Optimizing Performance Nutrition for Adolescent Athletes: A Review of Dietary Needs, Risks, and Practical Strategies
Abstract
1. Introduction
2. Energy Requirements
3. Carbohydrates
4. Protein
5. Dietary Fats
6. Hydration
7. Micronutrient Considerations
7.1. Iron
7.2. Calcium and Vitamin D
8. Ergogenic Aids and Dietary Supplements
8.1. Creatine Supplementation in Adolescent Athletes
- Are engaged in structured, competitive training programs;
- Consume a well-balanced, performance-supportive diet;
- Demonstrate an understanding of appropriate creatine use;
- Adhere strictly to recommended dosages.
8.2. Energy Drinks and Energy Shots
8.3. Protein Supplements in Adolescent Athletes
8.4. Supplement Safety and a Food-First Philosophy
9. Nutrition Education and Practical Strategies
- The importance of balanced meals and snacks throughout the day;
- Timing of nutrients before, during, and after training;
- Hydration strategies;
- Food-first approaches to meeting protein and micronutrient needs;
- Safe and informed use of supplements, when appropriate.
10. Conclusions
Funding
Conflicts of Interest
References
- Alderman, E.M.; Breuner, C.C.; Committee on Adolescence. Unique Needs of the Adolescent. Pediatrics 2019, 144, e20193150. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, G.; Čulina, T. Prevalence of potential risk of eating disorders among young, unprofessional European athletes: Results of the ERASMUS+ project SCAED. Front. Nutr. 2024, 11, 1398464. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth resistance training: Updated position statement paper from the national strength and conditioning association. J. Strength Cond. Res. 2009, 23 (Suppl. S5), S60–S79. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.; Merfeld, B.R.; Ambrosius, A.; Carpenter, M.; Fields, J.B.; Jones, M.T. Nutrition Knowledge and Perceived Dietary Requirements of Adolescent Student-Athletes: A Pilot Study. Nutrients 2024, 17, 133. [Google Scholar] [CrossRef] [PubMed]
- Project Play. State of Play 2024: Trends and Projections in Youth Sports Participation; Aspen Institute: Washington, DC, USA, 2024. [Google Scholar]
- National Federation of High School Sports. High School Participation Survey Archive; NFHS: Indianapolis, IN, USA, 2024; Available online: https://www.nfhs.org/sports-resource-content/high-school-participation-survey-archive/ (accessed on 21 August 2025).
- Domaradzki, J.; Koźlenia, D.; Popowczak, M. The Relative Importance of Age at Peak Height Velocity and Fat Mass Index in High-Intensity Interval Training Effect on Cardiorespiratory Fitness in Adolescents: A Randomized Controlled Trial. Children 2022, 9, 1554. [Google Scholar] [CrossRef] [PubMed]
- Retzepis, N.; Avloniti, A.; Kokkotis, C.; Stampoulis, T.; Balampanos, D.; Gkachtsou, A.; Aggelakis, P.; Kelaraki, D.; Protopapa, M.; Pantazis, D.; et al. The Effect of Peak Height Velocity on Strength and Power Development of Young Athletes: A Scoping Review. J. Funct. Morphol. Kinesiol. 2025, 10, 168. [Google Scholar] [CrossRef]
- Soliman, A.; Alaaraj, N.; Hamed, N.; Alyafei, F.; Ahmed, S.; Shaat, M.; Itani, M.; Elalaily, R.; Soliman, N. Nutritional interventions during adolescence and their possible effects. Acta Biomed. 2022, 93, e2022087. [Google Scholar]
- Balci, A.; Badem, E.A.; Yılmaz, A.E.; Devrim-Lanpir, A.; Akınoğlu, B.; Kocahan, T.; Hasanoğlu, A.; Hill, L.; Rosemann, T.; Knechtle, B. Current Predictive Resting Metabolic Rate Equations Are Not Sufficient to Determine Proper Resting Energy Expenditure in Olympic Young Adult National Team Athletes. Front. Physiol. 2021, 12, 625370. [Google Scholar] [CrossRef]
- Reale, R.; Roberts, T.J.; Lee, K.A.; Bonsignore, J.L.; Anderson, M.L. Metabolic rate in adolescent athletes: The development and validation of new equations, and comparison to previous models. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 249–257. [Google Scholar] [CrossRef]
