Resistance Exercise Training and Greek Yogurt Consumption Modulate Markers of Systemic Inflammation in Healthy Young Males—A Secondary Analysis of a Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Supplement Protocol
2.3. Training Protocol
2.4. Body Composition
2.5. Dietary Analysis
2.6. Inflammatory Marker Analysis
2.7. Statistical Analysis
2.7.1. Linear Mixed Models on Dietary Data
2.7.2. Linear Mixed Models on Absolute Data
2.7.3. Linear Regression
3. Results
3.1. Baseline Characteristics
3.2. Average Daily Dietary Intakes (Table 2)
3.3. Absolute Cytokine Concentration Analysis (Figure 2)
3.3.1. Anti-Inflammatory Cytokines
3.3.2. Pro-Inflammatory Cytokines
3.4. Linear Regression for the Change in Each Inflammatory Marker (Table 3)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GY | Greek yogurt |
CP | Carbohydrate pudding |
TNF-α | Interleukin |
IL | Interleukin |
IL-1ra | Interleukin 1 receptor antagonist |
IL-1β | Interleukin 1 Beta |
BMI | Body mass index |
FM | Fat mass |
FFM | Fat-free mass |
REML | Restricted maximum likelihood |
References
- Spaccarotella, K.J.; Andzel, W.D. Building a beverage for recovery from endurance activity: A review. J. Strength Cond. Res. 2011, 25, 3198–3204. [Google Scholar] [CrossRef]
- Orru, S.; Imperlini, E.; Nigro, E.; Alfieri, A.; Cevenini, A.; Polito, R.; Daniele, A.; Buono, P.; Mancini, A. Role of Functional Beverages on Sport Performance and Recovery. Nutrients 2018, 10, 1470. [Google Scholar] [CrossRef]
- Wang, L.; Meng, Q.; Su, C.H. From Food Supplements to Functional Foods: Emerging Perspectives on Post-Exercise Recovery Nutrition. Nutrients 2024, 16, 4081. [Google Scholar] [CrossRef]
- Petersen, A.M.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef]
- Roy, B.D. Milk: The new sports drink? A Review. J. Int. Soc. Sports Nutr. 2008, 5, 15. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef]
- Da Silva, M.S.; Rudkowska, I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol. Nutr. Food Res. 2015, 59, 1249–1263. [Google Scholar] [CrossRef]
- Ulven, S.M.; Holven, K.B.; Gil, A.; Rangel-Huerta, O.D. Milk and Dairy Product Consumption and Inflammatory Biomarkers: An Updated Systematic Review of Randomized Clinical Trials. Adv. Nutr. 2019, 10, S239–S250. [Google Scholar] [CrossRef]
- Labonte, M.E.; Couture, P.; Richard, C.; Desroches, S.; Lamarche, B. Impact of dairy products on biomarkers of inflammation: A systematic review of randomized controlled nutritional intervention studies in overweight and obese adults. Am. J. Clin. Nutr. 2013, 97, 706–717. [Google Scholar] [CrossRef]
- Moosavian, S.P.; Rahimlou, M.; Saneei, P.; Esmaillzadeh, A. Effects of dairy products consumption on inflammatory biomarkers among adults: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 872–888. [Google Scholar] [CrossRef]
- Nieman, K.M.; Anderson, B.D.; Cifelli, C.J. The Effects of Dairy Product and Dairy Protein Intake on Inflammation: A Systematic Review of the Literature. J. Am. Coll. Nutr. 2021, 40, 571–582. [Google Scholar] [CrossRef]
