Presleep vs. Daytime Consumption of Casein-Enriched Milk: Effects on Muscle Function and Metabolic Health After Sleeve Gastrectomy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Setting and Participants
2.3. Nutritional Intervention
2.4. Anthropometric Measurements and Body Composition
2.5. Handgrip Strength
2.6. Physical Function
2.7. Biochemical Tests
2.8. Dietary Intake and Nutritional Counseling
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SG | Sleeve gastrectomy |
CEM | Casein-enriched milk |
FFM | Fat-free mass |
BFM | Body fat mass |
SMM | Skeletal muscle mass |
TBW | Total body water |
BMI | Body mass index |
EWL | Excess weight loss |
EBMIL | Excess body mass index loss |
STS | Sit-to-stand test |
W | Week |
RH | Right hand |
LH | Left hand |
References
- Yang, M.; Liu, S.; Zhang, C. The related metabolic diseases and treatments of obesity. Healthcare 2022, 10, 1616. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 July 2025).
- Blüher, M. An overview of obesity-related complications: The epidemiological evidence linking body weight and other markers of obesity to adverse health outcomes. Diabetes Obes. Metab. 2025, 27, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Hurt, R.T.; Kulisek, C.; Buchanan, L.A.; McClave, S.A. The obesity epidemic: Challenges, health initiatives, and implications for gastroenterologists. Gastroenterol. Hepatol. 2010, 6, 780–792. [Google Scholar]
- Thereforeckalingam, S.; Leung, S.E.; Ma, C.; Tomlinthereforen, G.; Hawa, R.; Wnuk, S.; Cassin, S.E. Efficacy of telephone-based cognitive behavioral therapy for weight loss, dithereforerdered eating, and psychological distress after bariatric surgery: A randomized clinical trial. JAMA Netw. Open 2023, 6, e2327099. [Google Scholar] [CrossRef]
- Lupoli, R.; Lembo, E.; Saldalamacchia, G.; Avola, C.K.; Angrisani, L.; Capaldo, B. Bariatric surgery and long-term nutritional issues. World J. Diabetes 2017, 8, 464–474. [Google Scholar] [CrossRef]
- Huang, R.; Ding, X.; Fu, H.; Cai, Q. Potential mechanisms of sleeve gastrectomy for reducing weight and improving metabolism in patients with obesity. Surg. Obes. Relat. Dis. 2019, 15, 1861–1871. [Google Scholar] [CrossRef]
- Golzarand, M.; Toolabi, K.; Mirmiran, P. The effects of protein intake higher than the recommended value on body composition changes after bariatric surgery: A meta-analysis of randomized controlled trials. Clin. Nutr. 2024, 43, 708–718. [Google Scholar] [CrossRef]
