; Shahinfar, H.; Tripathi, N.; Daneshzad, E. Ultra-processed food and the risk of overweight and obesity: A systematic review and meta-analysis of observational studies. Int. J. Obes. 2020, 44, 2080–2091. [Google Scholar] [CrossRef]
- Neri, D.; Steele, E.M.; Khandpur, N.; Cediel, G.; Zapata, M.E.; Rauber, F.; Marrón-Ponce, J.A.; Machado, P.; da Costa Louzada, M.L.; Andrade, G.C.; et al. Ultraprocessed food consumption and dietary nutrient profiles associated with obesity: A multicountry study of children and adolescents. Obes. Rev. 2022, 23, 13387. [Google Scholar] [CrossRef]
- Jakobsen, D.D.; Brader, L.; Bruun, J.M. Association between Food, Beverages and Overweight/Obesity in Children and Adolescents—A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2023, 15, 764. [Google Scholar] [CrossRef]
- Cameron, J.D.; Maras, D.; Sigal, R.J.; Kenny, G.P.; Borghese, M.M.; Chaput, J.P.; Alberga, A.S.; Goldfield, G.S. The mediating role of energy intake on the relationship between screen time behaviour and body mass index in adolescents with obesity: The HEARTY study. Appetite 2016, 107, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Kruisbrink, M.; Wallace, J.; Ji, C.; Cappuccio, F.P. Sleep duration and incidence of obesity in infants, children, and adolescents: A systematic review and meta-analysis of prospective studies. Sleep 2018, 41, zsy018. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, B.; Taveras, E.; Allender, S.; Strugnell, C. Sleep and obesity among children: A systematic review of multiple sleep dimensions. Pediatr Obes. 2020, 15, e12619. [Google Scholar] [CrossRef]
- López-Gil, J.F.; Ezzatvar, Y.; Ojeda-Rodríguez, A.; Galan-Lopez, P.; Royo, J.M.P.; Gaya, A.R.; Agostinis-Sobrinho, C.; Martín-Calvo, N. Is family meal frequency associated with obesity in children and adolescents? A cross-sectional study including 155 451 participants from 43 countries. Pediatr. Obes. 2024, 19, 13124. [Google Scholar] [CrossRef] [PubMed]
- Dallacker, M.; Hertwig, R.; Mata, J. The frequency of family meals and nutritional health in children: A meta-analysis. Obes. Rev. 2018, 19, 638–653. [Google Scholar] [CrossRef]
- Thimming, L.M.; Cabana, M.D.; Bentz, M.G.; Potocka, K.; Beck, A.; Fong, L.; Chao, C.; Caughey, A.B.; Wong, A.; McKean, M. Television during meals in the first 4 years of life. Clin. Pediatr. 2017, 56, 659–666. [Google Scholar] [CrossRef]
- Avery, A.; Anderson, C.; McCullough, F. Associations between children’s diet quality and watching television during meal or snack consumption: A systematic review. Matern Child Nutr. 2017, 13, 12428. [Google Scholar] [CrossRef]
- Song, Y.; Kong, Y.; Xie, X.; Wang, Y.; Wang, N. Association between precocious puberty and obesity risk in children: A systematic review and meta-analysis. Front. Pediatr. 2023, 11, 1226933. [Google Scholar]
- Rusek, W.; Baran, J.; Leszczak, J.; Adamczyk, M.; Baran, R.; Weres, A.; Inglot, G.; Czenczek-Lewandowska, E.; Pop, T. Changes in Children’s Body Composition and Posture during Puberty Growth. Children 2021, 8, 288. [Google Scholar] [CrossRef]