- Vatanparast, H.; Islam, N.; Shafiee, M. Consumption of Milk and alternatives decreased among Canadians from 2004 to 2015: Evidence from the Canadian community health surveys. BMC Nutr. 2021, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Tugault-Lafleur, C.N.; Black, J.L. Differences in the Quantity and Types of Foods and Beverages Consumed by Canadians between 2004 and 2015. Nutrients 2019, 11, 526. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Feng, X.; Chen, Y.P.; Lorenzo, J.M.; Ibrahim, S.A. A review of factors influencing the quality and sensory evaluation techniques applied to Greek yogurt. J. Dairy Res. 2022, 89, 213–219. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Liu, J.-R.; Zhao, X. Bioactive Components in Yogurt Products. In Bioactive Components in Milk and Dairy Products; Park, Y.W., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Hasegawa, Y.; Bolling, B.W. Yogurt consumption for improving immune health. Curr. Opin. Food Sci. 2023, 51, 101017. [Google Scholar] [CrossRef]
- Josse, A.R.; Tang, J.E.; Tarnopolsky, M.A.; Phillips, S.M. Body composition and strength changes in women with milk and resistance exercise. Med. Sci. Sports Exerc. 2010, 42, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Pourabbas, M.; Bagheri, R.; Hooshmand Moghadam, B.; Willoughby, D.S.; Candow, D.G.; Elliott, B.T.; Forbes, S.C.; Ashtary-Larky, D.; Eskandari, M.; Wong, A.; et al. Strategic Ingestion of High-Protein Dairy Milk during a Resistance Training Program Increases Lean Mass, Strength, and Power in Trained Young Males. Nutrients 2021, 13, 948. [Google Scholar] [CrossRef]
- Bridge, A.; Brown, J.; Snider, H.; Nasato, M.; Ward, W.E.; Roy, B.D.; Josse, A.R. Greek Yogurt and 12 Weeks of Exercise Training on Strength, Muscle Thickness and Body Composition in Lean, Untrained, University-Aged Males. Front. Nutr. 2019, 6, 55. [Google Scholar] [CrossRef]
- Gomaa, M.A.E.; Allam, M.G.; Haridi, A.A.I.M.; Eliwa, A.-E.M.; Darwish, A.M.G. High-Protein Concentrated Pro-Yogurt (Pro-WPI) Enriched with Whey Protein Isolate Improved Athletic Anemia and Performance in a Placebo-Controlled Study. Front. Nutr. 2021, 8, 788446. [Google Scholar] [CrossRef]
- Born, K.A.; Dooley, E.E.; Cheshire, P.A.; McGill, L.E.; Cosgrove, J.M.; Ivy, J.L.; Bartholomew, J.B. Chocolate Milk versus carbohydrate supplements in adolescent athletes: A field based study. J. Int. Soc. Sports Nutr. 2019, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.; Oxfeldt, M.; Larsen, A.E.; Thomsen, L.S.; Rokkedal-Lausch, T.; Christensen, B.; Rittig, N.; De Paoli, F.V.; Bangsbo, J.; Ortenblad, N.; et al. Supplement with whey protein hydrolysate in contrast to carbohydrate supports mitochondrial adaptations in trained runners. J. Int. Soc. Sports Nutr. 2020, 17, 46. [Google Scholar] [CrossRef] [PubMed]
- Papacosta, E.; Nassis, G.P.; Gleeson, M. Effects of acute postexercise chocolate milk consumption during intensive judo training on the recovery of salivary hormones, salivary SIgA, mood state, muscle soreness, and judo-related performance. Appl. Physiol. Nutr. Metab.=Physiol. Appl. Nutr. Metab. 2015, 40, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Yapici, H.; Gulu, M.; Yagin, F.H.; Ugurlu, D.; Comertpay, E.; Eroglu, O.; Kocoglu, M.; Aldhahi, M.I.; Karayigit, R.; Badri Al-Mhanna, S. The effect of 8-weeks of combined resistance training and chocolate milk consumption on maximal strength, muscle thickness, peak power and lean mass, untrained, university-aged males. Front. Physiol. 2023, 14, 1148494. [Google Scholar] [CrossRef]
