Creatine Supplementation Combined with Exercise in the Prevention of Type 2 Diabetes: Effects on Insulin Resistance and Sarcopenia
Abstract
1. Introduction
2. The Role of Creatine in Energy Metabolism, Sarcopenia, and Its Impact on Glucose Metabolism
2.1. The Role of Creatine in Energy Metabolism
2.2. Creatine in Sarcopenia and Its Effect on Glucose Metabolism
3. The Role of Physical Exercise in Improving Glucose Metabolism
3.1. Molecular Mechanisms of Glucose Regulation in Skeletal Muscle
3.2. Role of Exercise in Type 2 Diabetes Management
3.3. Combined Training as an Optimal Intervention Strategy
4. Creatine and Exercise—Synergistic Effects in the Prevention of Type 2 Diabetes
Clinical Evidence and Mechanistic Mediators
5. Evidence-Based Safety Profile of Creatine Supplementation
5.1. Forms and Dosing Strategies
5.2. Safety Profile and Adverse Effects of Creatine Supplementation in Healthy and Clinical Populations
5.3. Safety and Metabolic Tolerability of Creatine Monohydrate in Older Adults with T2D and Sarcopenia
5.4. Creatine Co-Supplementation: Pharmacokinetic Interactions and Clinical Implications
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
T2D | Type 2 Diabetes |
IDF | International Diabetes Federation |
HbA1c | Glycated Hemoglobin |
PCr | Phosphocreatine |
CK | Creatine Kinase |
CRTR | Creatine Transporter |
ROS | Reactive Oxygen Species |
AMPK | AMP-Activated Protein Kinase |
PGC-1α | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha |
NF-κB | Nuclear Factor Kappa B |
p38 MAPK | P38 Mitogen-Activated Protein Kinase |
TNF-α | Tumor Necrosis Factor Alpha |
IL-1β | Interleukin-1 Beta |
STAT1/3 | Signal Transducer And Activator Of Transcription 1/3 |
IGF-1 | Insulin-Like Growth Factor 1 |
GH | Growth Hormone |
mTORC1 | Mechanistic Target Of Rapamycin Complex 1 |
GLUT4 | Glucose Transporter Type 4 |
Akt/PKB | Protein Kinase B |
Rac1 | Ras-Related C3 Botulinum Toxin Substrate 1 |
CaMK | Calcium/Calmodulin-Dependent Protein Kinase |
IRS | Insulin Receptor Substrate |
WHO | World Health Organization |
OGTT | Oral Glucose Tolerance Test |
HOMA-IR | Homeostatic Model Assessment Of Insulin Resistance |
CrM | Creatine Monohydrate |
ISSN | International Society Of Sports Nutrition |
Cmax | Maximum Plasma Concentration |
Tmax | Time To Reach Maximum Plasma Concentration |
AUC | Area Under The Curve |
CEE | Creatine Ethyl Ester |
DDInter | Drug–Drug Interaction Database |
References
- Młynarska, E.; Czarnik, W.; Dzieża, N.; Jędraszak, W.; Majchrowicz, G.; Prusinowski, F.; Stabrawa, M.; Rysz, J.; Franczyk, B. Type 2 diabetes mellitus: New pathogenetic mechanisms, treatment and the most important complications. Int. J. Mol. Sci. 2025, 26, 1094. [Google Scholar] [CrossRef]
- Goyal, R.; Singhal, M.; Jialal, I. Type 2 diabetes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [Google Scholar] [CrossRef]
- Xie, J.; Wang, M.; Long, Z.; Ning, H.; Li, J.; Cao, Y.; Liao, Y.; Liu, G.; Wang, F.; Pan, A. Global burden of type 2 diabetes in adolescents and young adults, 1990-2019: Systematic analysis of the Global Burden of Disease Study 2019. BMJ 2022, 379, e072385. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025. [Google Scholar]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Zhou, B.; Rayner, A.W.; Gregg, E.W.; E Sheffer, K.; Carrillo-Larco, R.M.; E Bennett, J.; E Shaw, J.; Paciorek, C.J.; Singleton, R.K.; Pires, A.B.; et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef]
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127 (Suppl. S5), 990S–991S. [Google Scholar] [CrossRef]
- Lee, S.W.; Youm, Y.; Lee, W.J.; Choi, W.; Chu, S.H.; Park, Y.-R.; Kim, H.C. Appendicular skeletal muscle mass and insulin resistance in an elderly korean population: The korean social life, health and aging project-health examination cohort. Diabetes Metab. J. 2015, 39, 37–45. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Deng, Y.; Liang, Z.; Feng, S.; Fu, M. Association between metabolic score for insulin resistance and prevalence of sarcopenia in US adults: A study based on NHANES 2011 to 2018. Medicine 2025, 104, e41863. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z.; Hu, J.; Du, J.; Mitch, W.E. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 2006, 147, 4160–4168. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J. Insulin sensitivity and muscle loss in the absence of diabetes mellitus: Findings from a longitudinal community-based cohort study. J. Clin. Med. 2025, 14, 1270. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, P.; Hevener, A.L.; Karlamangla, A.S.; Earnest, C.P. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS ONE 2010, 5, e10805. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.; Zhang, P.; Zhong, X.; Pan, T. Analysis of risk factors for the association of sarcopenia in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2024, 17, 1455–1466. [Google Scholar] [CrossRef]