- Neufeld, L.M.; Andrade, E.B.; Ballonoff Suleiman, A.; Barker, M.; Beal, T.; Blum, L.S.; Demmler, K.M.; Dogra, S.; Hardy-Johnson, P.; Lahiri, A.; et al. Food choicein transition: Adolescent autonomy, agency, and the food environment. Lancet 2022, 399, 185–197. [Google Scholar] [CrossRef]
- Suleiman-Martos, N.; García-Lara, R.A.; Martos-Cabrera, M.B.; Albendín-García, L.; Romero-Béjar, J.L.; Cañadas-De la Fuente, G.A.; Gomez-Urquiza, J.L. Gamification for the Improvement of Diet, Nutritional Habits, and Body Composition in Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2478. [Google Scholar] [CrossRef]
- Hamulka, J.; Czarniecka-Skubina, E.; Gutkowska, K.; Drywień, M.E.; Jeruszka-Bielak, M. Nutrition-Related Knowledge, Diet Quality, Lifestyle, and Body Composition of 7–12-Years-Old Polish Students: Study Protocol of National Educational Project Junior-Edu-Żywienie (JEŻ). Nutrients 2024, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Hamulka, J.; Czarniecka-Skubina, E.; Górnicka, M.; Gębski, J.; Leszczyńska, T.; Gutkowska, K. What Determinants Are Related to Milk and Dairy Product Consumption Frequency among Children Aged 10–12 Years in Poland? Nationwide Cross-Sectional Study. Nutrients 2024, 16, 2654. [Google Scholar] [CrossRef] [PubMed]
- Kowalkowska, J.; Wadolowska, L.; Hamulka, J.; Wojtas, N.; Czlapka-Matyasik, M.; Kozirok, W.; Bronkowska, M.; Sadowska, J.; Naliwajko, S.; Dziaduch, I.; et al. Reproducibility of a Short-Form, Multicomponent Dietary Questionnaire to Assess Food Frequency Consumption, Nutrition Knowledge, and Lifestyle (SF-FFQ4PolishChildren) in Polish Children and Adolescents. Nutrients 2019, 11, 2929. [Google Scholar] [CrossRef] [PubMed]
- Council on Communications and Media. Media Use in School-Aged Children and Adolescents. Pediatrics 2016, 138, 20162592. [Google Scholar] [CrossRef]
- Pyramid of Healthy Nutrition and Physical Activity for Children. Available online: https://ncez.pzh.gov.pl/dzieci-i-mlodziez/piramida-zdrowego-zywienia-i-stylu-zycia-dzieci-i-mlodziezy-2/ (accessed on 18 May 2025). (In Polish)
- Hamulka, J.; Wadolowska, L.; Hoffmann, M.; Kowalkowska, J.; Gutkowska, K. Effect of an Education Program on Nutrition Knowledge, Attitudes toward Nutrition, Diet Quality, Lifestyle, and Body Composition in Polish Teenagers. The ABC of Healthy Eating Project: Design, Protocol, and Methodology. Nutrients 2018, 10, 1439. [Google Scholar] [CrossRef]
- Esparza-Ros, F.; Vaquero-Cristobal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; The International Society for the Advancement of Kinanthropometry (ISAK): Murcia, Spain, 2019. [Google Scholar]
- Casadei, K.; Kiel, J. Anthropometric Measurement; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Świąder-Leśniak, A.; Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Góźdź, M.; Wojtyło, M.; Różdżyńska-Świątkowska, A.; Litwin, M. References for waist and hip circumferences in Polish children and adolescents 3–18 year of age. Stand. Med. Pediatr. 2015, 12, 137–150. [Google Scholar]
