The Effects of Protein Nutrition on Muscle Function in Critical Illness: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Data Collection and Presentation
2.4. Methodology of Risk of Bias Assessment
2.5. Effect Measures and Synthesis Methods
2.6. Reporting Bias Assessment and Certainty Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Results of Risk of Bias Assessment
3.4. Study Results
3.4.1. Skeletal Muscle Strength
3.4.2. Energy and Protein Provision
3.4.3. Skeletal Muscle Measurements
3.4.4. Functional Outcomes
3.4.5. Sensitivity Analysis
3.5. Certainty of Evidence
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Wunsch, H.; Angus, D.C.; Harrison, D.A.; Collange, O.; Fowler, R.; Hoste, E.A.J.; De Keizer, N.F.; Kersten, A.; Linde-Zwirble, W.T.; Sandiumenge, A.; et al. Variation in critical care services across North America and Western Europe. Crit. Care Med. 2008, 36, 2787–2793. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Phadke, R.; Padhke, R.; Dew, T.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef]
- Bear, D.E.; Wandrag, L.; Merriweather, J.L.; Connolly, B.; Hart, N.; Grocott, M.P.W. The role of nutritional support in the physical and functional recovery of critically ill patients: A narrative review. Crit. Care 2017, 21, 226. [Google Scholar] [CrossRef]
- Tipton, K.D.; Wolfe, R.R. Exercise, Protein Metabolism, and Muscle Growth. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 109–132. [Google Scholar] [CrossRef]
- Marzuca-Nassr, G.N.; Vitzel, K.F.; Murata, G.M.; Márquez, J.L.; Curi, R. Experimental Model of HindLimb Suspension-Induced Skeletal Muscle Atrophy in Rodents. In Pre-Clinical Models; Guest, P.C., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 1916, pp. 167–176. Available online: http://link.springer.com/10.1007/978-1-4939-8994-2_16 (accessed on 14 August 2023).
- Flower, L.; Puthucheary, Z. Muscle wasting in the critically ill patient: How to minimise subsequent disability. Br. J. Hosp. Med. 2020, 81, 1–9. [Google Scholar] [CrossRef]
- Kizilarslanoglu, M.C.; Kuyumcu, M.E.; Yesil, Y.; Halil, M. Sarcopenia in critically ill patients. J. Anesth. 2016, 30, 884–890. [Google Scholar] [CrossRef]
- Hoffer, L.J. Protein requirement in critical illness. Appl. Physiol. Nutr. Metab. 2016, 41, 573–576. [Google Scholar] [CrossRef]
- Hermans, G.; Van Den Berghe, G. Clinical review: Intensive care unit acquired weakness. Crit. Care 2015, 19, 274. [Google Scholar] [CrossRef]
- Dresen, E.; Weisbrich, C.; Fimmers, R.; Putensen, C.; Stehle, P. Medical high-protein nutrition therapy and loss of muscle mass in adult ICU patients: A randomized controlled trial. Clin. Nutr. 2021, 40, 1562–1570. [Google Scholar] [CrossRef]
- Yeh, D.D.; Ortiz-Reyes, L.A.; Quraishi, S.A.; Chokengarmwong, N.; Avery, L.; Kaafarani, H.M.A.; Lee, J.; Fagenholz, P.; Chang, Y.; DeMoya, M.; et al. Early nutritional inadequacy is associated with psoas muscle deterioration and worse clinical outcomes in critically ill surgical patients. J. Crit. Care 2018, 45, 7–13. [Google Scholar] [CrossRef]
- Fischer, C.P.; Bode, B.P.; Abcouwer, S.F.; Lukaszewicz, G.C.; Souba, W.W. Hepatic uptake of glutamine and other amino acids during infection and inflammation. Shock 1995, 3, 315–322. [Google Scholar]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.-C.; et al. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef]
- Elke, G.; Wang, M.; Weiler, N.; Day, A.G.; Heyland, D.K. Close to recommended caloric and protein intake by enteral nutrition is associated with better clinical outcome of critically ill septic patients: Secondary analysis of a large international nutrition database. Crit. Care 2014, 18, R29. [Google Scholar] [CrossRef]
- Fetterplace, K.; Deane, A.M.; Tierney, A.; Beach, L.J.; Knight, L.D.; Presneill, J.; Rechnitzer, T.; Forsyth, A.; Gill, B.M.; Mourtzakis, M. Targeted full energy and protein delivery in critically ill patients: A pilot randomized controlled trial (FEED trial). J. Parenter. Enter. Nutr. 2018, 42, 1252–1262. [Google Scholar] [CrossRef]
- O’Keefe, G.E.; Shelton, M.; Qiu, Q.; Araujo-Lino, J.C. Increasing Enteral Protein Intake in Critically Ill Trauma and Surgical Patients. Nutr. Clin. Pract. 2019, 34, 751–759. [Google Scholar] [CrossRef]
- Preiser, J.C. High protein intake during the early phase of critical illness: Yes or no? Crit. Care 2018, 22, 261. [Google Scholar] [CrossRef]