- Dai, S.; Shu, D.; Meng, F.; Chen, Y.; Wang, J.; Liu, X.; Xiao, X.; Guo, W.; Chen, F. Higher risk of sarcopenia in older adults with type 2 diabetes: NHANES 1999–2018. Obes. Facts 2023, 16, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Mesinovic, J.; Zengin, A.; De Courten, B.; Ebeling, P.R.; Scott, D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1057–1072. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Matsumoto, A.; Inoue, T.; Okamura, M.; Kuzuya, M. Protein supplementation alone or combined with exercise for sarcopenia and physical frailty: A systematic review and meta-analysis of randomized controlled trials. Arch. Gerontol. Geriatr. 2025, 131, 105783. [Google Scholar] [CrossRef]
- Wrench, E.; Rattley, K.; Lambert, J.E.; Killick, R.; Hayes, L.D.; Lauder, R.M.; Gaffney, C.J. There is no dose–response relationship between the amount of exercise and improvement in HbA1c in interventions over 12 weeks in patients with type 2 diabetes: A meta-analysis and meta-regression. Acta Diabetol. 2022, 59, 1399–1415. [Google Scholar] [CrossRef]
- Bweir, S.; Al-Jarrah, M.; Almalty, A.-M.; Maayah, M.; Smirnova, I.V.; Novikova, L.; Stehno-Bittel, L. Resistance exercise training lowers HbA1c more than aerobic training in adults with type 2 diabetes. Diabetol. Metab. Syndr. 2009, 1, 27. [Google Scholar] [CrossRef]
- LaBotz, M.; Smith, B.W. Creatine supplement use in an NCAA Division I athletic program. Clin. J. Sport Med. 1999, 9, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Manetta, E.; Tupper, K. Creatine supplementation: An update. Curr. Sports Med. Rep. 2021, 20, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Gualano, B.; Painneli, V.D.S.; Roschel, H.; Artioli, G.G.; Neves, M.; Pinto, A.L.D.S.; DA Silva, M.E.R.; Cunha, M.R.; Otaduy, M.C.G.; Leite, C.D.C.; et al. Creatine in type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Med. Sci. Sports Exerc. 2011, 43, 770–778. [Google Scholar] [CrossRef]
- Eijnde, B.O.; Ursø, B.; Richter, E.; Greenhaff, P.; Hespel, P. Effect of oral creatine supplementation on human muscle glut4 protein content after immobilization. Diabetes 2001, 50, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Candow, D.G.; Forbes, S.C.; Neary, J.P.; Ormsbee, M.J.; Antonio, J. Effects of creatine supplementation during resistance training sessions in physically active young adults. Nutrients 2020, 12, 1880. [Google Scholar] [CrossRef]
- Johannsmeyer, S.; Candow, D.G.; Brahms, C.M.; Michel, D.; Zello, G.A. Effect of creatine supplementation and drop-set resistance training in untrained aging adults. Exp. Gerontol. 2016, 83, 112–119. [Google Scholar] [CrossRef]
- Kreider, R.B.; Stout, J.R. Creatine in health and disease. Nutrients 2021, 13, 447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Terjung, R.L.; Clarkson, P.; Eichner, E.R.; Greenhaff, P.L.; Hespel, P.J.; Israel, R.G.; Kraemer, W.J.; Meyer, R.A.; Spriet, L.L.; Tarnopolsky, M.A.; et al. American College of Sports Medicine roundtable. The physiological and health effects of oral creatine supplementation. Med. Sci. Sports Exerc. 2000, 32, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Marcotte-Chénard, A.; Oliveira, B.; Little, J.P.; Candow, D.G. Sarcopenia and type 2 diabetes: Pathophysiology and potential therapeutic lifestyle interventions. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102835. [Google Scholar] [CrossRef]
