Beyond Analgesia: Psychobiotics as an Adjunctive Approach to Pain Management in Gastrointestinal Oncology—A Post Hoc Analysis from the ProDeCa Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Depression Assessment and Study Groups
2.3. Pain Evaluation
2.4. Chemotherapy and Pain Management Scheme—Protocols
2.5. Intervention Protocol
2.6. Statistics
3. Results
3.1. Demographics
3.2. Evaluation of the Number of Participants Experiencing Pain in Each Group
3.3. Assessment of Pain Intensity Based on VAS Score
3.4. Present Pain Intensity Index
3.5. Pain Rating Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- van den Beuken-van Everdingen, M.H.; de Rijke, J.M.; Kessels, A.G.; Schouten, H.C.; van Kleef, M.; Patijn, J. Prevalence of pain in patients with cancer: A systematic review of the past 40 years. Ann. Oncol. 2007, 18, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Fallon, M.; Giusti, R.; Aielli, F.; Hoskin, P.; Rolke, R.; Sharma, M.; Ripamonti, C.I. Management of cancer pain in adult patients: ESMO Clinical Practice Guidelines. Ann. Oncol. 2018, 29, iv166–iv191. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.I.; Eisenberg, E.; Ahmedzai, S.H.; Bhaskar, A.; O’Brien, T.; Mercadante, S.; Krčevski Škvarč, N.; Vissers, K.; Wirz, S.; Wells, C.; et al. Standards for the management of cancer-related pain across Europe-A position paper from the EFIC Task Force on Cancer Pain. Eur. J. Pain 2019, 23, 660–668. [Google Scholar] [CrossRef]
- Fyntanidou, B.; Amaniti, A.; Soulioti, E.; Zagalioti, S.C.; Gkarmiri, S.; Chorti, A.; Loukipoudi, L.; Ioannidis, A.; Dalakakis, I.; Menni, A.E.; et al. Probiotics in Postoperative Pain Management. J. Pers. Med. 2023, 13, 1645. [Google Scholar] [CrossRef]
- Kotzampassi, K. Why Give My Surgical Patients Probiotics. Nutrients 2022, 14, 4389. [Google Scholar] [CrossRef]
- Kehlet, H.; Jensen, T.S.; Woolf, C.J. Persistent postsurgical pain: Risk factors and prevention. Lancet 2006, 367, 1618–1625. [Google Scholar] [CrossRef]
- Wildgaard, K.; Ravn, J.; Kehlet, H. Chronic post-thoracotomy pain: A critical review of pathogenic mechanisms and strategies for prevention. Eur. J. Cardiothorac. Surg. 2009, 36, 170–180. [Google Scholar] [CrossRef]
- Althaus, A.; Hinrichs-Rocker, A.; Chapman, R.; Arránz Becker, O.; Lefering, R.; Simanski, C.; Weber, F.; Moser, K.H.; Joppich, R.; Trojan, S.; et al. Development of a risk index for the prediction of chronic post-surgical pain. Eur. J. Pain 2012, 16, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- Chen, X.; Gan, Y.; Au, N.P.B.; Ma, C.H.E. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front. Mol. Neurosci. 2024, 17, 1345811. [Google Scholar] [CrossRef]
- van den Beuken-van Everdingen, M.H.; Hochstenbach, L.M.; Joosten, E.A.; Tjan-Heijnen, V.C.; Janssen, D.J. Update on Prevalence of Pain in Patients with Cancer: Systematic Review and Meta-Analysis. J. Pain Symptom Manag. 2016, 51, 1070–1090.e1079. [Google Scholar] [CrossRef]
- Mendoza-Contreras, L.A.; Domínguez Trejo, B.; Guillén Núñez, M.D.R.; Rodríguez Medina, D.A.; Pardo, X.M.; Estapé, T.; Vázquez, O.G. Psychometric properties of the Short-Form McGill Pain Questionnaire (SF-MPQ) in adult Mexican cancer patients with chronic pain. Palliat. Support. Care 2025, 23, e20. [Google Scholar] [CrossRef]
- Wiech, K.; Tracey, I. The influence of negative emotions on pain: Behavioral effects and neural mechanisms. Neuroimage 2009, 47, 987–994. [Google Scholar] [CrossRef]
- Schreier, A.M.; Johnson, L.A.; Vohra, N.A.; Muzaffar, M.; Kyle, B. Post-Treatment Symptoms of Pain, Anxiety, Sleep Disturbance, and Fatigue in Breast Cancer Survivors. Pain Manag. Nurs. 2019, 20, 146–151. [Google Scholar] [CrossRef]