- Heyland, D.K.; Patel, J.; Compher, C.; Rice, T.W.; Bear, D.E.; Lee, Z.Y.; González, V.C.; O’Reilly, K.; Regala, R.; Wedemire, C.; et al. The effect of higher protein dosing in critically ill patients with high nutritional risk (EFFORT Protein): An international, multicentre, pragmatic, registry-based randomised trial. Lancet 2023, 401, 568–576. [Google Scholar] [CrossRef]
- Preiser, J.C.; Ichai, C.; Orban, J.C.; Groeneveld, A.B.J. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014, 113, 945–954. [Google Scholar] [CrossRef]
- Heyland, D.K.; Day, A.; Clarke, G.J.; Hough, C.; Files, D.C.; Mourtzakis, M.; Deutz, N.; Needham, D.M.; Stapleton, R. Nutrition and Exercise in Critical Illness Trial (NEXIS Trial): A protocol of a multicentred, randomised controlled trial of combined cycle ergometry and amino acid supplementation commenced early during critical illness. BMJ Open 2019, 9, e027893. [Google Scholar] [CrossRef]
- Mayer, K.P.; Thompson Bastin, M.L.; Montgomery-Yates, A.A.; Pastva, A.M.; Dupont-Versteegden, E.E.; Parry, S.M.; Morris, P.E. Acute skeletal muscle wasting and dysfunction predict physical disability at hospital discharge in patients with critical illness. Crit. Care 2020, 24, 637. [Google Scholar] [CrossRef]
- Zhou, W.; Ruksakulpiwat, S.; Fan, Y.; Ji, L. Nutritional Interventions on Physical Functioning for Critically Ill Patients: An Integrative Review. J. Multidiscip. Healthc. 2021, 14, 1489–1507. [Google Scholar] [CrossRef]
- Nakamura, K.; Nakano, H.; Naraba, H.; Mochizuki, M.; Takahashi, Y.; Sonoo, T.; Hashimoto, H.; Morimura, N. High protein versus medium protein delivery under equal total energy delivery in critical care: A randomized controlled trial. Clin. Nutr. 2021, 40, 796–803. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Nightingale, C.J.; Mitchell, S.N.; Butterfield, S.A. Validation of the Timed Up and Go Test for Assessing Balance Variables in Adults Aged 65 and Older. J. Aging Phys. Act. 2019, 27, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Waak, K.; Grosse-Sundrup, M.; Xue, F.; Lee, J.; Chipman, D.; Ryan, C.; Bittner, E.A.; Schmidt, U.; Eikermann, M. Global Muscle Strength But Not Grip Strength Predicts Mortality and Length of Stay in a General Population in a Surgical Intensive Care Unit. Phys. Ther. 2012, 92, 1546–1555. [Google Scholar] [CrossRef]
- Ali, N.A.; O’Brien, J.M.; Hoffmann, S.P.; Phillips, G.; Garland, A.; Finley, J.C.W.; Almoosa, K.; Hejal, R.; Wolf, K.M.; Lemeshow, S.; et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am. J. Respir. Crit. Care Med. 2008, 178, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Magasi, S.R.; Bubela, D.J.; Wang, Y.C.; Gershon, R.C. Grip and Knee extension muscle strength reflect a common construct among adults: Grip and Knee Strength. Muscle Nerve 2012, 46, 555–558. [Google Scholar] [CrossRef]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 29, n71. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, J.R.A.d.; Lima, H.C.M.; Montenegro, W.S.; Souza, S.C.d.C.; Nogueira, I.R.O.M.; Silva, M.M.; Muniz, N.D.A. Optimized calorie and high protein intake versus recommended caloric-protein intake in critically ill patients: A prospective, randomized, controlled phase II clinical trial. Rev. Bras. Ter. Intensiv. 2019, 31, 171–179. [Google Scholar] [CrossRef]
- Bels, J.L.M.; Thiessen, S.; van Gassel, R.J.J.; Beishuizen, A.; De Bie Dekker, A.; Fraipont, V.; Lamote, S.; Ledoux, D.; Scheeren, C.; De Waele, E.; et al. Effect of high versus standard protein provision on functional recovery in people with critical illness (PRECISe): An investigator-initiated, double-blinded, multicentre, parallel-group, randomised controlled trial in Belgium and the Netherlands. Lancet 2024, 404, 659–669. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, J.; Zhu, D.; Zhou, S. Evaluation of the effect of high protein supply on diaphragm atrophy in critically ill patients receiving prolonged mechanical ventilation. Nutr. Clin. Pract. 2021, 37, 402–412. [Google Scholar] [CrossRef]
- Ferrie, S.; Allman-Farinelli, M.; Daley, M.; Smith, K. Protein Requirements in the Critically Ill: A Randomized Controlled Trial Using Parenteral Nutrition. J. Parenter. Enter. Nutr. 2016, 40, 795–805. [Google Scholar] [CrossRef]
- Youssef, I.; Hasan, K.; Mohmed, A. Effects of Parenteral Protein Concentrations in Critically Ill Patients in ICU: A Comparative Study. Bali J. Anaesthesiol 2022, 6, 85. [Google Scholar] [CrossRef]
- GRADEpro Guideline Development Tool; McMaster University and Evidence Prime: Hamilton, ON, Canada, 2022.