- Morley, J.E.; Abbatecola, A.M.; Argiles, J.M.; Baracos, V.; Bauer, J.; Bhasin, S.; Cederholm, T.; Coats, A.J.S.; Cummings, S.R.; Evans, W.J.; et al. Society on Sarcopenia, Cachexia and Wasting Disorders Trialist Workshop, Sarcopenia with limited mobility: An international consensus. J. Am. Med. Dir. Assoc. 2011, 12, 403–409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalinkovich, A.; Livshits, G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 2017, 35, 200–221. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Hao, X.; Xu, S.; Jin, X.; Liao, W.; Xia, H.; Wang, S.; Sun, G. Sarcopenia: Current insights into molecular mechanisms, diagnostics, and emerging interventional approaches. Int. J. Mol. Sci. 2025, 26, 6740. [Google Scholar] [CrossRef] [PubMed]
- Purnamasari, D.; Tetrasiwi, E.N.; Kartiko, G.J.; Astrella, C.; Husam, K.; Laksmi, P.W. Sarcopenia and chronic complications of type 2 diabetes mellitus. Rev. Diabet. Stud. 2022, 18, 157–165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Candow, D.G.; Forbes, S.C.; Chilibeck, P.D.; Cornish, S.M.; Antonio, J.; Kreider, R.B. Effectiveness of creatine supplementation on aging muscle and bone: Focus on falls prevention and inflammation. J. Clin. Med. 2019, 8, 488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solis, M.Y.; Artioli, G.G.; Gualano, B. Potential of creatine in glucose management and diabetes. Nutrients 2021, 13, 570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hulett, N.A.; Scalzo, R.L.; Reusch, J.E.B. Glucose Uptake by Skeletal Muscle within the Contexts of Type 2 Diabetes and Exercise: An Integrated Approach. Nutrients 2022, 14, 647. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in Type 2 diabetes. Diabetes Care 2009, 32 (Suppl. S2), S157–S163. [Google Scholar] [CrossRef]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [CrossRef]
- Baron, A.D.; Brechtel, G.; Wallace, P.; Edelman, S.V. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. Metab. 1988, 255 Pt 1, E769–E774. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef]
- A Pan, D.; Lillioja, S.; Kriketos, A.D.; Milner, M.R.; A Baur, L.; Bogardus, C.; Jenkins, A.B.; Storlien, L.H. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997, 46, 983–988. [Google Scholar] [CrossRef]
- Krssak, M.; Petersen, K.F.; Dresner, A.; DiPietro, L.; Vogel, S.M.; Rothman, D.L.; Shulman, G.I.; Roden, M. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study. Diabetologia 1999, 42, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Sachs, S.; Zarini, S.; Kahn, D.E.; Harrison, K.A.; Perreault, L.; Phang, T.; Newsom, S.A.; Strauss, A.; Kerege, A.; Schoen, J.A.; et al. Intermuscular adipose tissue directly modulates skeletal muscle insulin sensitivity in humans. Am. J. Physiol. Metab. 2019, 316, E866–E879. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.-I.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.J.; Oates, P.J.; Hammes, H.-P.; et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404, 787–790. [Google Scholar] [CrossRef]
- Stanford, K.I.; Goodyear, L.J. Exercise and type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle. Adv. Physiol. Educ. 2014, 38, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Wang, R.-S.; Handy, D.E.; Loscalzo, J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid. Redox Signal. 2018, 28, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, N.; Afrasyabi, S.; Zadeh, M.A.M. The effects of high intensity interval training induced H2O2, Nrf2 changes on antioxidants factors in type 2 diabetes. J. Diabetes Metab. Disord. 2022, 23, 1829–1838. [Google Scholar] [CrossRef]
- Patti, M.E.; Butte, A.J.; Crunkhorn, S.; Cusi, K.; Berria, R.; Kashyap, S.; Miyazaki, Y.; Kohane, I.; Costello, M.; Saccone, R.; et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. USA 2003, 100, 8466–8471. [Google Scholar] [CrossRef]
- Meex, R.C.; Schrauwen-Hinderling, V.B.; Moonen-Kornips, E.; Schaart, G.; Mensink, M.; Phielix, E.; van de Weijer, T.; Sels, J.-P.; Schrauwen, P.; Hesselink, M.K. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 2010, 59, 572–579. [Google Scholar] [CrossRef]
- de Oliveira, E.M.; de Lima Ribeiro, A.K.P.; de Oliveira Silva, D.D.; Nunes, E.F.C.; Santos, G.S.; Kietzer, K.S.; de Tarso Camillo de Carvalho, P. Physical Training on Glycemia and Oxidative Stress in Type 2 Diabetes: A Systematic Review. Rev. Bras. Med. Esporte 2020, 26, 70–76. [Google Scholar] [CrossRef]
- World Health Organization. Who Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 10 August 2025).