- Oliveira, G.S.; Vieira, F.T.; Lamarca, F.; Lima, R.M.; Carvalho, K.M.; Dutra, E.S. Resistance training improves muscle strength and function, regardless of protein supplementation, in the mid- to long-term period after gastric bypass. Nutrients 2021, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Alba, D.L.; Wu, L.; Cawthon, P.M.; Mulligan, K.; Lang, T.; Patel, S.; Schafer, A.L. Changes in lean mass, abthereforelute and relative muscle strength, and physical performance after gastric bypass surgery. J. Clin. Endocrinol. Metab. 2019, 104, 711–720. [Google Scholar] [CrossRef]
- Steele, T.; Cuthbertthereforen, D.J.; Wilding, J.P.H. Impact of bariatric surgery on physical functioning in obese adults. Obes. Rev. 2015, 16, 248–258. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Thomas, D.M.; Bosy-Westphal, A.; Müller, M.J. The anatomy of resting energy expenditure: Body composition mechanisms. Eur. J. Clin. Nutr. 2019, 73, 166–171. [Google Scholar] [CrossRef]
- Haghighat, N.; Ashtary-Larky, D.; Bagheri, R.; Aghakhani, L.; Asbaghi, O.; Amini, M.; Hosseini, S.V. Preservation of fatfree mass in the first year after bariatric surgery: A systematic review and metaanalysis of 122 studies and 10,758 participants. Surg. Obes. Relat. Dis. 2022, 18, 964–982. [Google Scholar] [CrossRef]
- Mechanick, J.I.; Apovian, C.; Brethauer, S.; Garvey, W.T.; Joffe, A.M.; Kim, J.; Still, C.D. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures—2019 update: Cosponthereforered by American Asthereforeciation of Clinical Endocrinologists/American College of Endocrinology. Surg. Obes. Relat. Dis. 2020, 16, 175–247. [Google Scholar] [CrossRef]
- Lim, H.S.; Kim, Y.J.; Lee, J.; Yoon, S.J.; Lee, B. Establishment of adequate nutrient intake criteria to achieve tarobtain weight loss in patients undergoing bariatric surgery. Nutrients 2020, 12, 1774. [Google Scholar] [CrossRef]
- Kim, J. Pre-sleep casein protein ingestion: New paradigm in postexercise recovery nutrition. Phys. Act. Nutr. 2020, 24, 6–10. [Google Scholar] [CrossRef]
- Trommelen, J.; van Loon, L.J.C. Presleep protein ingestion to improve the skeletal muscle adaptive response to exercise training. Nutrients 2016, 8, 763. [Google Scholar] [CrossRef] [PubMed]
- Res, P.T.; Groen, B.; Pennings, B.; Beelen, M.; Wallis, G.A.; Gijsen, A.P.; Senden, J.M.; van Loon, L.J.C. Protein ingestion before sleep improves postexercise overnight recovery. Med. Sci. Sports Exerc. 2012, 44, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Trommelen, J.; van Lieshout, G.A.; Pabla, P.; Nyakayiru, J.; Hendriks, F.K.; Senden, J.M.; Goessens, J.P.B.; van Kranenburg, J.M.X.; Gijsen, A.P.; Verdijk, L.B.; et al. Pre-sleep protein ingestion increases mitochondrial protein synthesis rates during overnight recovery from endurance exercise: A randomized controlled trial. Sports Med. 2023, 53, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Keller, U. Nutritional laboratory markers in malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef]