- Kułaga, Z.; Różdżyńska-Świątkowska, A.; Grajda, A.; Gurzkowska, B.; Wojtyło, M.; Góźdź, M.; Świąder-Leśniak, A.; Litwin, M. Percentile charts for growth and nutritional status assessment in Polish children and adolescents from birth to 18 year of age. Stand. Med. Pediatr. 2015, 12, 119–135. [Google Scholar]
- Maffeis, C.; Banzato, C.; Talamini, G. Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J. Pediatr. 2008, 152, 207–213.e2. [Google Scholar] [CrossRef] [PubMed]
- Wethington, H.; Pan, L.P.; Sherry, B. The Association of Screen Time, Television in the Bedroom, and Obesity Among School-Aged Youth: 2007 National Survey of Children’s Health. J. Sch. Health 2013, 83, 573–581. [Google Scholar] [CrossRef]
- Suchert, V.; Hanewinkel, R.; Isensee, B. Screen time, weight status and the self-concept of physical attractiveness in adolescents. J. Adolesc. 2016, 48, 11–17. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Zhang, E.; Li, H.; Ge, X.; Hu, F.; Cai, Y.; Xiang, M. Association between Types of Screen Time and Weight Status during the COVID-19 Pandemic: A Longitudinal Study in Children and Adolescents. Nutrients 2023, 15, 2055. [Google Scholar] [CrossRef]
- Doherty, M.; Santiago-Torres, M.; Cui, Y.; Schoeller, D.; LaRowe, T.; Adams, A.; Carrel, A. The Association between Screen Time and Weight Status in Hispanic Children. BAOJ Obes. Weight Loss Manag. 2015, 1, 001. [Google Scholar]
- Bai, Y.; Chen, S.; Laurson, K.R.; Kim, Y.; Saint-Maurice, P.F.; Welk, G.J. The Associations of Youth Physical Activity and Screen Time with Fatness and Fitness: The 2012 NHANES National Youth Fitness Survey. PLoS ONE 2016, 11, e0148038. [Google Scholar] [CrossRef]
- Górnicka, M.; Hamulka, J.; Wadolowska, L.; Kowalkowska, J.; Kostyra, E.; Tomaszewska, M.; Czeczelewski, J.; Bronkowska, M. Activity–Inactivity Patterns, Screen Time, and Physical Activity: The Association with Overweight, Central Obesity and Muscle Strength in Polish Teenagers. Report from the ABC of Healthy Eating Study. Int. J. Environ. Res. Public Health 2020, 17, 7842. [Google Scholar] [CrossRef] [PubMed]
- Rocka, A.; Jasielska, F.; Madras, D.; Krawiec, P.; Pac-Kożuchowska, E. The Impact of Digital Screen Time on Dietary Habits and Physical Activity in Children and Adolescents. Nutrients 2022, 14, 2985. [Google Scholar] [CrossRef]
- Gray, C.E.; Larouche, R.; Barnes, J.D.; Colley, R.C.; Bonne, J.C.; Arthur, M.; Cameron, C.; Chaput, J.-P.; Faulkner, G.; Janssen, I.; et al. Are we driving our kids to unhealthy habits? Results of the active healthy kids Canada 2013 report card on physical activity for children and youth. Int. J. Environ. Res. Public Health 2014, 11, 6009–6020. [Google Scholar] [CrossRef]
- Sisson, S.B.; Church, T.S.; Martin, C.K.; Tudor-Locke, C.; Smith, S.R.; Bouchard, C.; Earnest, C.P.; Rankinen, T.; Newton, R.L.; Katzmarzyk, P.T. Profiles of sedentary behavior in children and adolescents: The U.S. National Health and Nutrition Examination Survey, 2001–2006. Int. J. Pediatr. Obes. 2009, 4, 353–359. [Google Scholar] [CrossRef]