- Kirwan, J.P.; Sacks, J.; Nieuwoudt, S. The essential role of exercise in the management of type 2 diabetes. Clevel. Clin. J. Med. 2017, 84 (Suppl. S1), S15–S21. [Google Scholar] [CrossRef]
- Patel, H.; Alkhawam, H.; Madanieh, R.; Shah, N.; E Kosmas, C.; Vittorio, T.J. Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J. Cardiol. 2017, 9, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Tueros, M.; Ramirez-Peña, J.; Cabanillas-Lazo, M.; Paz-Ibarra, J.L.; Pinedo-Torres, I. Effects of aerobic exercise on components of the metabolic syndrome in older adults with type 2 diabetes mellitus: Systematic review and meta-analysis [Efectos del ejercicio aeróbico sobre los componentes del síndrome metabólico en adultos mayores con diabetes mellitus tipo 2: Revisión sistemática y metaanálisis]. Rev. Peru Med. Exp. Salud Publica 2024, 41, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, C.C.; Moore, C.C.; Sotres-Alvarez, D.; Heiss, G.; Isasi, C.R.; Mossavar-Rahmani, Y.; Carlson, J.A.; Gallo, L.C.; Llabre, M.M.; Garcia-Bedoya, O.L.; et al. Associations of steps per day and step intensity with the risk of diabetes: The Hispanic Community Health Study / Study of Latinos (HCHS/SOL). Int. J. Behav. Nutr. Phys. Act. 2022, 19, 46. [Google Scholar] [CrossRef]
- Liao, D.-Q.; Chen, H.-J.; Li, H.-M.; Gao, J.; Tang, X.-L.; Du, L.-Y.; Lai, S.-M.; Zhong, W.-F.; Huang, H.-X.; Xiong, Z.-Y.; et al. Accelerometer-derived physical activity patterns and incident type 2 diabetes: A prospective cohort study. Int. J. Behav. Nutr. Phys. Act. 2025, 22, 38. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, W.; Xing, Z. Device-measured physical activity and type 2 diabetes mellitus risk. Front. Endocrinol. 2023, 14, 1275182. [Google Scholar] [CrossRef]
- Tonga, E.; Worboys, H.; Evans, R.A.; Singh, S.J.; Davies, M.J.; Ng, G.A.; Yates, T. Physical activity guidelines for adults with type 2 Diabetes: Systematic review. Diabetes Res. Clin. Pr. 2025, 220, 111982. [Google Scholar] [CrossRef]
- Sparks, L.M.; Johannsen, N.M.; Church, T.S.; Earnest, C.P.; Moonen-Kornips, E.; Moro, C.; Hesselink, M.K.C.; Smith, S.R.; Schrauwen, P. Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J. Clin. Endocrinol. Metab. 2013, 98, 1694–1702. [Google Scholar] [CrossRef]
- Holten, M.K.; Zacho, M.; Gaster, M.; Juel, C.; Wojtaszewski, J.F.; Dela, F. Strength training increases insulin-mediated glucose uptake, glut4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 2004, 53, 294–305. [Google Scholar] [CrossRef]
- Chien, Y.-H.; Tsai, C.-J.; Wang, D.-C.; Chuang, P.-H.; Lin, H.-T. Effects of 12-Week Progressive Sandbag Exercise Training on Glycemic Control and Muscle Strength in Patients with Type 2 Diabetes Mellitus Combined with Possible Sarcopenia. Int. J. Environ. Res. Public Health 2022, 19, 15009. [Google Scholar] [CrossRef]
- Jansson, A.K.; Chan, L.X.; Lubans, D.R.; Duncan, M.J.; Plotnikoff, R.C. Effect of resistance training on HbA1c in adults with type 2 diabetes mellitus and the moderating effect of changes in muscular strength: A systematic review and meta-analysis. BMJ Open Diabetes Res. Care 2022, 10, e002595. [Google Scholar] [CrossRef]
- Pan, B.; Ge, L.; Xun, Y.-Q.; Chen, Y.-J.; Gao, C.-Y.; Han, X.; Zuo, L.-Q.; Shan, H.-Q.; Yang, K.-H.; Ding, G.-W.; et al. Exercise training modalities in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Amaravadi, S.K.; Maiya, G.A.; Vaishali, K.; Shastry, B.A.; Mendoza-Nuñez, V.M. Effectiveness of structured exercise program on insulin resistance and quality of life in type 2 diabetes mellitus–A randomized controlled trial. PLoS ONE 2024, 19, e0302831. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Wu, Q.; Han, R.; Cheng, D.; Wu, L.; Guo, J.; Yu, X.; Ge, W.; Ni, J.; et al. Exercise-induced improvement of glycemic fluctuation and its relationship with fat and muscle distribution in type 2 diabetes. J. Diabetes 2024, 16, e13549. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, E.J. Invited Review: Effects of acute exercise and exercise training on insulin resistance. J. Appl. Physiol. 2002, 93, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.M.; Sewell, D.A.; Hultman, E.; Greenhaff, P.L. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J. Appl. Physiol. 1999, 87, 598–604. [Google Scholar] [CrossRef]
- King, D.S.; Dalsky, G.P.; Staten, M.A.; Clutter, W.E.; Van Houten, D.R.; Holloszy, J.O. Insulin action and secretion in en-durance-trained and untrained humans. J. Appl. Physiol. 1987, 63, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.K.; Kriketos, A.D.; Ellis, B.A.; Thompson, C.H.; Kraegen, E.W.; Chisholm, D.J. Changes in aerobic capacity and visceral fat but not myocyte lipid levels predict increased insulin action after exercise in overweight and obese men. Diabetes Care 2003, 26, 1706–1713. [Google Scholar] [CrossRef]
