Probiotic and Vitamin D Ameliorate TNBS-Induced Colitis by Targeting Mucosal Barrier and Neutrophil Infiltration
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Treatment Delivery and Colitis Induction
2.3. Sample Collection
2.4. Colonic Inflammatory Assessment
2.5. Serum Vitamin D Levels
2.6. Quantitative PCR for Fecal Probiotic Colonization
2.7. Colonic mRNA Extraction and Cytokine Measurement
2.8. Immunofluorescence for Macrophage Phenotype and Mucosal Barrier
2.9. Immunohistochemistry for Vitamin D Receptor (VDR) and Myeloperoxidase (MPO)
2.10. Periodic Acid-Schiff (PAS) Staining for Colonic Mucin
2.11. Fecal Metagenomic and Microbiome Analysis
2.12. Statistical Analysis
3. Results
3.1. Body Weight, Food/Water Intake, and Delivery Confirmation of Probiotic and Vitamin D
3.2. Probiotic and Vitamin D Ameliorate TNBS-Induced Colonic Damage
3.3. Probiotics and Vitamin D Regulate Colon and Kidney mRNA Transcription
3.4. Administration of Probiotics and Vitamin D Enhances Mucosal Barrier Integrity
3.5. Administration of Probiotic and Vitamin D Reduces Neutrophil Infiltration
3.6. Probiotic and Vitamin D Treatment Did Not Alter Macrophage Infiltration or M1 Polarization in the Colon
3.7. Probiotic and Vitamin D Effects on Gut Microbiome Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IBD | Inflammatory bowel disease |
VDR | Vitamin D receptor |
CFU | Colony-Forming Unit |
TNBS | Trinitrobenzene sulfonic acid |
EtOH | Ethanol |
DNA | Deoxyribonucleic acid |
RTPCR | Real-time polymerase chain reaction |
RNA | Ribonucleic acid |
cDNA | Complementary deoxyribonucleic acid |
mRNA | Messenger ribonucleic acid |
IL | Interleukin |
iNOS | Inducible nitric oxide synthase |
ZO-1 | Zonula occludens 1 |
EDTA | Ethylenediaminetetraacetic acid |
DAPI | 4′,6-diamidino-2-phenylindole |
PBS | Phosphate-buffered saline |
HPF | High-power field |
MPO | Myeloperoxidase |
DAB | 3,3′-diaminobenzidine |
PAS | Periodic Acidic Schiff |
ELISA | Enzyme-Linked Immunosorbent Assay |
SE | Standard Error of Mean |
MUC2 | Mucin 2 |
H&E | Hematoxylin and Eosin |
References
- Guan, Q. A comprehensive review and update on the pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef]
- Hammer, T.; Langholz, E. The epidemiology of inflammatory bowel disease: Balance between East and West? A narrative review. Dig. Med. Res. 2020, 3, 48. [Google Scholar] [CrossRef]
- Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of gut microbiota in Inflammatory Bowel Disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Rustgi, S.D.; Kayal, M.; Shah, S.C. Sex-based differences in Inflammatory Bowel Diseases: A review. Ther. Adv. Gastroenterol. 2020, 13, 1756284820915043. [Google Scholar] [CrossRef]
- Kofla-Dłubacz, A.; Pytrus, T.; Akutko, K.; Sputa-Grzegrzółka, P.; Piotrowska, A.; Dzięgiel, P. Etiology of IBD—Is It Still a Mystery? Int. J. Mol. Sci. 2022, 23, 12445. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Delgado, Y.; Isidro, R.A.; Torres, E.A.; González, A.; Cruz, M.L.; Isidro, A.A.; González-Keelan, C.I.; Medero, P.; Appleyard, C.B. Serum vitamin D and colonic vitamin D receptor in inflammatory bowel disease. World J. Gastroenterol. 2016, 22, 3581–3591. [Google Scholar] [CrossRef]