- Cleeland, C.S.; Ryan, K.M. Pain assessment: Global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 1994, 23, 129–138. [Google Scholar]
- Melzack, R. The short-form McGill Pain Questionnaire. Pain 1987, 30, 191–197. [Google Scholar] [CrossRef]
- Bozzetti, F.; Mariani, L.; Lo Vullo, S.; Amerio, M.L.; Biffi, R.; Caccialanza, G.; Capuano, G.; Correja, I.; Cozzaglio, L.; Di Leo, A.; et al. The nutritional risk in oncology: A study of 1453 cancer outpatients. Support. Care Cancer 2012, 20, 1919–1928. [Google Scholar] [CrossRef]
- Cleeland, C.S.; Zhao, F.; Chang, V.T.; Sloan, J.A.; O’Mara, A.M.; Gilman, P.B.; Weiss, M.; Mendoza, T.R.; Lee, J.W.; Fisch, M.J. The symptom burden of cancer: Evidence for a core set of cancer-related and treatment-related symptoms from the Eastern Cooperative Oncology Group Symptom Outcomes and Practice Patterns study. Cancer 2013, 119, 4333–4340. [Google Scholar] [CrossRef]
- Bhuvan, K.C.; Yusoff, Z.B.M.; Alrasheedy, A.A.; Othman, S. The Characteristics and the Pharmacological Management of Cancer Pain and Its Effect on the Patients’ Daily Activities and their Quality of Life: A Cross—Sectional study from Malaysia. J. Clin. Diagn. Res. 2013, 7, 1408–1413. [Google Scholar] [CrossRef]
- Lohman, D.; Schleifer, R.; Amon, J.J. Access to pain treatment as a human right. BMC Med. 2010, 8, 8. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Dinan, T.G.; Cryan, J.F. Gut microbiota: A missing link in psychiatry. World Psychiatry 2020, 19, 111–112. [Google Scholar] [CrossRef]
- Liu, Y.W.; Liu, W.H.; Wu, C.C.; Juan, Y.C.; Wu, Y.C.; Tsai, H.P.; Wang, S.; Tsai, Y.C. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res. 2016, 1631, 1–12. [Google Scholar] [CrossRef]
- Rousseaux, C.; Thuru, X.; Gelot, A.; Barnich, N.; Neut, C.; Dubuquoy, L.; Dubuquoy, C.; Merour, E.; Geboes, K.; Chamaillard, M.; et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 2007, 13, 35–37. [Google Scholar] [CrossRef]
- Cuozzo, M.; Castelli, V.; Avagliano, C.; Cimini, A.; d’Angelo, M.; Cristiano, C.; Russo, R. Effects of Chronic Oral Probiotic Treatment in Paclitaxel-Induced Neuropathic Pain. Biomedicines 2021, 9, 346. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef]
- Ringel-Kulka, T.; Palsson, O.S.; Maier, D.; Carroll, I.; Galanko, J.A.; Leyer, G.; Ringel, Y. Probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 versus placebo for the symptoms of bloating in patients with functional bowel disorders: A double-blind study. J. Clin. Gastroenterol. 2011, 45, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chen, M.; Zheng, C.; Yinglin, B.; Zhu, B. Fecal Microbiota Transplantation Alleviated Paclitaxel-Induced Peripheral Neuropathy by Interfering with Astrocytes and TLR4/p38MAPK Pathway in Rats. J. Pain Res. 2023, 16, 2419–2432. [Google Scholar] [CrossRef] [PubMed]
- Tzikos, G.; Chamalidou, E.; Christopoulou, D.; Apostolopoulou, A.; Gkarmiri, S.; Pertsikapa, M.; Menni, A.-E.; Theodorou, I.M.; Stavrou, G.; Doutsini, N.-D.; et al. Psychobiotics Ameliorate Depression and Anxiety Status in Surgical Oncology Patients: Results from the ProDeCa Study. Nutrients 2025, 17, 857. [Google Scholar] [CrossRef]
- Zimmerman, M.; Martinez, J.H.; Young, D.; Chelminski, I.; Dalrymple, K. Severity classification on the Hamilton Depression Rating Scale. J. Affect. Disord. 2013, 150, 384–388. [Google Scholar] [CrossRef]
- Melzack, R.; Torgerson, W.S. On the language of pain. Anesthesiology 1971, 34, 50–59. [Google Scholar] [CrossRef]
- World Health Organization. WHO’s Pain Ladder. Available online: http://www.who.int/cancer/palliative/painladder/en/ (accessed on 1 June 2025).