- Ranasinghe, R.N.; Biswas, M.; Vincent, R.P. Prealbumin: The clinical utility and analytical methodologies. Ann. Clin. Biochem. 2022, 59, 7–14. [Google Scholar] [CrossRef]
- Carbajo, M.A.; Jiménez, J.M.; Luquede-León, E.; Cao, M.J.; López, M.; García, S.; Castro, M.J. Evaluation of weight loss indicators and laparoscopic oneanastomosis gastric bypass outcomes. Sci. Rep. 2018, 8, 1961. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Pichard, C. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Gatt, I.; SmithMoore, S.; Steggles, C.; Loosemore, M. The Takei handheld dynamometer: An effective clinical outcome measure tool for hand and wrist function in boxing. Hand 2018, 13, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Mendes, C.; Carvalho, M.; Bravo, J.; Martins, S.; Raimundo, A. The impact of bariatric surgery and exercise on systemic immune inflammation index in patients with sarcopenic obesity. Sci. Rep. 2025, 15, 5188. [Google Scholar] [CrossRef] [PubMed]
- Bettini, S.; Belligoli, A.; Fabris, R.; Butilizetto, L. Diet approach before and after bariatric surgery. Rev. Endocr. Metab. Dithereforerd. 2020, 21, 297–306. [Google Scholar] [CrossRef]
- Martínez, M.C.; Meli, E.F.; Candia, F.P.; Filippi, F.; Villalonga, R.; Cordero, E.; Ciudin, A. The impact of bariatric surgery on the muscle mass in patients with obesity: 2-year follow-up. Obes. Surg. 2022, 32, 625–633. [Google Scholar] [CrossRef]
- Schollenberger, A.E.; Karschin, J.; Meile, T.; Küper, M.A.; Königsrainer, A.; Bischoff, S.C. Impact of protein supplementation after bariatric surgery: A randomized controlled doubleblind pilot study. Nutrition 2016, 32, 186–192. [Google Scholar] [CrossRef]
- López-Gómez, J.J.; Ramos-Bachiller, B.; Primo-Martín, D.; Calleja-Fernández, A.; Izaola-Jauregui, O.; Jiménez-Sahagún, R.; De Luis-Román, D.A. Effect on body composition of a mealreplacement progression diet in patients 1 month after bariatric surgery. Nutrients 2023, 16, 106. [Google Scholar] [CrossRef]
- Reis, C.E.G.; Loureiro, L.M.R.; Roschel, H.; da Costa, T.H.M. Effects of pre-sleep protein consumption on muscle-related outcomes: A systematic review. J. Sci. Med. Sport 2021, 24, 177–182. [Google Scholar] [CrossRef]
- Jung, H.N.; Kim, S.O.; Jung, C.H.; Lee, W.J.; Kim, M.J.; Cho, Y.K. Preserved muscle strength despite muscle mass loss after bariatric metabolic surgery: A systematic review and metaanalysis. Obes. Surg. 2023, 33, 3422–3430. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Blue, M.N.; Trexler, E.T.; Ahuja, S.; Smith-Ryan, A.E. Provision of readytodrink protein following bariatric surgery: An evaluation of tolerability, body composition, and metabolic rate. Clin. Nutr. 2021, 40, 2319–2327. [Google Scholar] [CrossRef]