- Torun, B. Energy requirements of children and adolescents. Public Health Nutr. 2005, 8, 968–993. [Google Scholar] [CrossRef]
- Gould, R.J.; Ridout, A.J.; Newton, J.L. Relative Energy Deficiency in Sport (RED-S) in Adolescents—A Practical Review. Int. J. Sports Med. 2023, 44, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Loucks, A.B. The response of luteinizing hormone Pulsatility to 5 days of low energy availability disappears by 14 years of gynecological age. J. Clin. Endocrinol. Metab. 2006, 91, 3158–3164. [Google Scholar] [CrossRef]
- Montfort-Steiger, V.; Williams, C. Carbohydrate intake considerations for young athletes. J. Sports Sci. Med. 2007, 6, 343–352. [Google Scholar] [PubMed]
- Ivy, J.L. Glycogen resynthesis after exercise: Effect of carbohydrate intake. Int. J. Sports Med. 1998, 19 (Suppl. S2), S142–S145. [Google Scholar] [CrossRef] [PubMed]
- Lodge, M.T.; Ward-Ritacco, C.L.; Melanson, K.J. Considerations of Low Carbohydrate Availability (LCA) to Relative Energy Deficiency in Sport (RED-S) in Female Endurance Athletes: A Narrative Review. Nutrients 2023, 15, 4457. [Google Scholar] [CrossRef]
- Antonio, J.; Evans, C.; Ferrando, A.A.; Stout, J.R.; Antonio, B.; Cinteo, H.; Harty, P.; Arent, S.M.; Candow, D.G.; Forbes, S.C.; et al. Common questions and misconceptions about protein supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2024, 21, 2341903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazzulla, M.; Volterman, K.A.; Packer, J.E.; Wooding, D.J.; Brooks, J.C.; Kato, H.; Moore, D.R. Whole-body net protein balance plateaus in response to increasing protein intakes during post-exercise recovery in adults and adolescents. Nutr. Metab. 2018, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Williams, L.A.; Wilson, D.P. Nutritional Management of Pediatric Dyslipidemia. In Endotext [Internet]; Feingold, K.R., Ahmed, S.F., Anawalt, B., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK395582/ (accessed on 21 August 2025).
- Lowery, L.M. Dietary fat and sports nutrition: A primer. J. Sports Sci. Med. 2004, 3, 106–117. [Google Scholar] [PubMed]
- Riebl, S.K.; Davy, B.M. The Hydration Equation: Update on Water Balance and Cognitive Performance. ACSM’s Health Fit. J. 2013, 17, 21–28. [Google Scholar] [CrossRef] [PubMed]
- McDermott, B.P.; Anderson, S.A.; Armstrong, L.E.; Casa, D.J.; Cheuvront, S.N.; Cooper, L.; Kenney, W.L.; O’Connor, F.G.; Roberts, W.O. National Athletic Trainers’ Association Position Statement: Fluid Replacement for the Physically Active. J. Athl. Train. 2017, 52, 877–895. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergeron, M.F. Hydration in the Pediatric Athlete—How to Guide Your Patients. Curr. Sports Med. Rep. 2015, 14, 288–293. [Google Scholar] [CrossRef]
- Peeling, P.; Sim, M.; Badenhorst, C.E.; Dawson, B.; Govus, A.D.; Abbiss, C.R.; Swinkels, D.W.; Trinder, D. Iron status and the acute post-exercise hepcidin response in athletes. PLoS ONE. 2014, 9, e93002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kobayashi, Y.; Taniguchi, R.; Shirasaki, E.; Yoshimoto, Y.S.; Aoi, W.; Kuwahata, M. Continuous training in young athletes decreases hepcidin secretion and is positively correlated with serum 25(OH)D and ferritin. PeerJ 2024, 12, e17566. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Institute of Medicine, Food and Nutrition Board, Standing Committee on the Scientific Eva. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross, A.C.; Taylor, C.L.; Yaktine, A.L. (Eds.) 5, Dietary Reference Intakes for Adequacy: Calcium and Vitamin D. In Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK56056/ (accessed on 21 August 2025).