- Myszkowska-Ryciak, J.; Harton, A.; Lange, E.; Laskowski, W.; Wawrzyniak, A.; Hamulka, J.; Gajewska, D. Reduced Screen Time is Associated with Healthy Dietary Behaviors but Not Body Weight Status among Polish Adolescents. Report from the Wise Nutrition—Healthy Generation Project. Nutrients 2020, 12, 1323. [Google Scholar] [CrossRef]
- Thomas, G.; Bennie, J.A.; De Cocker, K.; Ireland, M.J.; Biddle, S.J. Screen-based behaviors in Australian adolescents: Longitudinal trends from a 4-year follow-up study. Prev. Med. 2020, 141, 106258. [Google Scholar] [CrossRef]
- Bounova, A.; Michalopoulou, M.; Agelousis, N.; Kourtessis, T.; Gourgoulis, V. Home and Neighborhood Environment Predictors of Adolescents’ Screen Viewing. J. Phys. Act. Health 2016, 13, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zou, P.; Lin, Z.; Cao, Y.; Luo, Y. Gender Differences in Excessive Screen Time among Chinese High School Students in Henan Province. Int. J. Environ. Res. Public Health 2023, 20, 721. [Google Scholar] [CrossRef] [PubMed]
- Tak, S.; Catsambis, S. “Video games for boys and chatting for girls?”: Gender, screen time activities and academic achievement in high school. Educ. Inf. Technol. 2023, 28, 15415–15443. [Google Scholar] [CrossRef]
- Fairlie, R.W. Do Boys and Girls Use Computers Differently, and Does It Contribute to Why Boys do Worse in School Than Girls? BE J. Econ. Anal. Policy 2016, 16, 59–96. [Google Scholar] [CrossRef]
- Neville, R.D.; Nelson, M.A.; Madigan, S.; Browne, D.T.; Lakes, K.D. Does physical activity moderate the association between screen time and psychosocial development in early childhood? Analysis of a longitudinal infant cohort study in Ireland. Eur. J. Pediatr. 2021, 180, 2199–2211. [Google Scholar] [CrossRef]
- Schoeppe, S.; Vandelanotte, C.; Bere, E.; Lien, N.; Verloigne, M.; Kovács, É.; Manios, Y.; Bjelland, M.; Vik, F.N.; Van Lippevelde, W. The influence of parental modelling on children’s physical activity and screen time: Does it differ by gender? Eur. J. Public Health 2017, 27, 152–157. [Google Scholar] [CrossRef]
- Fang, K.; Mu, M.; Liu, K.; He, Y. Screen time and childhood overweight/obesity: A systematic review and meta-analysis. Child Care Health Dev. 2019, 45, 744–753. [Google Scholar] [CrossRef]
- Ghasemirad, M.; Ketabi, L.; Fayyazishishavan, E.; Hojati, A.; Maleki, Z.H.; Gerami, M.H.; Moradzadeh, M.; Fernandez, J.H.O.; Akhavan-Sigari, R. The association between screen use and central obesity among children and adolescents: A systematic review and meta-analysis. J. Health Popul. Nutr. 2023, 42, 51. [Google Scholar] [CrossRef]
- Robinson, T.N.; Banda, J.A.; Hale, L.; Lu, A.S.; Fleming-Milici, F.; Calvert, S.L.; Wartella, E. Screen Media Exposure and Obesity in Children and Adolescents. Pediatrics 2017, 140, 97–101. [Google Scholar] [CrossRef]