- Devlin, J.T.; Hirshman, M.; Horton, E.D.; Horton, E.S. Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes 1987, 36, 434–439. [Google Scholar] [CrossRef]
- Bruce, C.R.; Kriketos, A.D.; Cooney, G.J.; Hawley, J.A. Disassociation of muscle triglyceride content and insulin sensitivity after exercise training in patients with Type 2 diabetes. Diabetologia 2004, 47, 23–30. [Google Scholar] [CrossRef]
- Rocic, B.; Vucic, M.; Mesic, R.; Rocic, P.; Coce, F. Hypoglycemic effect of creatine in insulin dependent diabetic patients. Diabetol Croat. 1995, 24, 117–120. [Google Scholar]
- Pinto, C.L.; Botelho, P.B.; Pimentel, G.D.; Campos-Ferraz, P.L.; Mota, J.F. Creatine supplementation and glycemic control: A systematic review. Amino Acids 2016, 48, 2103–2129. [Google Scholar] [CrossRef]
- Antonio, J.; Candow, D.G.; Forbes, S.C.; Gualano, B.; Jagim, A.R.; Kreider, R.B.; Rawson, E.S.; Smith-Ryan, A.E.; VanDusseldorp, T.A.; Willoughby, D.S.; et al. Common questions and misconceptions about creatine supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2021, 18, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amiri, E.; Sheikholeslami-Vatani, D. The role of resistance training and creatine supplementation on oxidative stress, antioxidant defense, muscle strength, and quality of life in older adults. Front. Public Health 2023, 11, 1062832. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamaguchi, S.; Inami, T.; Ishida, H.; Morito, A.; Yamada, S.; Nagata, N.; Murayama, M. The Effect of Prior Creatine Intake for 28 Days on Accelerated Recovery from Exercise-Induced Muscle Damage: A Double-Blind, Randomized, Placebo-Controlled Trial. Nutrients 2024, 16, 896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.-X.; Dutheil, F. Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses. Sports Med. 2015, 45, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.-X.; Dutheil, F. Creatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Marqués-Jiménez, D.; Caballero-García, A.; Córdova, A.; Fernández-Lázaro, D. Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 757. [Google Scholar] [CrossRef]
- Law, Y.L.L.; Ong, W.S.; GillianYap, T.L.; Lim, S.C.J.; Von Chia, E. Effects of Two and Five Days of Creatine Loading on Muscular Strength and Anaerobic Power in Trained Athletes. J. Strength Cond. Res. 2009, 23, 906–914. [Google Scholar] [CrossRef]
- Harris, R.C.; Söderlund, K.; Hultman, E. Elevation of creatine in resting and exercised muscle of normal subjects by crea-tine supplementation. Clin. Sci. 1992, 83, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Wax, B.; Kerksick, C.M.; Jagim, A.R.; Mayo, J.J.; Lyons, B.C.; Kreider, R.B. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients 2021, 13, 1915. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaviani, M.; Abassi, A.; Chilibeck, P.D. Creatine monohydrate supplementation during eight weeks of progressive resistance training increases strength in as little as two weeks without reducing markers of muscle damage. J. Sports Med. Phys. Fit. 2019, 59, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Chilibeck, P.D.; Kaviani, M.; Candow, D.G.; A Zello, G. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. Open Access J. Sports Med. 2017, 8, 213–226. [Google Scholar] [CrossRef]
- Burke, R.; Piñero, A.; Coleman, M.; Mohan, A.; Sapuppo, M.; Augustin, F.; Aragon, A.A.; Candow, D.G.; Forbes, S.C.; Swinton, P.; et al. The Effects of Creatine Supplementation Combined with Resistance Training on Regional Measures of Muscle Hypertrophy: A Systematic Review with Meta-Analysis. Nutrients 2023, 15, 2116. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B. Science and Development of Muscle Hypertrophy, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2020. [Google Scholar]
- Govers, R. Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes Metab. 2014, 40, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.W.; Hirshman, M.F.; Gervino, E.V.; Ocel, J.V.; A Forse, R.; Hoenig, S.J.; Aronson, D.; Goodyear, L.J.; Horton, E.S. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 1999, 48, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Derave, W.; Eijnde, B.O.; Verbessem, P.; Ramaekers, M.; Van Leemputte, M.; Richter, E.A.; Hespel, P. Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. J. Appl. Physiol. 2003, 94, 1910–1916. [Google Scholar] [CrossRef] [PubMed]