- Harkness, L.S.; Bonny, A. Calcium and vitamin D status in the adolescent: Key roles for bone, body weight, glucose tolerance, and estrogen biosynthesis. J. Pediatr. Adolesc. Gynecol. 2005, 18, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Bezrati, I.; Hammami, R.; Ben Fradj, M.K.; Martone, D.; Padulo, J.; Feki, M.; Chaouachi, A.; Kaabachi, N. Association of plasma 25-hydroxyvitamin D with physical performance in physically active children. Appl. Physiol. Nutr. Metab. 2016, 41, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Knechtle, B.; Jastrzębski, Z.; Hill, L.; Nikolaidis, P.T. Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review. Medicina 2021, 57, 223. [Google Scholar] [CrossRef] [PubMed]
- Herrick, K.A.; Storandt, R.J.; Afful, J.; Pfeiffer, C.M.; Schleicher, R.L.; Gahche, J.J.; Potischman, N. Vitamin D status in the United States, 2011–2014. Am. J. Clin. Nutr. 2019, 110, 150–157. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; FAO: Rome, Italy, 2004; Available online: http://www.fao.org/docrep/007/y5686e/y5686e07.htm#bm07 (accessed on 14 August 2025).
- Carlsohn, A.; Scharhag-Rosenberger, F.; Cassel, M.; Weber, J.; de Guzman Guzman, A.; Mayer, F. Physical activity levels to estimate the energy requirement of adolescent athletes. Pediatr. Exerc. Sci. 2011, 23, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Kontele, I.; Vassilakou, T. Nutritional Risks among Adolescent Athletes with Disordered Eating. Children 2021, 8, 715. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Dolan, E.; Elliott-Sale, K.J.; Sale, C. Reduced energy availability: Implications for bone health in physically active populations. Eur. J. Nutr. 2018, 57, 847–859. [Google Scholar] [CrossRef]
- Ihalainen, J.K.; Mikkonen, R.S.; Ackerman, K.E.; Heikura, I.A.; Mjøsund, K.; Valtonen, M.; Hackney, A.C. Beyond Menstrual Dysfunction: Does Altered Endocrine Function Caused by Problematic Low Energy Availability Impair Health and Sports Performance in Female Athletes? Sports Med. 2024, 54, 2267–2289. [Google Scholar] [CrossRef] [PubMed]
- Wasserfurth, P.; Palmowski, J.; Hahn, A.; Krüger, K. Reasons for and Consequences of Low Energy Availability in Female and Male Athletes: Social Environment, Adaptations, and Prevention. Sports Med. Open 2020, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, N.; Samukawa, M.; Sakamaki-Sunaga, M.; Sugawara, M.; Torashima, S.; Ishida, T.; Kasahara, S.; Tohyama, H. The Influence of Low Energy Availability on Bone Mineral Density and Trabecular Bone Microarchitecture of Pubescent Female Athletes: A Preliminary Study. Int. J. Environ. Res. Public Health 2022, 19, 5580. [Google Scholar] [CrossRef]
- Stenqvist, T.; Melin, A.K.; Torstveit, M.K. Relative Energy Deficiency in Sport (REDs) Indicators in Male Adolescent Endurance Athletes: A 3-Year Longitudinal Study. Nutrients 2023, 15, 5086. [Google Scholar] [CrossRef]
- Lehmann, L.; Giacomoni, M.; Maso, F.; Colard, J.; Margaritis, I.; Duché, P. Energy availability macronutrient intake over a 7-day training period in adolescent rugby players. J. Sports Med. Phys. Fit. 2025, 65, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.; Ghatora, R.; Retsidou, M.I.; Chatzigianni, E.; Klentrou, P. Energy Expenditure, Dietary Energy Intake, and Nutritional Supplements in Adolescent Volleyball Athletes versus Nonathletic Controls. Nutrients 2023, 15, 1788. [Google Scholar] [CrossRef]
- Martinho, D.V.; Naughton, R.J.; Leão, C.; Lemos, J.; Field, A.; Faria, A.; Rebelo, A.; Gouveia, É.R.; Sarmento, H. Dietary intakes and daily distribution patterns of macronutrients in youth soccer players. Front. Nutr. 2023, 10, 1134845. [Google Scholar] [CrossRef] [PubMed]
- Fleming, J.A.; Catháin, C.Ó.; Harper, L.D.; Naughton, R.J. Dietary Intake and Daily Distribution of Carbohydrate, Protein and Fat in Youth Tennis Players over a 7-Day Training and Competition Period. J. Sports Sci. Med. 2021, 20, 413–420. [Google Scholar] [CrossRef]