- López-Muñoz, P.; Beltrán, B.; Sáez-González, E.; Alba, A.; Nos, P.; Iborra, M. Influence of vitamin D deficiency on inflammatory markers and clinical disease activity in IBD patients. Nutrients 2019, 11, 1059. [Google Scholar] [CrossRef]
- Valvano, M.; Magistroni, M.; Mancusi, A.; D’ascenzo, D.; Longo, S.; Stefanelli, G.; Vernia, F.; Viscido, A.; Necozione, S.; Latella, G. The usefulness of serum vitamin D levels in the assessment of IBD activity and response to biologics. Nutrients 2021, 13, 323. [Google Scholar] [CrossRef]
- Nakai, D.; Miyake, M. Intestinal membrane function in Inflammatory Bowel Disease. Pharmaceutics 2023, 16, 29. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Ma, X.; Yang, T.; Wang, F. The Lactobacillus plantarum P-8 probiotic microcapsule prevents DSS-induced colitis through improving intestinal integrity and reducing colonic inflammation in mice. Nutrients 2024, 16, 1055. [Google Scholar] [CrossRef]
- Górecka, A.; Jura-Półtorak, A.; Koźma, E.M.; Szeremeta, A.; Olczyk, K.; Komosińska-Vassev, K. Biochemical modulators of tight junctions (TJs): Occludin, Claudin-2 and Zonulin as biomarkers of intestinal barrier leakage in the diagnosis and assessment of Inflammatory Bowel Disease progression. Molecules 2024, 29, 4577. [Google Scholar] [CrossRef]
- Schroder, A.L.; Chami, B.; Liu, Y.; Doyle, C.M.; El Kazzi, M.; Ahlenstiel, G.; Ahmad, G.; Pathma-Nathan, N.; Collins, G.; Toh, J.; et al. Neutrophil Extracellular Trap Density Increases With Increasing Histopathological Severity of Crohn’s Disease. Inflamm. Bowel. Dis. 2022, 28, 586–598. [Google Scholar] [CrossRef]
- Seyedizade, S.S.; Afshari, K.; Bayat, S.; Rahmani, F.; Momtaz, S.; Rezaei, N.; Abdolghaffari, A.H. Current status of M1 and M2 macrophages pathway as drug targets for Inflammatory Bowel Disease. Arch. Immunol. Ther. Exp. 2020, 68, 10. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, Y.; Li, C.; Yu, J.; Ren, D.; Qiu, S.; Nie, Y.; Yu, X.; Xu, X.; Zhu, W. 1,25-Dihydroxyvitamin D regulates macrophage polarization and ameliorates experimental inflammatory bowel disease by suppressing miR-125b. Int. Immunopharmacol. 2019, 67, 106–118. [Google Scholar] [CrossRef]
- Isidro, R.A.; Bonilla, F.J.; Pagan, H.; Cruz, M.L.; Lopez, P.; Godoy, L.; Hernandez, S.; Loucil-Alicea, R.Y.; Rivera-Amill, V.; Yamamura, Y.; et al. The probiotic mixture VSL#3 alters the morphology and secretion profile of both polarized and unpolarized human macrophages in a polarization-dependent manner. J. Clin. Cell. Immunol. 2014, 5, 1000227. [Google Scholar] [CrossRef]
- O’mahony, C.; Amamou, A.; Ghosh, S. Diet–microbiota interplay: An emerging player in macrophage plasticity and intestinal health. Int. J. Mol. Sci. 2022, 23, 3901. [Google Scholar] [CrossRef] [PubMed]
- Abboud, M.; Rizk, R.; AlAnouti, F.; Papandreou, D.; Haidar, S.; Mahboub, N. The health effects of vitamin D and probiotic co-supplementation: A systematic review of randomized controlled trials. Nutrients 2020, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Appleyard, C.B.; Cruz, M.L.; Isidro, A.A.; Arthur, J.C.; Jobin, C.; De Simone, C. Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G1004–G1013. [Google Scholar] [CrossRef]