- Goldfield, G.S.; Murray, M.; Maras, D.; Wilson, A.L.; Phillips, P.; Kenny, G.P.; Hadjiyannakis, S.; Alberga, A.; Cameron, J.D.; Tulluch, H.; et al. Screen time is associated with depressive symptomatology among obese adolescents: A HEARTY study. Eur. J. Pediatr. 2016, 175, 909–919. [Google Scholar] [CrossRef]
- Inaba, H.; Hoshino, F.; Takano, K.; Kaiwa, M.; Kondou, A.; Ishikawa, H.; Liu, L.; Ishigami, K. Impact of the Coronavirus Disease 2019 Pandemic on Leisure Screen Time and Eating Habits of Japanese High School Students: A Comparison between before and during the Pandemic. Healthcare 2023, 11, 1265. [Google Scholar] [CrossRef]
- Kelishadi, R.; Mozafarian, N.; Qorbani, M.; Maracy, M.R.; Motlagh, M.E.; Safiri, S.; Ardalan, G.; Asayesh, H.; Rezaei, F.; Heshmat, R. Association between screen time and snack consumption in children and adolescents: The CASPIAN-IV study. J. Pediatr. Endocrinol. Metab. 2017, 30, 211–219. [Google Scholar] [CrossRef]
- Rocha, L.L.; Gratão, L.H.A.; Carmo, A.S.D.; Costa, A.B.P.; Cunha, C.F.; Oliveira, T.R.P.R.; Mendes, L.L. School Type, Eating Habits, and Screen Time are Associated with Ultra-Processed Food Consumption among Brazilian Adolescents. J. Acad. Nutr. Diet. 2021, 121, 1136–1142. [Google Scholar] [CrossRef]
- Cartanyà-Hueso, À.; González-Marrón, A.; Lidón-Moyano, C.; Garcia-Palomo, E.; Martín-Sánchez, J.C.; Martínez-Sánchez, J.M. Association between Leisure Screen Time and Junk Food Intake in a Nationwide Representative Sample of Spanish Children (1–14 Years): A Cross-Sectional Study. Healthcare 2021, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.E.; Barnett, T.; Shrier, I.; Rossignol, M.; Abenhaim, L. Is physical activity differentially associated with different types of sedentary pursuits? Arch. Pediatr. Adolesc. Med. 2003, 157, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Brage, S.; Froberg, K.; Harro, M.; Anderssen, S.A.; Sardinha, L.B.; Riddoch, C.; Andersen, L.B. TV viewing and physical activity are independently associated with metabolic risk in children: The European Youth Heart Study. PLoS Med. 2006, 3, e488. [Google Scholar] [CrossRef] [PubMed]
- Fakhouri, T.H.I.; Hughes, J.P.; Brody, D.J.; Kit, B.K.; Ogden, C.L. Physical Activity and Screen-Time Viewing Among Elementary School–Aged Children in the United States From 2009 to 2010. JAMA Pediatr. 2013, 167, 223–229. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, A.G.; Chaput, J.-P.; McFarlane, A.; Colley, R.C.; Thivel, D.; Biddle, S.J.H.; Maddison, R.; Leatherdale, S.T.; Tremblay, M.S. Active Video Games and Health Indicators in Children and Youth: A Systematic Review. PLoS ONE 2013, 8, e65351. [Google Scholar] [CrossRef]
- França, C.; Ashraf, S.; Santos, F.; Dionísio, M.; Ihle, A.; Marques, A.; de Maio Nascimento, M.; Gouveia, É.R. Estimated Energy Expenditure in Youth While Playing Active Video Games: A Systematic Review. Sports 2024, 12, 39. [Google Scholar] [CrossRef]