- Gualano, B.; Novaes, R.B.; Artioli, G.G.; Freire, T.O.; Coelho, D.F.; Scagliusi, F.B.; Rogeri, P.S.; Roschel, H.; Ugrinowitsch, C.; Lancha, A.H., Jr. Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training. Amino Acids 2008, 34, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.L.; Antunes, B.d.M.M.; Gomes, A.C.; Lira, F.S.; Pimentel, G.D.; Boulé, N.G.; Mota, J.F. Creatine supplementation does not promote additional effects on inflammation and insulin resistance in older adults: A pilot randomized, double-blind, placebo-controlled trial. Clin. Nutr. ESPEN 2020, 38, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.R.R.; Ferreira, J.C.; de Siqueira-Filho, M.A.; Carvalho, C.R.; Lancha, A.H.; Gualano, B. Creatine-induced glucose uptake in type 2 diabetes: A role for AMPK-α? Amino Acids 2012, 43, 1803–1807. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Longhurst, G.; Roschel, H.; Gualano, B. Resistance Training and Co-supplementation with Creatine and Protein in Older Subjects with Frailty. J. Frailty Aging 2016, 5, 126–134. [Google Scholar] [CrossRef]
- Newman, J.E.N.; Hargreaves, M.; Garnham, A.; Snow, R.J. Effect of creatine ingestion on glucose tolerance and insulin sensitivity in men. Med. Sci. Sports Exerc. 2003, 35, 69–74. [Google Scholar] [CrossRef] [PubMed]
- VAN Loon, L.J.C.; Murphy, R.; Oosterlaar, A.M.; Cameron-Smith, D.; Hargreaves, M.; Wagenmakers, A.J.M.; Snow, R. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin. Sci. 2004, 106, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-P.; Stephens, T.J.; Murthy, S.; Canny, B.J.; Hargreaves, M.; Witters, L.A.; Kemp, B.E.; McConell, G.K. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 2003, 52, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Winder, W.W. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J. Appl. Physiol. 2001, 91, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Vega, J.; Huidobro, E.J.P. Efectos en la función renal de la suplementación de creatina con fines deportivos [Effects of creatine supplementation on renal function]. Rev. Medica Chile 2019, 147, 628–633. [Google Scholar] [CrossRef]
- Hultman, E.; Soderlund, K.; Timmons, J.A.; Cederblad, G.; Greenhaff, P.L. Muscle creatine loading in men. J. Appl. Physiol. (1985) 1996, 81, 232–237. [Google Scholar] [CrossRef]
- Naidu, M.; de Guingand, D.L.; Hunter, G.; Tran, N.T.; Snow, R.J.; Kirkpatrick, C.M.; Ellery, S.J.; Palmer, K.R. Open Label, Dose Escalation Trial of Creatine Monohydrate in Pregnancy. J. Int. Soc. Sports Nutr. 2025, 22 (Suppl. S1), 2533652. [Google Scholar] [CrossRef]
- Hall, M.; Trojian, T.H. Creatine supplementation. Optom. Vis. Sci. 2013, 12, 240–244. [Google Scholar] [CrossRef]
- Vandenberghe, K.; Goris, M.; Van Hecke, P.; Van Leemputte, M.; Vangerven, L.; Hespel, P. Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol. 1997, 83, 2055–2063. [Google Scholar] [CrossRef] [PubMed]
- Lobo, D.M.; Tritto, A.C.; da Silva, L.R.; de Oliveira, P.B.; Benatti, F.B.; Roschel, H.; Nieß, B.; Gualano, B.; Pereira, R.M.R. Effects of long-term low-dose dietary creatine supplementation in older women. Exp. Gerontol. 2015, 70, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Candow, D.G.; Little, J.P.; Chilibeck, P.D.; Abeysekara, S.; Zello, G.A.; Kazachkov, M.; Cornish, S.M.; Yu, P.H. Low-Dose creatine combined with protein during resistance training in older men. Med. Sci. Sports Exerc. 2008, 40, 1645–1652. [Google Scholar] [CrossRef]
- Li, G.; Li, Z.; Liu, J. Amino acids regulating skeletal muscle metabolism: Mechanisms of action, physical training dosage recommendations and adverse effects. Nutr. Metab. 2024, 21, 41. [Google Scholar] [CrossRef]
- Candow, D.G.; Ostojic, S.M.; Chilibeck, P.D.; Longobardi, I.; Gualano, B.; Tarnopolsky, M.A.; Wallimann, T.; Moriarty, T.; Kreider, R.B.; Forbes, S.C.; et al. Creatine monohydrate supplementation for older adults and clinical populations. J. Int. Soc. Sports Nutr. 2025, 22 (Suppl. S1), 2534130. [Google Scholar] [CrossRef]
- Almeida, D.; Colombini, A.; Machado, M. Creatine supplementation improves performance, but is it safe? Double-blind placebo-controlled study. J. Sports Med. Phys. Fit. 2020, 60, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.G.; Bergamaschi, C.D.T.; Lazaretti-Castro, M.; Heilberg, I.P. Effects of creatine supplementation on body composition and renal function in rats. Med. Sci. Sports Exerc. 2005, 37, 1525–1529. [Google Scholar] [CrossRef]
- Baracho, N.C.D.V.; de Castro, L.P.; Borges, N.d.C.; Laira, P.B. Study of renal and hepatic toxicity in rats supplemented with creatine. Acta Cir. Bras. 2015, 30, 313–318. [Google Scholar] [CrossRef]