- Hartman, J.W.; Tang, J.E.; Wilkinson, S.B.; Tarnopolsky, M.A.; Lawrence, R.L.; Fullerton, A.V.; Phillips, S.M. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am. J. Clin. Nutr. 2007, 86, 373–381. [Google Scholar] [CrossRef]
- McKinlay, B.J.; Wallace, P.J.; Olansky, S.; Woods, S.; Kurgan, N.; Roy, B.D.; Josse, A.R.; Falk, B.; Klentrou, P. Intensified training in adolescent female athletes: A crossover study of Greek yogurt effects on indices of recovery. J. Int. Soc. Sports Nutr. 2022, 19, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Kim, S.-H.; Jang, C.-S.; Kim, S.-I.; Kweon, C.-O.; Kim, B.-W.; Ryu, J.-K. The combined effects of yogurt and exercise in healthy adults: Implications for biomarkers of depression and cardiovascular diseases. Food Sci. Nutr. 2018, 6, 1968–1974. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.V.; Stewart, L.K.; Forney, L.A.; Aryana, K.J.; Prinyawiwatkul, W.; Boeneke, C.A. The effects of postexercise consumption of a kefir beverage on performance and recovery during intensive endurance training. J. Dairy Sci. 2015, 98, 7446–7449. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, J.R.; Walber-Rankin, J.; Smith, L.L.; Gwazdauskas, F.C. Comparison of carbohydrate and milk-based beverages on muscle damage and glycogen following exercise. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 406–419. [Google Scholar] [CrossRef]
- Rankin, P.; Callanan, D.; O’Brien, K.; Davison, G.; Stevenson, E.J.; Cockburn, E. Can Milk Affect Recovery from Simulated Team-Sport Match Play? Nutrients 2019, 12, 112. [Google Scholar] [CrossRef]
- Rankin, P.; Landy, A.; Stevenson, E.; Cockburn, E. The effect of milk on recovery from repeated sprinting and jumping in female team-sport athletes. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, S2. [Google Scholar] [CrossRef][Green Version]
- Rankin, P.; Stevenson, E.; Cockburn, E. The effect of milk on the attenuation of exercise-induced muscle damage in males and females. Eur. J. Appl. Physiol. 2015, 115, 1245–1261. [Google Scholar] [CrossRef]
- Fraschetti, E.C.; Skelly, L.E.; Prowting, J.L.; Abdul-Sater, A.A.; Josse, A.R. The Acute Effects of Milk Consumption on Systemic Inflammation after Combined Resistance and Plyometric Exercise in Young Adult Females. Nutrients 2022, 14, 4532. [Google Scholar] [CrossRef]
- Ferguson-Stegall, L.; McCleave, E.L.; Ding, Z.; Doerner, P.G., 3rd; Wang, B.; Liao, Y.H.; Kammer, L.; Liu, Y.; Hwang, J.; Dessard, B.M.; et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J. Strength Cond. Res. 2011, 25, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.J.S.; Camoes-Costa, V.; Snipe, R.M.J.; Dixon, D.; Russo, I.; Huschtscha, Z. The Impact of a Dairy Milk Recovery Beverage on Bacterially Stimulated Neutrophil Function and Gastrointestinal Tolerance in Response to Hypohydration Inducing Exercise Stress. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Bridge, A.D.; Brown, J.; Snider, H.; Ward, W.E.; Roy, B.D.; Josse, A.R. Consumption of Greek yogurt during 12 weeks of high-impact loading exercise increases bone formation in young, adult males—A secondary analysis from a randomized trial. Appl. Physiol. Nutr. Metab. 2020, 45, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, R.L.; Lazar, N.A. The ASA Statement on p-Values: Context, Process, and Purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef]