- Oppert, J.M.; Bellicha, A.; Roda, C.; Bouillot, J.L.; Torcivia, A.; Clement, K.; Ciangura, C. Resistance training and protein supplementation increase strength after bariatric surgery: A randomized controlled trial. Obesity 2018, 26, 1709–1720. [Google Scholar] [CrossRef] [PubMed]
- Toninello, P.; Montanari, A.; Bassetto, F.; Vindigni, V.; Paoli, A. Nutritional support for bariatric surgery patients: The skin beyond the fat. Nutrients 2021, 13, 1565. [Google Scholar] [CrossRef]
- Beck, F.K.; Rosenthal, T.C. Prealbumin: A marker for nutritional evaluation. Am. Fam. Physician 2002, 65, 1575–1579. [Google Scholar] [PubMed]
- Erstad, B.L.; Campbell, D.J.; Rollins, C.J.; Rappaport, W.D. Albumin and prealbumin concentrations in patients receiving postoperative parenteral nutrition. Pharmacotherapy 1994, 14, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, Y.; Xuan, L.; Xu, L.; Wang, P.; Ma, J.; Zhou, L. Impact of early high protein intake in critically ill patients: A randomized controlled trial. Nutr. Metab. 2024, 21, 39. [Google Scholar] [CrossRef]
Time | Group 1 | Group 2 | Group 3 | F/H | p | ||||
---|---|---|---|---|---|---|---|---|---|
Variables | Mean ± SD | Median (Min.–Max.) | Mean ± SD | Median (Min.–Max.) | Mean ± SD | Median (Min.–Max.) | |||
W4 | EWL | 16.4 ± 5.3 | 15.6 (9.2–27) | 19.7 ± 11.2 | 18.6 (−6.8–36.6) | 17.7 ± 10.3 | 16.3 (6.7–49.6) | 1.788 b | 0.409 |
EBMIL | 20.6 ± 7.4 | 21.9 (9.9–35.4) | 23.8 ± 13.1 | 23.3 (−7.3–47.1) | 20.9 ± 11.4 | 18.0 (8.7–56.9) | 2.590 b | 0.274 | |
FFM (kg) | 60.5 ± 14.5 | 54.7 (43.1–88) | 62.4 ± 12.7 | 57.7 (46–82.4) | 62.5 ± 12.2 | 63.5 (44.2–81.2) | 0.117 a | 0.890 | |
SMM (kg) | 57.7 ± 14.3 | 51.9 (40.9–83.7) | 59.3 ± 12.2 | 54.8 (43.7–78.4) | 59.4 ± 11.7 | 60.3 (42–77.2) | 0.085 a | 0.919 | |
BFM (kg) | 48.0 ± 12.8 | 42.6 (35–76.1) | 43.3 ± 12.9 | 39.1 (27.9–62.1) | 45.0 ± 7.3 | 45.4 (32.2–61.2) | 1.079 b | 0.583 | |
TBW (kg) | 44.4 ± 12.5 | 37.2 (31.5–68.1) | 45.5 ± 9.5 | 41.1 (33.5–61.2) | 44.9 ± 9.2 | 40.6 (34.3–59) | 0.543 b | 0.762 | |
W8 | EWL | 28.0 ± 8.1 | 27.3 (18.3–47.7) | 30.3 ± 14.1 | 32.2 (3.5–50.8) | 31.7 ± 12.3 | 29.6 (13.8–56.3) | 0.379 a | 0.687 |
EBMIL | 35.3 ± 12.2 | 34.3 (19.8–62.5) | 36.4 ± 17.0 | 39.1 (4.6–67.5) | 37.2 ± 12.5 | 37 (17.8–64.5) | 0.070 a | 0.933 | |
FFM (kg) | 58.6 ± 14.5 | 51.6 (40–82.5) | 61.2 ± 11.8 | 56.5 (45.2–78.9) | 59.4 ± 10.5 | 61.7 (44.2–76.2) | 0.167 a | 0.847 | |
SMM (kg) | 56.0 ± 13.7 | 51.0 (38–78.6) | 58.2 ± 11.3 | 53.6 (42.9–75) | 56.5 ± 9.9 | 58.6 (42–72.5) | 0.139 a | 0.871 | |