- Poortmans, J.R.; Auquier, H.; Renaut, V.; Durussel, A.; Saugy, M.; Brisson, G.R. Effect of short-term creatine supplementation on renal responses in men. Eur. J. Appl. Physiol. 1997, 76, 566–567. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Melton, C.; Rasmussen, C.J.; Greenwood, M.; Lancaster, S.; Cantler, E.C.; Milnor, P.; Almada, A.L. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol. Cell Biochem. 2003, 244, 95–104. [Google Scholar] [CrossRef]
- Persky, A.M.; Rawson, E.S. Safety of creatine supplementation. Subcell Biochem. 2007, 46, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Thorsteinsdottir, B.; Grande, J.P.; Garovic, V.D. Acute renal failure in a young weight lifter taking multiple food supplements, including creatine monohydrate. J. Ren. Nutr. 2006, 16, 341–345. [Google Scholar] [CrossRef]
- Barisic, N.; Bernert, G.; Ipsiroglu, O.; Stromberger, C.; Mã¼Ller, T.; Gruber, S.; Prayer, D.; Moser, E.; Bittner, R.E.; Stöckler-Ipsiroglu, S. Effects of oral creatine supplementation in a patient with melas phenotype and associated nephropathy. Neuropediatrics 2002, 33, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Poortmans, J.R.; Francaux, M. Long-term oral creatine supplementation does not impair renal function in healthy athletes. Med. Sci. Sports Exerc. 1999, 31, 1108–1110. [Google Scholar] [CrossRef]
- Groeneveld, G.J.; Beijer, C.; Veldink, J.H.; Kalmijn, S.; Wokke, J.H.J.; Berg, L.H.v.D. Few adverse effects of long-term creatine supplementation in a placebo-controlled trial. Int. J. Sports Med. 2005, 26, 307–313. [Google Scholar] [CrossRef]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Zhou, B.; Hong, M.; Jin, L.; Ling, K. Exploring the relationship between creatine supplementation and renal function: Insights from Mendelian randomization analysis. Ren. Fail. 2024, 46, 2364762. [Google Scholar] [CrossRef]
- Rawson, E.S.; Clarkson, P.M.; Price, T.B.; Miles, M.P. Differential response of muscle phosphocreatine to creatine supplementation in young and old subjects. Acta Physiol. Scand. 2002, 174, 57–65. [Google Scholar] [CrossRef]
- Seper, V.; Korovljev, D.; Todorovic, N.; Stajer, V.; Ostojic, J.; Nesic, N.; Ostojic, S.M. Guanidinoacetate-Creatine Supplementation Improves Functional Performance and Muscle and Brain Bioenergetics in the Elderly: A Pilot Study. Ann. Nutr. Metab. 2021, 77, 244–247. [Google Scholar] [CrossRef]
- Gil, A.; Gonzalez, D.E.; Hines, K.; Bonilla, D.A.; Kreider, R.B. Safety of Creatine Supplementation: Analysis of the Frequency of Reported Side Effects in Clinical Trials. J. Int. Soc. Sports Nutr. 2025, 22 (Suppl. S1), 2533688. [Google Scholar] [CrossRef]
- Gualano, B.; de Salles Painelli, V.; Roschel, H.; Lugaresi, R.; Dorea, E.; Artioli, G.G.; Lima, F.R.; da Silva, M.E.; Cunha, M.R.; Seguro, A.C.; et al. Creatine supplementation does not impair kidney function in type 2 diabetic patients: A randomized, double-blind, placebo-controlled, clinical trial. Eur. J. Appl. Physiol. 2011, 111, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Chilibeck, P.D.; Candow, D.G.; Landeryou, T.; Kaviani, M.; Paus-Jenssen, L. Effects of Creatine and Resistance Training on Bone Health in Postmenopausal Women. Med. Sci. Sports Exerc. 2015, 47, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Martimbianco, A.L.C.; de Sousa, M.M.; Nakata, M.T.K.; Baldini, C.E.S.; de Oliveira-Sales, E.B.; Boim, M.A.; Maquigussa, E. Creatine Supplementation in Type 2 Diabetic Patients: A Systematic Review of Randomized Clinical Trials. Curr. Diabetes Rev. 2022, 18, e120721194709. [Google Scholar] [CrossRef] [PubMed]
- Elosegui, S.; López-Seoane, J.; Martínez-Ferrán, M.; Pareja-Galeano, H. Interaction Between Caffeine and Creatine When Used as Concurrent Ergogenic Supplements: A Systematic Review. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 285–295. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E. Creatine and Caffeine: Considerations for Concurrent Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 607–623. [Google Scholar] [CrossRef]
- Vanakoski, J.; Kosunen, V.; Meririnne, E.; Seppälä, T. Creatine and caffeine in anaerobic and aerobic exercise: Effects on physical performance and pharmacokinetic considerations. Int. J. Clin. Pharmacol. Ther 1998, 36, 258–262. [Google Scholar]
- Green, A.L.; Hultman, E.; Macdonald, I.A.; Sewell, D.A.; Greenhaff, P.L. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am. J. Physiol. Metab. 1996, 271 Pt 1, E821–E826. [Google Scholar] [CrossRef] [PubMed]
- Steenge, G.R.; Lambourne, J.; Casey, A.; Macdonald, I.A.; Greenhaff, P.L. Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am. J. Physiol. Metab. 1998, 275, E974–E979. [Google Scholar] [CrossRef] [PubMed]