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Ridley, E.J.; Davies, A.R.; Parke, R.; Bailey, M.; McArthur, C.; Gillanders, L.; Cooper, D.J.; McGuinness, S. Supplemental parenteral nutrition versus usual care in critically ill adults: A pilot randomized controlled study. Crit. Care 2018, 22, 12. [Google Scholar] [CrossRef]
- Singer, P.; Berger, M.M.; Van den Berghe, G.; Biolo, G.; Calder, P.; Forbes, A.; Griffiths, R.; Kreyman, G.; Leverve, X.; Pichard, C. ESPEN Guidelines on Parenteral Nutrition: Intensive care. Clin. Nutr. 2009, 28, 387–400. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Martindale, R.G.; Vanek, V.M.; McCarthy, M.; Roberts, P.; Taylor, B.; Ochoa, J.B.; Napolitano, L.; Cresci, G.; the A.S.P.E.N. Board of Directors; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enter. Nutr. 2009, 33, 277–316. [Google Scholar] [CrossRef]
- Badjatia, N.; Ryan, A.; Choi, H.A.; Parikh, G.Y.; Jiang, X.; Day, A.G.; Heyland, D.K. Relationship Between Nutrition Intake and Outcome After Subarachnoid Hemorrhage: Results From the International Nutritional Survey. J. Intensive Care Med. 2021, 36, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, J.A.; Parce, P.B.; Martinez, A.; Diette, G.B.; Brower, R.G. Caloric Intake in Medical ICU Patients. Chest 2003, 124, 297–305. [Google Scholar] [CrossRef]
- Herridge, M.S.; Moss, M.; Hough, C.L.; Hopkins, R.O.; Rice, T.W.; Bienvenu, O.J.; Azoulay, E. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016, 42, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Fan, E.; Dowdy, D.W.; Colantuoni, E.; Mendez-Tellez, P.A.; Sevransky, J.E.; Shanholtz, C.; Dennison Himmelfarb, C.R.; Desai, S.V.; Ciesla, N.; Herridge, M.S.; et al. Physical Complications in Acute Lung Injury Survivors: A Two-Year Longitudinal Prospective Study. Crit. Care Med. 2014, 42, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.Y.; Yap, C.S.L.; Hasan, M.S.; Engkasan, J.P.; Barakatun-Nisak, M.Y.; Day, A.G.; Patel, J.J.; Heyland, D.K. The effect of higher versus lower protein delivery in critically ill patients: A systematic review and meta-analysis of randomized controlled trials. Crit. Care 2021, 25, 260. [Google Scholar] [CrossRef]
- Fetterplace, K.; Gill, B.M.T.; Chapple, L.S.; Presneill, J.J.; MacIsaac, C.; Deane, A.M. Systematic Review With Meta-Analysis of Patient-Centered Outcomes, Comparing International Guideline–Recommended Enteral Protein Delivery With Usual Care. J. Parenter. Enter. Nutr. 2020, 44, 610–620. [Google Scholar] [CrossRef]
- Lambell, K.J.; King, S.J.; Forsyth, A.K.; Tierney, A.C. Association of Energy and Protein Delivery on Skeletal Muscle Mass Changes in Critically Ill Adults: A Systematic Review. J. Parenter. Enter. Nutr. 2018, 42, 1112–1122. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Piasecki, M.; Atherton, P.J. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev. 2018, 47, 123–132. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
Age | Sex | APACHE II | Sepsis | Mechanical Ventilation | Nutritional Status (NRS-2002) | Weight (kg) & BMI (kg/m2) | Proteins Delivered | |
---|---|---|---|---|---|---|---|---|
Ferrie et al., 2016 [34] | Interv: 67.0 (55.5–74.3) | Interv: M 38 (63%) | Interv: 25.5 (9.4) | Not reported | Interv: 56 (95%) | Interv: 4.3 (1.3) | Interv: 73.2 (16.1) | Intervention group: First 3 study days: 76 (25) g/d 1.17 (0.21) g/kg/d First 7 study days: 76 (26) g/d 1.09 (0.22) g/kg/d |