BFM (kg) | 42.8 ±12.6 | 39.0 (27–65.7) | 39.0 ± 12.4 | 35 (24–59.7) | 40.8 ± 8.1 | 41.4 (26–57.6) | 0.429 a | 0.654 | |
TBW (kg) | 42.6 ± 11.8 | 35.8 (30–62.8) | 44.0 ± 8.8 | 39.6 (32.4–58.4) | 42.3 ± 8.5 | 38.6 (30–56) | 0.662 a | 0.718 | |
W12 | EWL | 38.2 ± 8.4 | 38.1 (26–56.2) | 40.9 ± 15.0 | 41.7 (12.6–67.6) | 43.8 ± 15.2 | 46.2 (21.9–67.8) | 0.654 a | 0.525 |
EBMIL | 47.9 ± 12.4 | 48.8 (28–73.7) | 49.3 ± 18.6 | 49.7 (16.6–84.4) | 51.7 ±16.6 | 49.7 (28.3–80.8) | 0.219 a | 0.804 | |
FFM (kg) | 57.8 ± 13.7 | 51.6 (39.2–80.7) | 59.0 ± 11.2 | 54.9 (44–75.8) | 58.0 ± 10.2 | 58.5 (42.3–76.7) | 0.044 a | 0.957 | |
SMM (kg) | 54.9 ±13.1 | 49.0 (37–76.7) | 55.9 ± 10.8 | 52.1 (41–72.1) | 53.8 ± 9.5 | 53.6 (40.1–72.9) | 0.130 a | 0.879 | |
BFM (kg) | 38.1 ±10.0 | 34.3 (24.1–55.2) | 35.6 ± 11.9 | 32.0 (17.9–53.5) | 35.8 ± 8.6 | 36.0 (24–49.7) | 0.272 a | 0.763 | |
TBW (kg) | 40.9 ± 11.2 | 35.1 (30.1–60.6) | 39.7 ± 7.7 | 37.0 (31.9–55.8) | 40.9 ± 8.0 | 35.5 (32.5–55.2) | 0.606 b | 0 |
Variables | Time | Group 1 | Group 2 | Group 3 | F/H | p | |||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Min.–Max.) | Mean ± SD | Median (Min.–Max.) | Mean ± SD | Median (Min.–Max.) | ||||
RH | Preop | 29.2 ±8.2 | 27.7 (18.9–45.6) | 34.5 ± 12.4 | 32.3 (18.3–51.5) | 32.3 ± 12.8 | 28.3 (15.2–56.7) | 0.958 b | 0.619 |
W4 | 31.4 ± 9.1 | 28.3 (20–48.7) | 36.8 ± 12.8 | 36.7 (18–56.1) | 32.6 ± 12.5 | 29.0 (15.1–53.1) | 0.905 a | 0.412 | |
W8 | 31.8 ± 9.3 | 30.0 (21–53.1) | 36.9 ±12.4 | 35.4 (19–57) | 32.2 ± 12.6 | 29.0 (13.6–54) | 0.897 a | 0.416 | |
W12 | 33.7 ± 10.4 | 30.5 (22.9–55) | 36.7 ± 11.8 | 34.0 (20–58) | 33.5 ±11.3 | 29.9 (15.3–54) | 0.550 b | 0.759 | |
LH | Preop | 29.6 ± 9.1 | 27.1 (19.1–45.1) | 33.3 ± 12.2 | 29.7 (16.9–51.4) | 31.1 ± 12.0 | 27.1 (12–51.4) | 0.418 a | 0.661 |
W4 | 31.2 ± 9.0 | 28.7 (20.4–45.3) | 35.4 ± 13.1 | 31.4 (17–55.1) | 32.9 ± 12.3 | 28.0 (14.7–52.1) | 0.496 a | 0.613 | |
W8 | 32.0 ± 9.3 | 29.0 (20–50.3) | 36.0 ± 12.8 | 31.9 (18–56) | 32.5 ± 11.5 | 29.0 (16–53) | 0.555 a | 0.578 | |
W12 | 32.8 ± 10.4 | 29.2 (20.2–52) | 35.6 ± 12.2 | 31.5 (20–57) | 32.5 ± 11.3 | 28.0 (16.2–55) | 0.342 a | 0.713 | |
STS | Preop | 10.5 ± 1.9 | 11.0 (7–13) | 11.4 ± 1.8 | 12.0 (9–15) | 11.1 ± 3.3 | 10.0 (7–19) | 1.073 b | 0.585 |
W4 | 11.6 ± 1.9 | 12.0 (8–14) | 12.9 ± 2.6 | 13.0 (10–20) | 12.3 ± 3.6 | 11.0 (8–23) | 1.581 b | 0.454 | |
W8 | 12.3 ± 1.8 | 13.0 (9–15) | 13.7 ± 2.7 | 13.0 (10–21) | 12.9 ± 3.7 | 12.0 (8–24) | 1.992 b | 0.369 | |
W12 | 13.7 ± 2.2 | 14.0 (9–17) | 14.4 ± 2.9 | 14.0 (10–22) | 13.5 ± 4.1 | 12.0 (8–25) | 1.725 b | 0.422 |