Study | Design | N | Population (Mean Age) | Intervention—Creatine (Form, Dose, Scheme) + Exercise (Type, Freq, Intensity) | Comparator | Duration | Metabolic Outcomes (Direction; Significance) | Muscle Outcomes (Lean Mass, Strength, Function) | Safety/Renal Markers |
---|---|---|---|---|---|---|---|---|---|
Op’t Eijnde B et al., 2001 [23] | DBPC RCT | 22 | Healthy volunteers (immobilization model) | CrM during immobilization + rehabilitation; resistance rehabilitation | Placebo | 2 weeks immobilization + 10 weeks rehabilitation | ↑ GLUT4 preservation/↑ GLUT4 during rehabilitation(vs placebo) | ↑ GLUT4 and glycogen recovery with retraining | No safety signals reported |
Derave W et al., 2003 [90] | DBPC RCT | 33 | Healthy adults (one-leg immobilization) | CrM ± protein during immobilization/retraining; localized resistance retraining | Placebo/creatine arms | 2 weeks immobilization + 6 weeks retraining | ↑ glycogen and improved GLUT4 recovery when CrM + protein + retraining | ↑ muscle glycogen; ↑ GLUT4 with activity | No adverse renal effects reported |
Gualano B et al., 2008 [91] | RCT DBPC (aerobic trial) | 22 | Sedentary healthy males | CrM + moderate-intensity aerobic training | Placebo | 12 weeks | Improved OGTT glucose response (significant); no change fasting insulin/HOMA-IR | ↑ glycogen (no GLUT4 protein change) | No safety signals reported |
Gualano B et al., 2011 [22] | RCT DBPC (T2D) | 25 | Adults with T2D | CrM 5 g/day + combined aerobic + resistance (3×/wk) | Placebo | 12 weeks | ↓ HbA1c and ↓ meal glycemia (significant); insulin/C-peptide unchanged | Functional/muscle benefits reported with training | No detrimental changes in albuminuria/BUN/creatinine |
Oliveira CLP et al., 2020 [92] | RCT DBPC pilot | NR (small) | Community-dwelling older adults | CrM + resistance training (dose per paper) | Placebo + resistance training | 12 weeks | No significant change in fasting insulin or HOMA-IR | Variable muscle improvements; inconsistent additive benefit | No renal/hepatic adverse effects reported |
Alves CR et al., 2012 [93] | Mechanistic RCT/trial | NR | Individuals with T2D/mechanistic samples | CrM supplementation (dose per paper) ± exercise | Placebo/control | Short term | AMPKα activation signals correlated with GLUT4 translocation (suggested) | Not primary for clinical muscle endpoints | No safety concerns reported |
Collins J et al., 2016 [94] | Pilot RCT/cohort | 9 | Frail older adults (70 ± 5 y) | CrM 5 g/day + protein + resistance training | Protein + resistance training | 14 weeks | Metabolic markers not significantly altered | ↑ Strength; no adverse muscle damage markers | No changes in renal/hepatic markers reported |
Newman JE et al., 2003 [95] | RCTs (negative/mixed) | Small samples | Healthy males | CrM (standard protocols) ± training | Placebo | Short term | No consistent effects on insulin sensitivity/fasting insulin/HOMA-IR | ↑ glycogen (van Loon) but no GLUT4 protein increase; mixed strength effects | No safety signals |
van Loon LJ et al., 2004 [96] | NRCT DBPC | Small samples | Healthy males | CrM (standard protocols) ± training | Placebo | 6 weeks | No consistent effects on fasting insulin | ↑ glycogen but no GLUT4 protein increase | No safety signals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młynarska, E.; Leszto, K.; Katańska, K.; Prusak, A.; Wieczorek, A.; Jakubowska, P.; Rysz, J.; Franczyk, B. Creatine Supplementation Combined with Exercise in the Prevention of Type 2 Diabetes: Effects on Insulin Resistance and Sarcopenia. Nutrients 2025, 17, 2860. https://doi.org/10.3390/nu17172860
Młynarska E, Leszto K, Katańska K, Prusak A, Wieczorek A, Jakubowska P, Rysz J, Franczyk B. Creatine Supplementation Combined with Exercise in the Prevention of Type 2 Diabetes: Effects on Insulin Resistance and Sarcopenia. Nutrients. 2025; 17(17):2860. https://doi.org/10.3390/nu17172860
Chicago/Turabian StyleMłynarska, Ewelina, Klaudia Leszto, Kinga Katańska, Aleksandra Prusak, Anna Wieczorek, Paulina Jakubowska, Jacek Rysz, and Beata Franczyk. 2025. "Creatine Supplementation Combined with Exercise in the Prevention of Type 2 Diabetes: Effects on Insulin Resistance and Sarcopenia" Nutrients 17, no. 17: 2860. https://doi.org/10.3390/nu17172860
APA StyleMłynarska, E., Leszto, K., Katańska, K., Prusak, A., Wieczorek, A., Jakubowska, P., Rysz, J., & Franczyk, B. (2025). Creatine Supplementation Combined with Exercise in the Prevention of Type 2 Diabetes: Effects on Insulin Resistance and Sarcopenia. Nutrients, 17(17), 2860. https://doi.org/10.3390/nu17172860