- Foley, L.; Maddison, R. Use of active video games to increase physical activity in children: A (virtual) reality? Pediatr. Exerc. Sci. 2010, 22, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.; Pinto, R.Z.; Saraiva, B.T.C.; Tebar, W.R.; Delfino, L.D.; Franco, M.R.; Silva, C.C.M.; Christofaro, D.G.D. Effects of active video games on children and adolescents: A systematic review with meta-analysis. Scand. J. Med. Sci. Sports 2020, 30, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Nedjar-Guerre, A.; Wattelez, G.; Serra-Mallol, C.; Frayon, S.; Galy, O. Adolescent screen time and unhealthy food consumption in the context of the digital development in New Caledonia. PLoS ONE 2023, 18, e0285374. [Google Scholar] [CrossRef]

| Variables | Total N = 7763 (%) | Boys N = 3820 (%) | Girls N = 3943 (%) | p-Value |
|---|---|---|---|---|
| Body weight status category | ||||
| Underweight | 888 (11.44) | 433 (11.34) | 455 (11.54) | 0.955 A |
| Normal weight | 5687 (73.26) | 2800 (73.30) | 2887 (73.22) | |
| Overweight/obese | 1188 (15.30) | 587 (15.37) | 601 (15.24) | |
| WHtR | ||||
| <0.5 | 6459 (83.20) | 2934 (76.81) | 3525 (89.40) | <0.001 A |
| ≥0.5 | 1304 (16.80) | 886 (23.19) | 418 (10.60) | |
| Physical activity level | ||||
| Low | 895 (11.53) | 491 (12.85) | 404 (10.25) | <0.001 A |
| Moderate | 3376 (43.49) | 1436 (37.59) | 1940 (49.20) | |
| Vigorous | 3492 (44.98) | 1893 (49.55) | 1599 (40.55) | |
| Sleep duration (hours/day) | ||||
| <6 | 756 (9.73) | 355 (9.29) | 401 (10.17) | <0.001 A |
| 6 up to 8 | 3885 (50.04) | 1834 (48.01) | 2051 (52.02) | |
| ≥8 | 3122 (40.22) | 1631 (42.70) | 1491 (37.81) | |
| Screen time (hours/day) | ||||
| <2 | 2708 (34.88) | 1217 (31.86) | 1491 (37.81) | <0.001 A |
| 2 to 4 | 2852 (36.74) | 1420 (37.17) | 1432 (36.32) | |
| >4 | 2203 (28.38) | 1183 (30.97) | 1020 (25.87) | |
| Frequency of consumption (median value per day) | ||||
| Fast foods | 0.06 | 0.06 | 0.06 | <0.001 B |
| Salty snacks | 0.14 | 0.14 | 0.14 | 0.021 B |
| Sweets | 0.50 | 0.50 | 0.50 | <0.001 B |
| Sugar-sweetened beverages | 0.14 | 0.14 | 0.14 | <0.001 B |
| Frequency of family meals | ||||
| Not at all | 124 (3.2) | 129 (6.1) | 253 (3.2) | 0.334 A |
| Less than 1 time/week | 205 (5.4) | 241 (6.1) | 446 (5.7) | |
| 1–2 days/week | 541 (14.2) | 610 (15.5) | 1151 (14.8) | |
| 3–4 days/week | 809 (21.2) | 828 (21.0) | 1637 (21.1) | |
| 5–6 days/week | 636 (16.6) | 618 (15.7) | 1254 (16.1) | |
| Every day | 1505 (39.4) | 1517 (38.5) | 3022 (38.9) | |
| Place of residence | ||||
| Village | 1651 (21.27) | 810 (21.20) | 841 (21.33) | 0.066 A |
| City ≤ 100,000 inhabitants | 2923 (37.65) | 1394 (36.49) | 1529 (38.78) | |
| City > 100,000 inhabitants | 3189 (41.08) | 1616 (42.30) | 1573 (39.89) | |
| Age (years) | ||||
| 10 | 3087 (39.76) | 1458 (38.17) | 1629 (41.31) | 0.007 A |
| 11 | 2556 (32.92) | 1267 (33.17) | 1289 (32.69) | |
| 12 | 2120 (27.31) | 1095 (28.66) | 1025 (26.00) | |
| Variables | X2 Statistics | Cramer’s V | p-Value |
|---|---|---|---|
| Sex | 30.29 | −0.06 | <0.001 |
| Age | 260.01 | 0.18 | <0.001 |
| Body weight status | 36.60 | 0.07 | <0.001 |
| WHtR | 32.78 | 0.07 | <0.001 |