- Murray, B.; Rosenbloom, C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 2018, 76, 243–259. [Google Scholar] [CrossRef]
- McHaffie, S.J.; Langan-Evans, C.; Strauss, J.A.; Areta, J.L.; Rosimus, C.; Evans, M.; Waghorn, R.; Morton, J.P. Under-Fuelling for the Work Required? Assessment of Dietary Practices and Physical Loading of Adolescent Female Soccer Players During an Intensive International Training and Game Schedule. Nutrients 2023, 15, 4508. [Google Scholar] [CrossRef] [PubMed]
- Hannon, M.P.; Close, G.L.; Morton, J.P. Energy and Macronutrient Considerations for Young Athletes. Strength Cond. J. 2020, 42, 109–119. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International Society of Sports Nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2008, 14, 33. [Google Scholar] [CrossRef]
- Fuchs, C.J.; Gonzalez, J.T.; van Loon, L.J.C. Fructose co-ingestion to increase carbohydrate availability in athletes. J. Physiol. 2019, 597, 3549–3560. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Bar-Or, O.; Wilk, B.; Parolin, M.L.; Heigenhauser, G.J.F. Substrate utilization during exercise with glucose and glucose plus fructose ingestion in boys ages 10–14 yr. J. Appl. Physiol. 2001, 90, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A. A Step Towards Personalized Sports Nutrition: Carbohydrate Intake During Exercise. Sports Med. 2014, 44 (Suppl. S1), 25–33. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Ely, I.A.; Phillips, B.E.; Smith, K.; Wilkinson, D.J.; Piasecki, M.; Breen, L.; Larsen, M.S.; Atherton, P.J. A focus on leucine in the nutritional regulation of human skeletal muscle metabolism in ageing, exercise and unloading states. Clin. Nutr. 2023, 42, 1849–1865. [Google Scholar] [CrossRef]
- Hector, A.J.; McGlory, C.; Damas, F.; Mazara, N.; Baker, S.K.; Phillips, S.M. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. FASEB J. 2018, 32, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Baroni, L.; Pelosi, E.; Giampieri, F.; Battino, M. The VegPlate for Sports: A Plant-Based Food Guide for Athletes. Nutrients 2023, 15, 1746. [Google Scholar] [CrossRef]
- Franca, P.A.P.; Gonçalves Lima, C.K.A.Z.; de Oliveira, T.M.; Ferreira, T.J.; da Silva, R.R.M.; Loureiro, L.L.; Pierucci, A.P.T.R. Effectiveness of current protein recommendations in adolescent athletes on a low-carbon diet. Front. Nutr. 2022, 9, 1016409. [Google Scholar] [CrossRef]
- Costa, J.V.; Michel, J.M.; Madzima, T.A. The Acute Effects of a Relative Dose of Pre-Sleep Protein on Recovery Following Evening Resistance Exercise in Active Young Men. Sports 2021, 9, 44. [Google Scholar] [CrossRef]
- Kwon, J.; Nishisaka, M.M.; McGrath, A.F.; Kristo, A.S.; Sikalidis, A.K.; Reaves, S.K. Protein Intake in NCAA Division 1 Soccer Players: Assessment of Daily Amounts, Distribution Patterns, and Leucine Levels as a Quality Indicator. Sports 2023, 11, 45. [Google Scholar] [CrossRef]
- Liu, A.G.; Ford, N.A.; Hu, F.B.; Zelman, K.M.; Mozaffarian, D.; Kris-Etherton, P.M. A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutr. J. 2017, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Randell, R.; Rollo, I.; Roberts, T.J.; Dalrymple, K.J.; Jeukendrup, A.E.; Carter, J.M. Maximal Fat Oxidation Rates in an Athletic Population. Med. Sci. Sports Exerc. 2017, 49, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, M. Dietary Fat and Sports Performance; Academic Press: Cambridge, MA, USA, 2019; pp. 555–569. [Google Scholar] [CrossRef]
- Tomczyk, M.; Heileson, J.L.; Babiarz, M.; Calder, P.C. Athletes Can Benefit from Increased Intake of EPA and DHA-Evaluating the Evidence. Nutrients 2023, 15, 4925. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; Zynda, A.J.; Sabatino, M.J.; Jo, C.; Ellis, H.B.; Dimeff, R.J. A Pilot Randomized Controlled Trial of Docosahexaenoic Acid for the Treatment of Sport-Related Concussion in Adolescents. Clin. Pediatr. 2022, 61, 785–794. [Google Scholar] [CrossRef]