- Tucker, J.A.L.; McCarthy, S.F.; Bornath, D.P.D.; Cohen, T.R.; Medeiros, P.J.; Hazell, T.J. The appetite-regulatory response to an acute session of high-intensity interval training in pre-menopausal and post-menopausal females. Adv. Exerc. Health Sci. 2025, 2, 44–54. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Karczewski, J.; Sledzinska, E.; Baturo, A.; Jonczyk, I.; Maleszko, A.; Samborski, P.; Begier-Krasinska, B.; Dobrowolska, A. Obesity and inflammation. Eur. Cytokine Netw. 2018, 29, 83–94. [Google Scholar] [CrossRef]
- Yudkin, J.S.; Stehouwer, C.D.; Emeis, J.J.; Coppack, S.W. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol. 1999, 19, 972–978. [Google Scholar] [CrossRef]
- Peake, J.M.; Kukuljan, S.; Nowson, C.A.; Sanders, K.; Daly, R.M. Inflammatory cytokine responses to progressive resistance training and supplementation with fortified milk in men aged 50+ years: An 18-month randomized controlled trial. Eur. J. Appl. Physiol. 2011, 111, 3079–3088. [Google Scholar] [CrossRef]
- Daly, R.M.; Gianoudis, J.; de Ross, B.; O’Connell, S.L.; Kruger, M.; Schollum, L.; Gunn, C. Effects of a multinutrient-fortified milk drink combined with exercise on functional performance, muscle strength, body composition, inflammation, and oxidative stress in middle-aged women: A 4-month, double-blind, placebo-controlled, randomized trial. Am. J. Clin. Nutr. 2020, 112, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Huschtscha, Z.; Parr, A.; Porter, J.; Costa, R.J.S. The Effects of a High-Protein Dairy Milk Beverage with or Without Progressive Resistance Training on Fat-Free Mass, Skeletal Muscle Strength and Power, and Functional Performance in Healthy Active Older Adults: A 12-Week Randomized Controlled Trial. Front. Nutr. 2021, 8, 644865. [Google Scholar] [CrossRef] [PubMed]
- Vaisberg, M.; Paixao, V.; Almeida, E.B.; Santos, J.M.B.; Foster, R.; Rossi, M.; Pithon-Curi, T.C.; Gorjao, R.; Momesso, C.M.; Andrade, M.S.; et al. Daily intake of fermented milk containing lactobacillus casei shirota (lcs) modulates systemic and upper airways immune/inflammatory responses in marathon runners. Nutrients 2019, 11, 1678. [Google Scholar] [CrossRef]
- McKinlay, B.J.; Theocharidis, A.; Adebero, T.; Kurgan, N.; Fajardo, V.A.; Roy, B.D.; Josse, A.R.; Logan-Sprenger, H.M.; Falk, B.; Klentrou, P. Effects of Post-Exercise Whey Protein Consumption on Recovery Indices in Adolescent Swimmers. Int. J. Environ. Res. Public Health 2020, 17, 7761. [Google Scholar] [CrossRef]
- Bagheri, R.; Hooshmand Moghadam, B.; Candow, D.G.; Elliott, B.T.; Wong, A.; Ashtary-Larky, D.; Forbes, S.C.; Rashidlamir, A. Effects of Icelandic yogurt consumption and resistance training in healthy untrained older males. Br. J. Nutr. 2022, 127, 1334–1342. [Google Scholar] [CrossRef]
- Liu, M.; Gillis, L.J.; Persadie, N.R.; Atkinson, S.A.; Phillips, S.M.; Timmons, B.W. Effects of Short-Term Exercise Training with and Without Milk Intake on Cardiometabolic and Inflammatory Adaptations in Obese Adolescents. Pediatr. Exerc. Sci. 2015, 27, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, A.; Danesi, F.; Dardevet, D.; Dupont, D.; Fernandez, A.S.; Gille, D.; Nunes Dos Santos, C.; Pinto, P.; Re, R.; Remond, D.; et al. Dairy products and inflammation: A review of the clinical evidence. Crit. Rev. Food Sci. Nutr. 2017, 57, 2497–2525. [Google Scholar] [CrossRef]