- Daud, M.L.; Simone, G.G. Management of pain in cancer patients—An update. Ecancermedicalscience 2024, 18, 1821. [Google Scholar] [CrossRef] [PubMed]
- Coppes, O.J.M.; Yong, R.J.; Kaye, A.D.; Urman, R.D. Patient and Surgery-Related Predictors of Acute Postoperative Pain. Curr. Pain Headache Rep. 2020, 24, 12. [Google Scholar] [CrossRef]
- Yan, S.; Yan, F.; Liangyu, P.; Fei, X. Assessment of non-pharmacological nursing strategies for pain management in tumor patients: A systematic review and meta-analysis. Front. Pain Res. 2025, 6, 1447075. [Google Scholar] [CrossRef]
- Li, Z.; Aninditha, T.; Griene, B.; Francis, J.; Renato, P.; Serrie, A.; Umareddy, I.; Boisseau, S.; Hadjiat, Y. Burden of cancer pain in developing countries: A narrative literature review. Clin. Outcomes Res. 2018, 10, 675–691. [Google Scholar] [CrossRef]
- Scarborough, B.M.; Smith, C.B. Optimal pain management for patients with cancer in the modern era. CA Cancer J. Clin. 2018, 68, 182–196. [Google Scholar] [CrossRef]
- Kwon, J.H. Overcoming barriers in cancer pain management. J. Clin. Oncol. 2014, 32, 1727–1733. [Google Scholar] [CrossRef]
- Cepeda, M.S.; Carr, D.B. Women experience more pain and require more morphine than men to achieve a similar degree of analgesia. Anesth. Analg. 2003, 97, 1464–1468. [Google Scholar] [CrossRef]
- De Cosmo, G.; Congedo, E.; Lai, C.; Primieri, P.; Dottarelli, A.; Aceto, P. Preoperative psychologic and demographic predictors of pain perception and tramadol consumption using intravenous patient-controlled analgesia. Clin. J. Pain 2008, 24, 399–405. [Google Scholar] [CrossRef]
- Liu, Q.R.; Dai, Y.C.; Ji, M.H.; Liu, P.M.; Dong, Y.Y.; Yang, J.J. Risk Factors for Acute Postsurgical Pain: A Narrative Review. J. Pain Res. 2024, 17, 1793–1804. [Google Scholar] [CrossRef] [PubMed]
- Tsegaye, D.; Yazew, A.; Gedfew, M.; Yilak, G.; Yalew, Z.M. Non-Pharmacological Pain Management Practice and Associated Factors Among Nurses Working at Comprehensive Specialized Hospitals. SAGE Open Nurs. 2023, 9, 23779608231158979. [Google Scholar] [CrossRef] [PubMed]
- Alorfi, N.M. Pharmacological Methods of Pain Management: Narrative Review of Medication Used. Int. J. Gen. Med. 2023, 16, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.L. Effectiveness of the World Health Organization cancer pain relief guidelines: An integrative review. J. Pain Res. 2016, 9, 515–534. [Google Scholar] [CrossRef]
- Neufeld, N.J.; Elnahal, S.M.; Alvarez, R.H. Cancer pain: A review of epidemiology, clinical quality and value impact. Future Oncol. 2017, 13, 833–841. [Google Scholar] [CrossRef]
- Cleeland, C.S.; Gonin, R.; Hatfield, A.K.; Edmonson, J.H.; Blum, R.H.; Stewart, J.A.; Pandya, K.J. Pain and its treatment in outpatients with metastatic cancer. N. Engl. J. Med. 1994, 330, 592–596. [Google Scholar] [CrossRef]