- Lust, C.A.C.; Mountjoy, M.; Robinson, L.E.; Oliver, J.M.; Ma, D.W.L. Sports-related concussions and subconcussive impacts in athletes: Incidence, diagnosis, and the emerging role of EPA and DHA. Appl. Physiol. Nutr. Metab. 2020, 45, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.M.; Jones, M.T.; Kirk, K.M.; Gable, D.A.; Repshas, J.T.; Johnson, T.A.; Andréasson, U.; Norgren, N.; Blennow, K.; Zetterberg, H. Effect of Docosahexaenoic Acid on a Biomarker of Head Trauma in American Football. Med. Sci. Sports Exerc. 2016, 48, 974–982. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Arribalzaga, S.; Gutiérrez-Abejón, E.; Azarbayjani, M.A.; Mielgo-Ayuso, J.; Roche, E. Omega-3 Fatty Acid Supplementation on Post-Exercise Inflammation, Muscle Damage, Oxidative Response, and Sports Performance in Physically Healthy Adults-A Systematic Review of Randomized Controlled Trials. Nutrients 2024, 16, 2044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nasir, Y.; Rahimi, M.H. Effect of omega-3 fatty acids supplementation on inflammatory markers following exercise-induced muscle damage: Systematic review and meta-analysis of randomized controlled trials. Nutr. Clin. Métabolisme 2024, 38, 158–167. [Google Scholar] [CrossRef]
- Ritz, P.P.; Rogers, M.B.; Zabinsky, J.S.; Hedrick, V.E.; Rockwell, J.A.; Rimer, E.G.; Kostelnik, S.B.; Hulver, M.W.; Rockwell, M.S.; Sauers, E. Dietary and biological assessment of the omega-3 status of collegiate athletes: A cross-sectional analysis. PLoS ONE. 2020, 15, e0228834. [Google Scholar] [CrossRef]
- Forsyth, N.; Solan, T. It’s getting hot in here: Heat stroke in children and young people for paediatric clinicians. Paediatr. Child Health 2022, 32, 471–475. [Google Scholar] [CrossRef]
- Stevens, L.J.; Burgess, J.R.; Stochelski, M.A.; Kuczek, T. Amounts of artificial food colors in commonly consumed beverages and potential behavioral implications for consumption in children. Clin. Pediatr. 2014, 53, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.; Friedrich, O.; Treiber, J.; Quermann, A.; Friedmann-Bette, B. Iron deficiency in athletes: Prevalence and impact on VO2 peak. Nutrition 2024, 126, 112516. [Google Scholar] [CrossRef]
- Damian, M.T.; Vulturar, R.; Login, C.C.; Damian, L.; Chis, A.; Bojan, A. Anemia in Sports: A Narrative Review. Life 2021, 11, 987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roy, R.; Kück, M.; Radziwolek, L.; Kerling, A. Iron Deficiency in Adolescent and Young Adult German Athletes—A Retrospective Study. Nutrients 2022, 14, 4511. [Google Scholar] [CrossRef]
- Solberg, A.; Reikvam, H. Iron Status and Physical Performance in Athletes. Life 2023, 13, 2007. [Google Scholar] [CrossRef] [PubMed]
- Clénin, G.; Cordes, M.; Huber, A.; Schumacher, Y.O.; Noack, P.; Scales, J.; Kriemler, S. Iron deficiency in sports—Definition, influence on performance and therapy. Swiss Med. Wkly. 2015, 145, w14196. [Google Scholar] [CrossRef] [PubMed]
- von Siebenthal, H.K.; Moretti, D.; Zimmermann, M.B.; Stoffel, N.U. Effect of dietary factors and time of day on iron absorption from oral iron supplements in iron deficient women. Am. J. Hematol. 2023, 98, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.E.; Naughton, D.P. Iron supplements: The quick fix with long-term consequences. Nutr. J. 2004, 3, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pantopoulos, K. Oral iron supplementation: New formulations, old questions. Haematologica 2024, 109, 2790–2801. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caballero-García, A.; Córdova-Martínez, A.; Vicente-Salar, N.; Roche, E.; Pérez-Valdecantos, D. Vitamin D, Its Role in Recovery after Muscular Damage Following Exercise. Nutrients 2021, 13, 2336. [Google Scholar] [CrossRef]