Control: 64.5 (49.3–70.0) | Control: M 36 (60%) | Control: 23.7 (8.1) | Control: 59 (98%) | Control: 3.9 (1.3) | Control: 77.7 (21.7) | Control group: First 3 study days: 55 (20) g/d 0.87 (1.17)g/kg/d First 7 study days: 60 (21) g/d 0.90 (0.21) g/kg/d | ||
Fetterplace et al., 2018 [15] | Interv: 55 (13) | Interv: M 23 (77%) | Interv: 22 (6.2) | Interv: 3 (10%) | Interv: 30 (100%) | Not reported | Interv: 30 (7.1) | Intervention group: 94 (27) g/d 1.2 (0.3) g/kg/d |
Control: 57 (16) | Control: M 21 (70%) | Control: 20 (5.9) | Control: 1 (3.3%) | Control: 30 (100%) | Control: 29 (5.3) | Control group: 58 (12) g/d 0.75 (0.11) g/kg/d | ||
Azevedo et al., 2019 [31] | Interv: 65.0 (18.8) | Interv: F 23 (40.3%) | Interv: APACHE IV: 81.1 (32.4) | Interv: 12 (21.0%) | Interv: 57(100%) | Interv: 3.9 (0.9) | Not reported | Intervention group: 1.69 (1.33–1.80) g/kg/d |
Control: 67.4 (18.9) | Control: F 31 (49.2%) | Control: APACHE IV: 77.2 (30.7) | Control: 15 (23.8%) | Control: 63 (100%) | Control: 4.1 (1.0) | Control group: 1.13 (0.97–1.34) g/kg/d | ||
Qian Zhang et al., 2021 [33] | Interv: 64.45 (16.17) | Interv: M 12 (60%) | Interv: 21.75 (7.15) | Interv: 13 (65%) | Interv: 20 (100%) | Interv: 4.80 (1.61) | Interv: 22.18 (3.87) | Intervention group: 1.7 (0.21) g/kg/d |
Control: 69.24 (18.15) | Control: M 18 (85.7%) | Control: 20.48 (6.97) | Control: 16 (76.2%) | Control: 21 (100%) | Control: 5.10 (1.58) | Control: 22.84 (4.41) | Control group: 1.06 (0.21) g/kg/d | |
Youssef et al., 2022 [35] | Interv: 55.5 (33–67) | Interv: M 20 (66.7%) F 10 (33.3%) | Interv: 22 (11–38) | Not reported | Not reported | Interv: SGA(A) 22 (73.3%) SGA(B) 7 (23.3%) SGA(C) 1 (3.3%) | Interv: 89 (84–95) | Intervention group: Not reported |
Control: 48 (40–65) | Control: M 16 (53.3%) F 14 (46.7%) | Control: 21 (10–28) | Control: SGA(A) 18 (60%) SGA(B) 10 (33.3%) SGA(C) 2 (6.7%) | Control: 87.5 (83–90) | Control group: Not reported | |||
Bels et al., 2024 (PRECISe) [32] | Interv: 62 (14) | Interv: M 291 (62%) | Interv: 21 (7) | Interv: 230 (49%) | Not reported | Interv: 4 (1) | Interv: 28 (6) | Intervention group: 1.87 (0.96–2.00) g/kg/d |
Control: 63 (14) | Control: M 309 (67%) | Control: 22 (7) | Control: 229 (49%) | Control: 4 (1) | Control: 27 (5) | Control group: 1.19 (0.63–1.26) g/kg/d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.A.; Doleman, B.; Phillips, B.E.; Williams, J.P. The Effects of Protein Nutrition on Muscle Function in Critical Illness: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 2613. https://doi.org/10.3390/nu17162613
Mohamed MA, Doleman B, Phillips BE, Williams JP. The Effects of Protein Nutrition on Muscle Function in Critical Illness: A Systematic Review and Meta-Analysis. Nutrients. 2025; 17(16):2613. https://doi.org/10.3390/nu17162613
Chicago/Turabian StyleMohamed, Mohamed A., Brett Doleman, Bethan E. Phillips, and John P Williams. 2025. "The Effects of Protein Nutrition on Muscle Function in Critical Illness: A Systematic Review and Meta-Analysis" Nutrients 17, no. 16: 2613. https://doi.org/10.3390/nu17162613
APA StyleMohamed, M. A., Doleman, B., Phillips, B. E., & Williams, J. P. (2025). The Effects of Protein Nutrition on Muscle Function in Critical Illness: A Systematic Review and Meta-Analysis. Nutrients, 17(16), 2613. https://doi.org/10.3390/nu17162613