- Deandrea, S.; Montanari, M.; Moja, L.; Apolone, G. Prevalence of undertreatment in cancer pain. A review of published literature. Ann. Oncol. 2008, 19, 1985–1991. [Google Scholar] [CrossRef]
- Hong, S.H.; Roh, S.Y.; Kim, S.Y.; Shin, S.W.; Kim, C.S.; Choi, J.H.; Kim, S.Y.; Yim, C.Y.; Sohn, C.H.; Song, H.S.; et al. Change in cancer pain management in Korea between 2001 and 2006: Results of two nationwide surveys. J. Pain. Symptom Manag. 2011, 41, 93–103. [Google Scholar] [CrossRef]
- Simone, C.B., 2nd; Vapiwala, N.; Hampshire, M.K.; Metz, J.M. Cancer patient attitudes toward analgesic usage and pain intervention. Clin. J. Pain 2012, 28, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Ahn, J.S.; Calimag, M.M.; Chao, T.C.; Ho, K.Y.; Tho, L.M.; Xia, Z.J.; Ward, L.; Moon, H.; Bhagat, A. Current practices in cancer pain management in Asia: A survey of patients and physicians across 10 countries. Cancer Med. 2015, 4, 1196–1204. [Google Scholar] [CrossRef]
- Breivik, H.; Cherny, N.; Collett, B.; de Conno, F.; Filbet, M.; Foubert, A.J.; Cohen, R.; Dow, L. Cancer-related pain: A pan-European survey of prevalence, treatment, and patient attitudes. Ann. Oncol. 2009, 20, 1420–1433. [Google Scholar] [CrossRef]
- Snijders, R.A.H.; Brom, L.; Theunissen, M.; van den Beuken-van Everdingen, M.H.J. Update on Prevalence of Pain in Patients with Cancer 2022: A Systematic Literature Review and Meta-Analysis. Cancers 2023, 15, 591. [Google Scholar] [CrossRef]
- Delgado-Guay, M.; Parsons, H.A.; Li, Z.; Palmer, J.L.; Bruera, E. Symptom distress in advanced cancer patients with anxiety and depression in the palliative care setting. Support. Care Cancer 2009, 17, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Zaza, C.; Baine, N. Cancer pain and psychosocial factors: A critical review of the literature. J. Pain Symptom Manag. 2002, 24, 526–542. [Google Scholar] [CrossRef] [PubMed]
- Pachman, D.R.; Barton, D.L.; Swetz, K.M.; Loprinzi, C.L. Troublesome symptoms in cancer survivors: Fatigue, insomnia, neuropathy, and pain. J. Clin. Oncol. 2012, 30, 3687–3696. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, T.; Liu, L.; Yan, Z.; Deng, Y.; Li, G.; Li, M.; Xiong, J. Exercise for reducing chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis of randomized controlled trials. Front. Neurol. 2023, 14, 1252259. [Google Scholar] [CrossRef]
- Davis, M.P. Novel drug treatments for pain in advanced cancer and serious illness: A focus on neuropathic pain and chemotherapy-induced peripheral neuropathy. Palliat. Care Soc. Pract. 2024, 18, 26323524241266603. [Google Scholar] [CrossRef]
- Lehky, T.J.; Leonard, G.D.; Wilson, R.H.; Grem, J.L.; Floeter, M.K. Oxaliplatin-induced neurotoxicity: Acute hyperexcitability and chronic neuropathy. Muscle Nerve 2004, 29, 387–392. [Google Scholar] [CrossRef]
- Flatters, S.J. Characterization of a model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Pain 2008, 135, 119–130. [Google Scholar] [CrossRef]