- Michalczyk, M.M.; Kałuża, M.; Zydek, G.; Roczniok, R.; Golas, A. The relationships of serum vitamin D concentration with linear speed and change of direction performance in soccer players. Front. Nutr. 2024, 11, 1501643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Atadja, L.; Beck, J.; Franklin, C. The importance of bone health for pediatric athletes: From juvenile osteochondritis dissecans to relative energy deficiency in sports. J. Pediatr. Orthop. Soc. North Am. 2024, 7, 100052. [Google Scholar] [CrossRef] [PubMed]
- Jovanov, P.; Đorđić, V.; Obradović, B.; Barak, O.; Pezo, L.; Marić, A.; Sakač, M. Prevalence, knowledge and attitudes towards using sports supplements among young athletes. J. Int. Soc. Sports Nutr. 2019, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hellín, J.; Varillas-Delgado, D. Energy Drinks and Sports Performance, Cardiovascular Risk, and Genetic Associations; Future Prospects. Nutrients 2021, 13, 715. [Google Scholar] [CrossRef] [PubMed]
- Zucconi, S.; Volpato, C.; Adinolfi, F.; Gandini, E.; Gentile, E.; Loi, A.; Fioriti, L. Gathering consumption data on specific consumer groups of energy drinks. EFSA Support Publ. 2013, 10, EN-394. [Google Scholar] [CrossRef]
- Jagim, A.; Kerksick, C.M. Creatine Supplementation in Children and Adolescents. Nutrients 2021, 13, 664. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Silva, A.; Buzzachera, C.F.; Piçarro, I.D.C.; Januario, R.S.B.; Ferreira, L.H.B.; McAnulty, S.R.; Utter, A.C.; Souza-Junior, T.P. Effect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer players. J. Int. Soc. Sports Nutr. 2017, 14, 5. [Google Scholar] [CrossRef]
- Metzl, J.D.; Small, E.; Levine, S.R.; Gershel, J.C. Creatine use among young athletes. Pediatrics 2001, 108, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Kayton, S.; Cullen, R.W.; Memken, J.A.; Rutter, R. Supplement and ergogenic aid use by competitive male and female high school athletes. Med. Sci. Sports Exerc. 2002, 34, S193. [Google Scholar] [CrossRef]
- Górka, K.; Kruczyńska, A.; Lenard, T.; Banach, A.; Sochaczewska, A.; Mencfel, R.; Kuźniar, A.; Czarnek, K. Energy Drinks-Trend or Awareness Choice? A Mini-Review. J. Nutr. 2025; in press. [Google Scholar] [CrossRef]
- Torpy, J.M.; Livingston, E.H. Energy Drinks. JAMA 2013, 309, 297. [Google Scholar] [CrossRef]
- Colecchia, F.P.; Di Padova, M.; Mancini, S.; Polito, R.; Basta, A.; Grosu, V.T.; Limone, P.; Messina, G.; Monda, M.; Monda, A.; et al. Protein intake in adolescent athletes: Nutritional requirements and performance implications. J. Phys. Educ. Sport 2025, 25, 773–784. [Google Scholar]
- Whitehouse, G.; Lawlis, T. Protein supplements and adolescent athletes: A pilot study investigating the risk knowledge, motivations and prevalence of use. Nutr. Diet. 2017, 74, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Bandara, S.B.; Towle, K.M.; Monnot, A.D. A human health risk assessment of heavy metal ingestion among consumers of protein powder supplements. Toxicol. Rep. 2020, 7, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.L.; Becker, T.B. General and sport-specific nutrition knowledge and behaviors of adolescent athletes. J. Int. Soc. Sports Nutr. 2025, 22, 2477060. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.P.; Rushton, B.D. Nutritional knowledge of youth academy athletes. BMC Nutr. 2020, 6, 35. [Google Scholar] [CrossRef]
- Deslippe, A.L.; McVittie, J.; McIsaac, J.L. “Where” and “What” Do Adolescent Athletes Learn When It Comes to Food Literacy Compared with Adolescents that Do Not Play Sports? A Gender-Based Thematic Analysis. Curr. Dev. Nutr. 2023, 9, 104525. [Google Scholar] [CrossRef] [PubMed]