- Jones, M.L.; Martoni, C.J.; Prakash, S. Oral Supplementation with Probiotic, L. reuteri NCIMB 30242 Increases Mean Circulating 25-Hydroxyvitamin D: A Post Hoc Analysis of a Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2013, 98, 2944–2951. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yoon, S.; Zhang, Y.-G.; Lu, R.; Xia, Y.; Wan, J.; Petrof, E.O.; Claud, E.C.; Chen, D.; Sun, J. Vitamin D receptor pathway is required for probiotic protection in colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G341–G349. [Google Scholar] [CrossRef] [PubMed]
- Isidro, R.A.; Lopez, A.; Cruz, M.L.; Torres, M.I.G.; Chompre, G.; Isidro, A.A.; Appleyard, C.B. The probiotic VSL#3 modulates colonic macrophages, inflammation, and microflora in Acute Trinitrobenzene Sulfonic Acid Colitis. J. Histochem. Cytochem. 2017, 65, 445–461. [Google Scholar] [CrossRef]
- Bassaganya-Riera, J.; Viladomiu, M.; Pedragosa, M.; De Simone, C.; Carbo, A.; Shaykhutdinov, R.; Jobin, C.; Arthur, J.C.; Corl, B.A.; Vogel, H.; et al. Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR γ to suppress colitis. PLoS ONE 2012, 7, e31238. [Google Scholar] [CrossRef]
- Bibiloni, R.; Fedorak, R.N.; Tannock, G.W.; Madsen, K.L.; Gionchetti, P.; Campieri, M.; De Simone, C.; Sartor, R.B. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am. J. Gastroenterol. 2005, 100, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Meeker, S.; Seamons, A.; Paik, J.; Treuting, P.M.; Brabb, T.; Grady, W.M.; Maggio-Prince, L. Increased dietary vitamin D suppresses MAPK signaling, colitis, and colon cancer. Cancer Res. 2014, 74, 4398–4408. [Google Scholar] [CrossRef]
- McCafferty, D.-M.; Miampamba, M.; Sihota, E.; Sharkey, K.A.; Kubes, P. Role of inducible nitric oxide synthase in trinitrobenzene sulphonic acid induced colitis in mice. Gut 1999, 45, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Appleyard, C.B.; Wallace, J.L. Reactivation of hapten-induced colitis and its prevention by anti-inflammatory drugs. Am. J. Physiol. Gastrointest. Liver Physiol. 1995, 269, G119–G125. [Google Scholar] [CrossRef]
- Furet, J.-P.; Quénée, P.; Tailliez, P. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int. J. Food Microbiol. 2004, 97, 197–207. [Google Scholar] [CrossRef]
- Arthur, J.C.; Gharaibeh, R.Z.; Mühlbauer, M.; Perez-Chanona, E.; Uronis, J.M.; McCafferty, J.; Fodor, A.A.; Jobin, C. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 2014, 5, 4724. [Google Scholar] [CrossRef]
- Boonma, P.; Shapiro, J.M.; Hollister, E.B.; Badu, S.; Wu, Q.; Weidler, E.M.; Abraham, B.P.; Devaraj, S.; Luna, R.A.; Versalovic, J.; et al. Probiotic VSL#3 Treatment Reduces Colonic Permeability and Abdominal Pain Symptoms in Patients With Irritable Bowel Syndrome. Front. Pain Res. 2021, 2, 691689. [Google Scholar] [CrossRef] [PubMed]
- Appleyard, C.B.; Cruz, M.L.; Velazquez-Cruz, J.; Rivera-Mendez, R.M.; Jimenez-Garcia, J.G.; Rivera, L.A.; Mendez-Casillas, M.d.M.; Flores, I.; Al-Nakkash, L.; Chompre, G. Voluntary wheel running reduces vesicle development in an endometriosis animal model through modulation of immune parameters. Front. Reprod. Health 2021, 3, 826541. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. IMeta 2023, 2, e107. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Navas-Molina, J.A.; Peralta-Sánchez, J.M.; González, A.; McMurdie, P.J.; Vázquez-Baeza, Y.; Xu, Z.; Ursell, L.K.; Lauber, C.; Zhou, H.; Song, S.J.; et al. Advancing our understanding of the human microbiome using QIIME. Methods Enzymol. 2013, 531, 371–444. [Google Scholar] [CrossRef]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef]