- Pogatzki-Zahn, E.M.; Wagner, C.; Meinhardt-Renner, A.; Burgmer, M.; Beste, C.; Zahn, P.K.; Pfleiderer, B. Coding of incisional pain in the brain: A functional magnetic resonance imaging study in human volunteers. Anesthesiology 2010, 112, 406–417. [Google Scholar] [CrossRef]
- Hammond, E.A.; Pitz, M.; Lambert, P.; Shay, B. Quantitative sensory profiles of upper extremity chemotherapy induced peripheral neuropathy: Are there differences in sensory profiles for neuropathic versus nociceptive pain? Can. J. Pain 2019, 3, 169–177. [Google Scholar] [CrossRef]
- Gierthmühlen, J.; Baron, R. Neuropathic Pain. Semin. Neurol. 2016, 36, 462–468. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From Mechanisms to Treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef]
- Dosenovic, S.; Nikolic, Z.; Ivancev, B.; Jelicic Kadic, A.; Puljak, L. Awareness and acceptability of Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials core outcome set for chronic pain among surveyed neuropathic pain authors. J. Comp. Eff. Res. 2019, 8, 671–683. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Sindrup, S.H.; Jensen, T.S. Chronic neuropathic pain: Mechanisms, drug targets and measurement. Fundam. Clin. Pharmacol. 2007, 21, 129–136. [Google Scholar] [CrossRef]
- Merskey, H. The taxonomy of pain. Med. Clin. N. Am. 2007, 91, 13–20, vii. [Google Scholar] [CrossRef]
- Pandey, H.; Tang, D.W.T.; Wong, S.H.; Lal, D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers 2023, 15, 866. [Google Scholar] [CrossRef]
- Ait-Belgnaoui, A.; Payard, I.; Rolland, C.; Harkat, C.; Braniste, V.; Théodorou, V.; Tompkins, T.A. Bifidobacterium longum and Lactobacillus helveticus Synergistically Suppress Stress-related Visceral Hypersensitivity Through Hypothalamic-Pituitary-Adrenal Axis Modulation. J. Neurogastroenterol. Motil. 2018, 24, 138–146. [Google Scholar] [CrossRef]
- Yue, F.; Zeng, X.; Wang, Y.; Fang, Y.; Yue, M.; Zhao, X.; Zhu, R.; Zeng, Q.; Wei, J.; Chen, T. Bifidobacterium longum SX-1326 ameliorates gastrointestinal toxicity after irinotecan chemotherapy via modulating the P53 signaling pathway and brain-gut axis. BMC Microbiol. 2024, 24, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Y.; Qian, S.; Kong, J.; Su, Z.; Wang, Q.; Liao, L. Compound Probiotics Improve Neuropathic Pain Prognosis in a Murine Model of Chronic Constriction Injury. J. Pain. Res. 2024, 17, 4213–4221. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Berding, K.; Bastiaanssen, T.F.S.; Moloney, G.M.; Boscaini, S.; Strain, C.R.; Anesi, A.; Long-Smith, C.; Mattivi, F.; Stanton, C.; Clarke, G.; et al. Feed your microbes to deal with stress: A psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol. Psychiatry 2023, 28, 601–610. [Google Scholar] [CrossRef]