- Peake, J. Recovery after exercise: What is the current state of play? Curr. Opin. Physiol. 2019, 10, 17–26. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta 2010, 411, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Huffman, K.M.; Slentz, C.A.; Bales, C.W.; Houmard, J.A.; Kraus, W.E. Relationships between adipose tissue and cytokine responses to a randomized controlled exercise training intervention. Metabolism 2008, 57, 577–583. [Google Scholar] [CrossRef]
- Nicklas, B.J.; You, T.; Pahor, M. Behavioural treatments for chronic systemic inflammation: Effects of dietary weight loss and exercise training. Can. Med Assoc. J. 2005, 172, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Coppack, S.W. Pro-inflammatory cytokines and adipose tissue. Proc. Nutr. Soc. 2001, 60, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Nicklas, B.J.; Ambrosius, W.; Messier, S.P.; Miller, G.D.; Penninx, B.W.; Loeser, R.F.; Palla, S.; Bleecker, E.; Pahor, M. Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: A randomized controlled clinical trial. Am. J. Clin. Nutr. 2004, 79, 544–551. [Google Scholar] [CrossRef]
- Skelly, L.E.; Barbour-Tuck, E.N.; Kurgan, N.; Calleja, M.; Klentrou, P.; Falk, B.; Josse, A.R. Neutral Effect of Increased Dairy Product Intake, as Part of a Lifestyle Modification Program, on Cardiometabolic Health in Adolescent Girls with Overweight/Obesity: A Secondary Analysis From a Randomized Controlled Trial. Front. Nutr. 2021, 8, 673589. [Google Scholar] [CrossRef]
- Josse, A.R.; Atkinson, S.A.; Tarnopolsky, M.A.; Phillips, S.M. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J. Nutr. 2011, 141, 1626–1634. [Google Scholar] [CrossRef]
- Trayhurn, P. Endocrine and signalling role of adipose tissue: New perspectives on fat. Acta Physiol. Scand. 2005, 184, 285–293. [Google Scholar] [CrossRef]
- Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef]
- Pedersen, B.K. Muscle as a secretory organ. Compr. Physiol. 2013, 3, 1337–1362. [Google Scholar] [CrossRef]
- Rose, G.L.; Mielke, G.I.; Durr, M.; Schaumberg, M.A. Effect of resistance training on chronic inflammation: A systematic review and meta-analysis. Transl. Sports Med. 2021, 4, 900–913. [Google Scholar] [CrossRef]
- Kim, S.D.; Yeun, Y.R. Effects of Resistance Training on C-Reactive Protein and Inflammatory Cytokines in Elderly Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 3434. [Google Scholar] [CrossRef] [PubMed]
CP (n = 15) | GY (n = 15) | p-Value | |
---|---|---|---|
Age (years) | 20.3 ± 2.09 | 20.9 ± 2.26 | 0.500 |
Height (m) | 1.78 ± 0.05 | 1.79 ± 0.06 | 0.782 |
Weight (kg) | 69.7 ± 10.0 | 68.3 ± 10.9 | 0.710 |
BMI (kg/m2) | 22.0 ± 2.7 | 21.3 ± 2.8 | 0.576 |
FM (kg) | 9.35 ± 4.71 | 12.23 ± 5.82 | 0.161 |
FFM (kg) | 58.9 ± 8.61 | 57.5 ± 6.69 | 0.638 |
Nutrient Intake per Day | Greek Yogurt (GY) | Carbohydrate Pudding (CP) | Group | Time | Int | ||
---|---|---|---|---|---|---|---|
Week 0 | Week 12 | Week 0 | Week 12 | ||||
Calories (kcal) | 2150 ± 379 | 2306 ± 484 | 1989 ± 384 | 2303 ± 569 | 0.357 | 0.010 | 0.429 |