- Bourke, B.E.P.; Baker, D.F.; Braakhuis, A.J. Social Media as a Nutrition Resource for Athletes: A Cross-Sectional Survey. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 364–370. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Recommended Intake/Target | Additional Considerations | Ref. |
---|---|---|---|
Energy | ≥45 kcal/kg FFM/day (optimal) <30 kcal/kg FFM/day (risk for LEA) | RMR (kcal/day) = 11.1 × Body Mass (kg) + 8.4 × Height (cm)- 340 for males or 537 for females) | [11,13,14] |
PAL range: 1.75–2.05 | |||
Carbohydrates | 6–10 g/kg/day | Target based on training intensity | [15,16,17] |
Post-exercise 1.0–1.2 g/kg every 2 h for 4–6 h | |||
Protein | 1.4–2.0 g/kg/day | Daily target: 20–40 g per meal every 3–4 h Post-exercise 0.25–0.30 g/kg | [18,19,20] |
Fat | 20–35% of total energy | Saturated fat <10%; trans fats avoided | [21,22,23] |
Hydration | 2.0–2.4 L/day baseline | During activity +3–8 oz (~90–240 mL) every 20 min | [24,25,26] |
Post-exercise fluid replacement 16–20 ounces (~480–600 mL) per pound lost | |||
Iron | 11 mg/day (males 13–18 yrs) 15 mg/day (females 13–18 yrs) | Ferritin ≥ 30 µg/L = adequate for adolescents ≥ 15 | [27,28,29] |
Screen athletes with fatigue or low endurance | |||
Calcium | 1300 mg/day (14–18 yrs) | Include dietary sources in meals/snacks; dairy and fortified plant-based options recommended | [30,31] |
Vitamin D | 600–800 IU/day (15–20 µg) | Serum 25(OH)D ≥ 30 ng/mL optimal; supplementation may be needed | [30,32,33,34] |
Age Group | Ferritin Threshold | Interpretation |
---|---|---|
Children (6–12 years) | <15 µg/L | Depleted iron stores |
Adolescents (12–15 years) | <20 µg/L | Depleted iron stores |
Athletes ≥ 15 years | <15 µg/L | Depleted iron stores |
Athletes ≥ 15 years | 15–30 µg/L | Low iron reserves |
Athletes ≥ 15 years | ≥30 µg/L | Adequate iron stores (clinical cut-off) |
Supplement | Recommendations | |
---|---|---|
Protein Supplements | Use only when whole food intake is insufficient; choose third-party tested products | [18] |
Creatine | May be considered for athletes in structured training under supervision | [85] |
Omega-3 (EPA/DHA) supplements | May support recovery, reduce inflammation, and protect brain health | [64,66] |
Vitamin D Supplements | May be needed due to low sun exposure and limited dietary sources; monitor serum levels for adequacy | [33,34] |
Iron Supplements | 60–120 mg elemental iron/day (if deficient) | [27,78] |
Take in morning with vitamin C; avoid with coffee or meals | ||
Energy Drinks | Not recommended | [86,87] |
Risk of excessive caffeine, sleep disturbance, and cardiovascular effects |
Country | Directory Name | Website/Resource |
---|---|---|
United States | Academy of Nutrition and Dietetics | eatright.org |
Canada | Dietitians of Canada | dietitians.ca |
United Kingdom | British Dietetic Association (BDA) | bda.uk.com |
Australia | Dietitians Australia | dietitiansaustralia.org.au |
Europe | European Federation of the Associations of Dietitians (EFAD) | efad.org |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Everett, S. Optimizing Performance Nutrition for Adolescent Athletes: A Review of Dietary Needs, Risks, and Practical Strategies. Nutrients 2025, 17, 2792. https://doi.org/10.3390/nu17172792
Everett S. Optimizing Performance Nutrition for Adolescent Athletes: A Review of Dietary Needs, Risks, and Practical Strategies. Nutrients. 2025; 17(17):2792. https://doi.org/10.3390/nu17172792
Chicago/Turabian StyleEverett, Sotiria. 2025. "Optimizing Performance Nutrition for Adolescent Athletes: A Review of Dietary Needs, Risks, and Practical Strategies" Nutrients 17, no. 17: 2792. https://doi.org/10.3390/nu17172792
APA StyleEverett, S. (2025). Optimizing Performance Nutrition for Adolescent Athletes: A Review of Dietary Needs, Risks, and Practical Strategies. Nutrients, 17(17), 2792. https://doi.org/10.3390/nu17172792