- Le Morvan de Sequeira, C.; Hengstberger, C.; Enck, P.; Mack, I. Effect of Probiotics on Psychiatric Symptoms and Central Nervous System Functions in Human Health and Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 621. [Google Scholar] [CrossRef]
- Mörkl, S.; Butler, M.I.; Holl, A.; Cryan, J.F.; Dinan, T.G. Probiotics and the Microbiota-Gut-Brain Axis: Focus on Psychiatry. Curr. Nutr. Rep. 2020, 9, 171–182. [Google Scholar] [CrossRef]
- Menni, A.E.; Theodorou, H.; Tzikos, G.; Theodorou, I.M.; Semertzidou, E.; Stelmach, V.; Shrewsbury, A.D.; Stavrou, G.; Kotzampassi, K. Rewiring Mood: Precision Psychobiotics as Adjunct or Stand-Alone Therapy in Depression Using Insights from 19 Randomized Controlled Trials in Adults. Nutrients 2025, 17, 2022. [Google Scholar] [CrossRef]
- Tian, P.; Chen, Y.; Zhu, H.; Wang, L.; Qian, X.; Zou, R.; Zhao, J.; Zhang, H.; Qian, L.; Wang, Q.; et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav. Immun. 2022, 100, 233–241. [Google Scholar] [CrossRef]
- Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011, 105, 755–764. [Google Scholar] [CrossRef]
- McVey Neufeld, K.A.; O’Mahony, S.M.; Hoban, A.E.; Waworuntu, R.V.; Berg, B.M.; Dinan, T.G.; Cryan, J.F. Neurobehavioural effects of Lactobacillus rhamnosus GG alone and in combination with prebiotics polydextrose and galactooligosaccharide in male rats exposed to early-life stress. Nutr. Neurosci. 2019, 22, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Cenac, N.; Altier, C.; Motta, J.P.; d’Aldebert, E.; Galeano, S.; Zamponi, G.W.; Vergnolle, N. Potentiation of TRPV4 signalling by histamine and serotonin: An important mechanism for visceral hypersensitivity. Gut 2010, 59, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C. Serotonin in pain and analgesia: Actions in the periphery. Mol. Neurobiol. 2004, 30, 117–125. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Bulmer, D.C.; Coelho, A.M.; Fitzgerald, P.; Bongiovanni, C.; Lee, K.; Winchester, W.; Dinan, T.G.; Cryan, J.F. 5-HT(2B) receptors modulate visceral hypersensitivity in a stress-sensitive animal model of brain-gut axis dysfunction. Neurogastroenterol. Motil. 2010, 22, 573–578.e124. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.; Chua, A.S.; Quigley, E.M.; Clarke, G.; Shanahan, F.; Keeling, P.W.; Dinan, T.G. Evidence of an enhanced central 5HT response in irritable bowel syndrome and in the rat maternal separation model. Neurogastroenterol. Motil. 2008, 20, 680–688. [Google Scholar] [CrossRef]
- Halfaker, D.A.; Akeson, S.T.; Hathcock, D.R.; Mattson, C.; Wunderlich, T.L. Psychological Aspects of Pain. In Pain Procedures in Clinical Practice, 3rd ed.; Lennard, T.A., Walkowski, S., Singla, A.K., Vivian, D.G., Eds.; Hanley & Belfus: Saint Louis, MO, USA, 2011; pp. 13–22. [Google Scholar]
- Geisser, M.E.; Roth, R.S.; Theisen, M.E.; Robinson, M.E.; Riley, J.L., 3rd. Negative affect, self-report of depressive symptoms, and clinical depression: Relation to the experience of chronic pain. Clin. J. Pain 2000, 16, 110–120. [Google Scholar] [CrossRef]