| Physical activity | 211.67 | 0.17 | <0.001 |
| Sleep duration | 86.34 | 0.11 | <0.001 |
| Place of residence | 12.09 | 0.04 | 0.002 |
| Family meals | 103.39 | −0.12 | <0.001 |
| Variables | Estimate | Point Estimate OR | 95% Wald Confidence Limits | p-Value A | |
|---|---|---|---|---|---|
| Intercept | −0.7133 | <0.0001 | |||
| Unhealthy food consumption frequency | |||||
| Fast foods | 0.1022 | 1.108 | 1.045 | 1.173 | 0.001 |
| Salty snacks | 0.1177 | 1.125 | 1.07 | 1.183 | <0.001 |
| Sweets | 0.1028 | 1.108 | 1.064 | 1.154 | <0.001 |
| Sugar-sweetened beverages | 0.1779 | 1.195 | 1.147 | 1.244 | <0.001 |
| Family meals frequency (reference: low) | |||||
| High | −0.396 | 0.673 | 0.607 | 0.745 | <0.001 |
| Sleep duration (reference: ≥8 h) | |||||
| <6 | −0.0636 | 0.938 | 0.785 | 1.121 | 0.484 |
| 6 up to 8 | 0.3476 | 1.416 | 1.274 | 1.573 | <0.001 |
| Physical activity level (reference: low) | |||||
| Moderate | −0.4534 | 0.635 | 0.526 | 0.768 | <0.001 |
| Vigorous | −0.9917 | 0.371 | 0.308 | 0.447 | <0.001 |
| Body weight status category (reference: normal body weight) | |||||
| Overweight/obese | 0.3333 | 1.396 | 1.163 | 1.675 | <0.001 |
| Underweight | −0.0972 | 0.907 | 0.776 | 1.062 | 0.225 |
| WHtR (reference: ≥0.5) | |||||
| <0.5 | −0.1259 | 0.882 | 0.738 | 1.053 | 0.165 |
| Place of residence (reference: cities > 100,000 inhabitants) | |||||
| Village | 0.2059 | 1.229 | 1.073 | 1.407 | 0.003 |
| City ≤ 100,000 inhabitants | 0.1612 | 1.175 | 1.028 | 1.343 | 0.018 |
| Sex (reference: boy) | |||||
| Girl | −0.2528 | 0.777 | 0.7 | 0.862 | <0.001 |
| Age/grade (reference: 10 years) | |||||
| 11 | 0.4848 | 1.624 | 1.448 | 1.821 | <0.001 |
| 12 | 0.9888 | 2.688 | 2.361 | 3.06 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myszkowska-Ryciak, J.; Hamulka, J.; Czarniecka-Skubina, E.; Gębski, J.; Chmurzynska, A.; Gutkowska, K. Screen Time as a Determinant of Chosen Aspects of Lifestyle: A Cross-Sectional Study of 10- to 12-Year-Old Schoolchildren in Poland. Nutrients 2025, 17, 2891. https://doi.org/10.3390/nu17172891
Myszkowska-Ryciak J, Hamulka J, Czarniecka-Skubina E, Gębski J, Chmurzynska A, Gutkowska K. Screen Time as a Determinant of Chosen Aspects of Lifestyle: A Cross-Sectional Study of 10- to 12-Year-Old Schoolchildren in Poland. Nutrients. 2025; 17(17):2891. https://doi.org/10.3390/nu17172891
Chicago/Turabian StyleMyszkowska-Ryciak, Joanna, Jadwiga Hamulka, Ewa Czarniecka-Skubina, Jerzy Gębski, Agata Chmurzynska, and Krystyna Gutkowska. 2025. "Screen Time as a Determinant of Chosen Aspects of Lifestyle: A Cross-Sectional Study of 10- to 12-Year-Old Schoolchildren in Poland" Nutrients 17, no. 17: 2891. https://doi.org/10.3390/nu17172891
APA StyleMyszkowska-Ryciak, J., Hamulka, J., Czarniecka-Skubina, E., Gębski, J., Chmurzynska, A., & Gutkowska, K. (2025). Screen Time as a Determinant of Chosen Aspects of Lifestyle: A Cross-Sectional Study of 10- to 12-Year-Old Schoolchildren in Poland. Nutrients, 17(17), 2891. https://doi.org/10.3390/nu17172891