Variables | Group 1 | Group 2 | Group 3 | F/H | p | ||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Min.–Max.) | Mean ± SD | Median (Min.–Max.) | Mean ± SD | Median (Min.–Max.) | ||||
Preop | Prealbumin | 0.3 ± 0 | 0.3 (0.2–0.3) | 0.2 ± 0.1 | 0.2 (0.1–0.3) | 0.3 ± 0.0 | 0.3 (0.2–0.3) | 4.651 a | 0.015 * |
Albumin | 4.4 ± 0.3 | 4.3 (4.0–4.7) | 4.8 ± 0.3 | 4.7 (4.5–5.4) | 4.5 ± 0.3 | 4.5 (4.1–5.0) | 10.416 b | 0.005 * | |
Total Protein | 7.4 ± 0.4 | 7.2 (6.5–8.1) | 7.6 ± 0.3 | 7.6 (7.0–8.5) | 7.4 ± 0.4 | 7.4 (6.7–8.0) | 2.485 b | 0.289 | |
W4 | Prealbumin | 0.2 ± 0 | 0.3 (0.1–0.3) | 0.2 ± 0.1 | 0.2 (0.1–0.5) | 0.2 ± 0.0 | 0.2 (0.1–0.3) | 12,434 b | 0.002 * |
Albumin | 4.4 ± 0.3 | 4.5 (3.9–4.9) | 4.6 ± 0.2 | 4.6 (4.0–5.0) | 4.5 ±0.4 | 4.5 (3.9–5.3) | 0.922 a | 0.406 | |
Total Protein | 7.1 ± 0.4 | 7.1 (6.3–7.9) | 7.2 ± 0.3 | 7.1 (6.8–7.8) | 7.1 ±0.5 | 7.4 (6.0–7.7) | 0.617 a | 0.544 | |
W8 | Prealbumin | 0.2 ± 0 | 0.3 (0.2–0.3) | 0.2 ± 0.0 | 0.2 (0.2–0.3) | 0.2 ±0.0 | 0.2 (0.2–0.3) | 13.713 b | 0.001 * |
Albumin | 4.5 ± 0.4 | 4.5 (3.7–4.9) | 4.6 ± 0.2 | 4.5 (4.2–5.0) | 4.4 ± 0.3 | 4.5 (4.0–5.0) | 3.659 b | 0.160 | |
Total Protein | 7.1 ± 0.4 | 7.0 (6.5–8.0) | 7.2 ± 0.3 | 7.0 (6.7–7.5) | 7.0 ±0.4 | 7.0 (6.5–7.5) | 1.360 b | 0.507 | |
W12 | Prealbumin | 0.3 ± 0.1 | 0.2 (0.2–0.5) | 0.2 ±0.0 | 0.2 (0.2–0.3) | 0.2 ±0.0 | 0.2 (0.1–0.2) | 16,699 b | p < 0.001 |
Albumin | 4.5 ± 0.3 | 4.4 (4.0–4.9) | 4.5 ±0.2 | 4.5 (4.0–4.7) | 4.4 ±0.2 | 4.4 (4.0–4.8) | 1.742 b | 0.419 | |
Total Protein | 7.2 ± 0.4 | 7.1 (6.5–8.3) | 10.9 ± 15.0 | 7.0 (6.5–65.0) | 7.0 ±0.3 | 7.0 (6.4–7.4) | 2.307 b | 0.316 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldız, N.; Coşkun, H.; Tanal, M.; Baş, M.; Sağlam, D. Presleep vs. Daytime Consumption of Casein-Enriched Milk: Effects on Muscle Function and Metabolic Health After Sleeve Gastrectomy. Nutrients 2025, 17, 2750. https://doi.org/10.3390/nu17172750
Yıldız N, Coşkun H, Tanal M, Baş M, Sağlam D. Presleep vs. Daytime Consumption of Casein-Enriched Milk: Effects on Muscle Function and Metabolic Health After Sleeve Gastrectomy. Nutrients. 2025; 17(17):2750. https://doi.org/10.3390/nu17172750
Chicago/Turabian StyleYıldız, Nida, Halil Coşkun, Mert Tanal, Murat Baş, and Duygu Sağlam. 2025. "Presleep vs. Daytime Consumption of Casein-Enriched Milk: Effects on Muscle Function and Metabolic Health After Sleeve Gastrectomy" Nutrients 17, no. 17: 2750. https://doi.org/10.3390/nu17172750
APA StyleYıldız, N., Coşkun, H., Tanal, M., Baş, M., & Sağlam, D. (2025). Presleep vs. Daytime Consumption of Casein-Enriched Milk: Effects on Muscle Function and Metabolic Health After Sleeve Gastrectomy. Nutrients, 17(17), 2750. https://doi.org/10.3390/nu17172750