- Thompson, T.; Correll, C.U.; Gallop, K.; Vancampfort, D.; Stubbs, B. Is Pain Perception Altered in People with Depression? A Systematic Review and Meta-Analysis of Experimental Pain Research. J. Pain 2016, 17, 1257–1272. [Google Scholar] [CrossRef]
- Dickens, C.; McGowan, L.; Dale, S. Impact of depression on experimental pain perception: A systematic review of the literature with meta-analysis. Psychosom. Med. 2003, 65, 369–375. [Google Scholar] [CrossRef]
Treatment | Non-Depressed [n = 58] | Depressed [n = 41] | p * |
---|---|---|---|
Psychobiotics | 27 [46.55%] | 18 [43.90%] | 0.794 |
Placebo | 31 [53.45%] | 23 [56.10%] |
Groups | Treatment | T0 | T1 | T2 | p * |
---|---|---|---|---|---|
Non-depressed (n = 58) | Psychobiotics | 38.9 [25.3] | 29.3 [19.9] | 19.3 [13.9] | 0.007 |
Placebo | 34.1 [23.0] | 36.1 [21.9] | 39.7 [22.2] | 0.045 | |
p ** | 0.491 | 0.240 | <0.001 | ||
Depressed (n = 41) | Psychobiotics | 26.0 [19.9] | 17.3 [10.3] | 17.3 [10.3] | <0.001 |
Placebo | 24.3 [11.7] | 24.6 [11.3] | 30.0 [12.5] | 0.031 | |
p ** | 0.568 | 0.018 | 0.001 |
Groups | Treatment | T0 | T1 | T2 | p * | % Change T0–T1 | % Change T1–T2 | % Change T0–T2 |
---|---|---|---|---|---|---|---|---|
Non-Depressed (n = 58) | Psychobiotics | 2.3 [1.1] | 1.9 [1.0] | 1.4 [0.9] | 0.001 | 3.0 [60.7] | −23.1 [38.8] | −17.4 [39.3] |
Placebo | 2.2 [1.3] | 2.2 [1.2] | 2.5 [1.3] | 0.006 | 0.4 [21.1] | 22.2 [40.0] | 24.7 [40.9] | |
p ** | 0.526 | 0.582 | 0.001 | 0.022 | <0.001 | <0.001 | ||
Depressed (n = 41) | Psychobiotics | 1.5 [0.9] | 1.1 [0.6] | 0.8 [0.4] | 0.002 | −14.9 [26.3] | −22.6 [39.0] | −36.3 [40.2] |
Placebo | 1.3 [0.5] | 1.6 [0.7] | 1.6 [0.6] | 0.010 | 17.6 [39.3] | 23.5 [47.2] | 38.2 [48.5] | |
p ** | 0.672 | 0.018 | 0.001 | 0.002 | <0.001 | 0.003 |
Groups | Treatment | T0 | T1 | T2 | p * |
---|---|---|---|---|---|
Non-depressed (n = 58) | Psychobiotics | 18.6 [13.2] | 15.1 [11.1] # | 12.1 [8.7] | <0.001 |
Placebo | 16.0 [10.3] | 16.5 [9.8] | 19.3 [11.0] | <0.001 | |
p ** | 0.558 | 0.719 | 0.022 | ||
Depressed (n = 41) | Psychobiotics | 9.7 [7.9] | 8.1 [6.1] | 7.1 [6.2] | 0.106 |
Placebo | 10.3 [5.8] | 10.9 [6.3] | 14.1 [7.8] | 0.002 | |
p ** | 0.420 | 0.133 | 0.008 |
Non-depressed | |||||||||||||||||||||
T = T0 | T = T1 | T = T2 | p-Value ** | ||||||||||||||||||
Subtotal Score | Range | min | max | mean | SD | median | IQR | min | max | mean | SD | median | IQR | min | max | mean | SD | median | IQR | ||
Items 1–11 | Psychobiotics | 0–33 | 0 | 32 | 13.22 | 10.10 | 12.00 | 16.00 | 0 | 28 | 10.37 | 7.95 | 12.00 | 15.00 | 0 | 18 | 8.13 | 6.35 | 8.00 | 13.75 | 0.004 |
Placebo | 0 | 27 | 11.90 | 7.07 | 12.00 | 8.00 | 0 | 30 | 12.58 | 6.77 | 11.00 | 8.00 | 0 | 29 | 14.59 | 7.58 | 14.00 | 8.00 | <0.001 | ||
p-Value * | 0.667 | 0.516 | 0.007 | ||||||||||||||||||