- Costanzo, M.; Cesi, V.; Palone, F.; Pierdomenico, M.; Colantoni, E.; Leter, B.; Vitali, R.; Negroni, A.; Cucchiara, S.; Stronati, L. Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation. Benef. Microbes 2018, 9, 389–399. [Google Scholar] [CrossRef]
- Chen, D.; Tang, H.; Li, Y.; Yang, H.; Wang, H.; Tan, B.; Qian, J. Vitamin D3 and Lactobacillus rhamnosus GG/p40 synergize to protect mice from colitis by promoting vitamin D receptor expression and epithelial proliferation. Inflamm. Bowel Dis. 2023, 29, 620–632. [Google Scholar] [CrossRef]
- Bora, S.A.; Kennett, M.J.; Smith, P.B.; Patterson, A.D.; Cantorna, M.T. The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23. Front. Immunol. 2018, 9, 408. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tian, G.; Pei, Z.; Yu, X.; Wang, Y.; Xu, F.; Zhao, J.; Lu, S.; Lu, W.; Lee, S.T.M. Bifidobacterium longum increases serum vitamin D metabolite levels and modulates intestinal flora to alleviate osteoporosis in mice. MSphere 2025, 10, e01039-24. [Google Scholar] [CrossRef] [PubMed]
- Lopez, D.V.; Al-Jaberi, F.A.H.; Woetmann, A.; Ødum, N.; Bonefeld, C.M.; Kongsbak-Wismann, M.; Geisler, C. Macrophages control the bioavailability of vitamin D and vitamin D-regulated T cell responses. Front. Immunol. 2021, 12, 722806. [Google Scholar] [CrossRef]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-Like Receptor Triggering of a Vitamin D–Mediated Human Antimicrobial Response. Science 2006, 311, 1768–1770. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, H.; Liang, H.; Zhao, X.; Tang, W.; Wei, M.; Li, Y.; Zhang, J.; Yu, X.; Chen, G.; et al. Lactobacillus plantarum RS-09 induces M1-type macrophage immunity against Salmonella typhimurium challenge via the TLR2/NF-κB signalling pathway. Front. Pharmacol. 2022, 13, 832245. [Google Scholar] [CrossRef] [PubMed]
- Al-Najjar, M.A.A.; Abdulrazzaq, S.B.; Alzaghari, L.F.; Mahmod, A.I.; Omar, A.; Hasen, E.; Athamneh, T.; Talib, W.H.; Chellappan, D.K.; Barakat, M. Evaluation of immunomodulatory potential of probiotic conditioned medium on murine macrophages. Sci. Rep. 2024, 14, 7126. [Google Scholar] [CrossRef]
- Lagishetty, V.; Misharin, A.V.; Liu, N.Q.; Lisse, T.S.; Chun, R.F.; Ouyang, Y.; McLachlan, S.M.; Adams, J.S.; Hewison, M. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology 2010, 151, 2423–2432. [Google Scholar] [CrossRef]
- Ghaly, S.; Kaakoush, N.O.; Lloyd, F.; McGonigle, T.; Mok, D.; Baird, A.; Klopcic, B.; Gordon, L.; Gorman, S.; Forest, C.; et al. High Dose Vitamin D supplementation alters faecal microbiome and predisposes mice to more severe colitis. Sci. Rep. 2018, 8, 11511. [Google Scholar] [CrossRef]
- Wibowo, S.; Pramadhani, A.; Subandiyah, K.; Handono, K.; Poeranto, S. Vitamin D3 induces stem cell activation via Lgr5-Bmi1 expression and improving mouse colitis histology index. Narra J. 2023, 3, e430. [Google Scholar] [CrossRef] [PubMed]