Protein (g) | 93 ± 19 | 130 ± 22 * # | 86 ± 14 | 86 ± 19 | 0.279 | 0.001 | 0.001 |
Carbohydrate (g) | 248 ± 49 | 259 ± 74 | 227 ± 52 | 294 ± 71 * | 0.374 | 0.002 | 0.040 |
Fat (g) | 79 ± 17 | 79 ± 19 | 80 ± 27 | 84 ± 35 | 0.939 | 0.651 | 0.539 |
Calcium (mg) | 700 ± 248 | 1132 ± 331 * # | 688 ± 213 | 657 ± 272 | 0.910 | <0.001 | <0.001 |
Phosphorus (mg) | 764 ± 289 | 1266 ± 323 * # | 668 ± 321 | 708 ± 339 | 0.429 | <0.001 | <0.001 |
Magnesium (mg) | 174 ± 82 | 204 ± 83 | 143 ± 75 | 178 ± 100 | 0.346 | 0.002 | 0.789 |
Iron (mg) | 13 ± 6 | 14 ± 7 | 12 ± 4 | 13 ± 7 | 0.457 | 0.305 | 0.999 |
Sodium (mg) | 3436 ± 1121 | 3238 ± 1023 | 3384 ± 1111 | 3481 ± 1712 | 0.916 | 0.727 | 0.461 |
Potassium (mg) | 1565 ± 669 | 2017 ± 632 | 1533 ± 640 | 1627 ± 1151 | 0.917 | 0.018 | 0.092 |
Vitamin D (mcg) | 2 ± 1 | 2 ± 2 | 2 ± 1 | 3 ± 2 | 0.288 | 0.365 | 0.176 |
Vitamin K (mcg) | 45 ± 40 | 41 ± 57 | 90 ± 195 | 55 ± 91 | 0.302 | 0.515 | 0.553 |
Inflammatory Marker | β | 95% CI | p-Value |
---|---|---|---|
∆IL-1ra | |||
Group | −40.636 | −104.816–23.543 | 0.205 |
∆FM | −8.352 | 022.929–6.226 | 0.250 |
Baseline IL-1ra | −0.990 | −1.453–−0.522 | <0.001 |
∆IL-1β | |||
∆FFM | 0.062 | −0.015–0.140 | 0.111 |
∆FM | −0.076 | −0.138–0.013 | 0.019 |
∆IL-6 | −0.050 | −0.119–0.018 | 0.143 |
∆IL-10 | 0.078 | −0.020–0.176 | 0.114 |
Baseline IL-1β | −0.148 | −0.297–0.002 | 0.053 |
∆IL-6 | |||
Group | −1.385 | −2.728–−0.43 | 0.044 |
∆FFM | 0.417 | 0.011–0.824 | 0.045 |
∆IL-1β | −1.052 | −2.642–0.539 | 0.186 |
∆IL-10 | |||
Group | 0.716 | −0.097–1.528 | 0.081 |
∆FFM | −0.170 | −0.393–0.052 | 0.128 |
∆CRP | −0.146 | −0.331–0.039 | 0.117 |
∆TNF-α | 0.410 | 0.172–0.649 | 0.002 |
Baseline IL-10 | −0.215 | −0.331–−0.099 | <0.001 |
∆CRP | |||
∆TNF-α | 0.210 | -0.046–0.467 | 0.104 |
Baseline CRP | −0.615 | −0.771–0.460 | <0.001 |
∆TNF-α | |||
Group | −1.778 | −2.807–0.749 | 0.002 |
∆FFM | 0.220 | −0.087–0.526 | 0.153 |
∆FM | −0.173 | −0.409–0.064 | 0.146 |
∆IL-10 | 0.611 | 0.221–1.000 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraschetti, E.C.; Abdul-Sater, A.A.; Perry, C.G.R.; Josse, A.R. Resistance Exercise Training and Greek Yogurt Consumption Modulate Markers of Systemic Inflammation in Healthy Young Males—A Secondary Analysis of a Randomized Controlled Trial. Nutrients 2025, 17, 2816. https://doi.org/10.3390/nu17172816
Fraschetti EC, Abdul-Sater AA, Perry CGR, Josse AR. Resistance Exercise Training and Greek Yogurt Consumption Modulate Markers of Systemic Inflammation in Healthy Young Males—A Secondary Analysis of a Randomized Controlled Trial. Nutrients. 2025; 17(17):2816. https://doi.org/10.3390/nu17172816
Chicago/Turabian StyleFraschetti, Emily C., Ali A. Abdul-Sater, Christopher G. R. Perry, and Andrea R. Josse. 2025. "Resistance Exercise Training and Greek Yogurt Consumption Modulate Markers of Systemic Inflammation in Healthy Young Males—A Secondary Analysis of a Randomized Controlled Trial" Nutrients 17, no. 17: 2816. https://doi.org/10.3390/nu17172816
APA StyleFraschetti, E. C., Abdul-Sater, A. A., Perry, C. G. R., & Josse, A. R. (2025). Resistance Exercise Training and Greek Yogurt Consumption Modulate Markers of Systemic Inflammation in Healthy Young Males—A Secondary Analysis of a Randomized Controlled Trial. Nutrients, 17(17), 2816. https://doi.org/10.3390/nu17172816