Items 12–15 | Psychobiotics | 0–12 | 0 | 11 | 5.44 | 3.77 | 5.00 | 7.00 | 0 | 11 | 4.70 | 3.54 | 5.00 | 7.00 | 0 | 10 | 3.96 | 3.03 | 3.00 | 4.00 | <0.001 |
Placebo | 0 | 11 | 4.10 | 3.71 | 4.00 | 7.00 | 0 | 12 | 3.87 | 3.75 | 4.00 | 7.00 | 0 | 11 | 4.74 | 4.08 | 4.00 | 9.00 | 0.123 | ||
p-Value * | 0.165 | 0.372 | 0.535 | ||||||||||||||||||
Depressed | |||||||||||||||||||||
T = T0 | T = T1 | T = T2 | p-Value ** | ||||||||||||||||||
Subtotal Score | Range | min | max | mean | SD | median | IQR | min | max | mean | SD | median | IQR | min | max | mean | SD | median | IQR | ||
Items 1–11 | Psychobiotics | 0–33 | 0 | 21 | 7.67 | 5.53 | 6.50 | 5.50 | 0 | 16 | 6.33 | 4.73 | 6.00 | 7.00 | 0 | 16 | 5.33 | 4.64 | 5.00 | 10.00 | 0.128 |
Placebo | 0 | 15 | 7.83 | 4.47 | 9.00 | 7.00 | 0 | 15 | 8.22 | 4.81 | 10.00 | 7.00 | 0 | 19 | 10.53 | 5.79 | 10.00 | 8.50 | 0.003 | ||
p-Value * | 0.750 | 0.245 | 0.011 | ||||||||||||||||||
Items 12–15 | Psychobiotics | 0–12 | 0 | 10 | 2.11 | 3.07 | 0.50 | 4.00 | 0 | 7 | 1.78 | 2.44 | 0.50 | 3.25 | 0 | 5 | 1.73 | 2.09 | 0.00 | 3.00 | 0.280 |
Placebo | 0 | 9 | 2.43 | 2.68 | 2.00 | 4.00 | 0 | 10 | 2.70 | 2.77 | 2.00 | 4.00 | 0 | 10 | 3.59 | 2.92 | 4.00 | 2.50 | 0.025 | ||
p-Value * | 0.394 | 0.171 | 0.074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzikos, G.; Menni, A.-E.; Theodorou, H.; Chamalidou, E.; Theodorou, I.M.; Stavrou, G.; Shrewsbury, A.D.; Amaniti, A.; Konsta, A.; Tsetis, J.K.; et al. Beyond Analgesia: Psychobiotics as an Adjunctive Approach to Pain Management in Gastrointestinal Oncology—A Post Hoc Analysis from the ProDeCa Study. Nutrients 2025, 17, 2751. https://doi.org/10.3390/nu17172751
Tzikos G, Menni A-E, Theodorou H, Chamalidou E, Theodorou IM, Stavrou G, Shrewsbury AD, Amaniti A, Konsta A, Tsetis JK, et al. Beyond Analgesia: Psychobiotics as an Adjunctive Approach to Pain Management in Gastrointestinal Oncology—A Post Hoc Analysis from the ProDeCa Study. Nutrients. 2025; 17(17):2751. https://doi.org/10.3390/nu17172751
Chicago/Turabian StyleTzikos, Georgios, Alexandra-Eleftheria Menni, Helen Theodorou, Eleni Chamalidou, Ioannis M. Theodorou, George Stavrou, Anne D. Shrewsbury, Aikaterini Amaniti, Anastasia Konsta, Joulia K. Tsetis, and et al. 2025. "Beyond Analgesia: Psychobiotics as an Adjunctive Approach to Pain Management in Gastrointestinal Oncology—A Post Hoc Analysis from the ProDeCa Study" Nutrients 17, no. 17: 2751. https://doi.org/10.3390/nu17172751
APA StyleTzikos, G., Menni, A.-E., Theodorou, H., Chamalidou, E., Theodorou, I. M., Stavrou, G., Shrewsbury, A. D., Amaniti, A., Konsta, A., Tsetis, J. K., Grosomanidis, V., & Kotzampassi, K. (2025). Beyond Analgesia: Psychobiotics as an Adjunctive Approach to Pain Management in Gastrointestinal Oncology—A Post Hoc Analysis from the ProDeCa Study. Nutrients, 17(17), 2751. https://doi.org/10.3390/nu17172751