- Drury, B.; Hardisty, G.; Gray, R.D.; Ho, G.-T. Neutrophil extracellular traps in Inflammatory Bowel Disease: Pathogenic mechanisms and clinical translation. Cell Mol. Gastroenterol. Hepatol. 2021, 12, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Zai, K.; Hirota, M.; Yamada, T.; Ishihara, N.; Mori, T.; Kishimura, A.; Suzuki, K.; Hase, K.; Katayama, Y. Therapeutic effect of vitamin D3-containing nanostructured lipid carriers on inflammatory bowel disease. J. Control. Release 2018, 286, 94–102. [Google Scholar] [CrossRef]
- Liu, T.; Shi, Y.; Du, J.; Ge, X.; Teng, X.; Liu, L.; Wang, E.; Zhao, Q. Vitamin D treatment attenuates 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis but not oxazolone-induced colitis. Sci. Rep. 2016, 6, 32889. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.-G. Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022, 11, 1129. [Google Scholar] [CrossRef] [PubMed]
- Sittipo, P.; Kim, H.K.; Han, J.; Lee, M.R.; Lee, Y.K. Vitamin D3 suppresses intestinal epithelial stemness via ER stress induction in intestinal organoids. Stem Cell Res. Ther. 2021, 12, 285. [Google Scholar] [CrossRef]
- Lobionda, S.; Sittipo, P.; Kwon, H.Y.; Lee, Y.K. The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors. Microorganisms 2019, 7, 271. [Google Scholar] [CrossRef]
- Alam, M.T.; Amos, G.C.A.; Murphy, A.R.J.; Murch, S.; Wellington, E.M.H.; Arasaradnam, R.P. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathog. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Singh, V.; Lee, G.; Son, H.; Koh, H.; Kim, E.S.; Unno, T.; Shin, J.-H. Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 2023, 13, 1103836. [Google Scholar] [CrossRef] [PubMed]
- Recharla, N.; Geesala, R.; Shi, X.-Z. Gut Microbial Metabolite Butyrate and Its Therapeutic Role in Inflammatory Bowel Disease: A Literature Review. Nutrients 2023, 15, 2275. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Carrasquillo, J.; Ramos-Plaza, V.Y.; Cruz, M.L.; Rodriguez-Morales, B.M.; Sánchez, R.; López, P.; Chompré, G.; Appleyard, C.B. Probiotic and Vitamin D Ameliorate TNBS-Induced Colitis by Targeting Mucosal Barrier and Neutrophil Infiltration. Nutrients 2025, 17, 2719. https://doi.org/10.3390/nu17172719
López-Carrasquillo J, Ramos-Plaza VY, Cruz ML, Rodriguez-Morales BM, Sánchez R, López P, Chompré G, Appleyard CB. Probiotic and Vitamin D Ameliorate TNBS-Induced Colitis by Targeting Mucosal Barrier and Neutrophil Infiltration. Nutrients. 2025; 17(17):2719. https://doi.org/10.3390/nu17172719
Chicago/Turabian StyleLópez-Carrasquillo, Jonathan, Vivianka Y. Ramos-Plaza, Myrella L. Cruz, Bryan M. Rodriguez-Morales, Raphael Sánchez, Pablo López, Gladys Chompré, and Caroline B. Appleyard. 2025. "Probiotic and Vitamin D Ameliorate TNBS-Induced Colitis by Targeting Mucosal Barrier and Neutrophil Infiltration" Nutrients 17, no. 17: 2719. https://doi.org/10.3390/nu17172719
APA StyleLópez-Carrasquillo, J., Ramos-Plaza, V. Y., Cruz, M. L., Rodriguez-Morales, B. M., Sánchez, R., López, P., Chompré, G., & Appleyard, C. B. (2025). Probiotic and Vitamin D Ameliorate TNBS-Induced Colitis by Targeting Mucosal Barrier and Neutrophil Infiltration. Nutrients, 17(17), 2719. https://doi.org/10.3390/nu17172719