Protein and Aging: Practicalities and Practice
Abstract
1. Introduction
1.1. Article Selection
1.2. Current Recommendations
1.2.1. Dietary Protein Intake for Older Adults
1.2.2. Leucine Intake for Muscle Protein Synthesis
1.3. Nuances of Protein Recommendations for Aging
1.3.1. Anabolic Resistance
1.3.2. Anabolic Resistance and Loss of Muscle Mass and Strength (Sarcopenia)
1.3.3. Immune System Function and Immunosenescence
1.3.4. Renal Function and Health
1.3.5. Other Considerations (Finances, Dentition, and Appetite)
1.4. Supporting Protein Needs During Aging
1.4.1. Daily Meal Distribution, Timing, and Patterns
1.4.2. Choosing the Right Sources (Plant vs. Animal)
2. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MPS | muscle protein synthesis |
DGA | dietary guidelines for Americans |
BCAA | branched-chain amino acids |
MBP | muscle protein breakdown |
EAA | essential amino acid |
SMI | skeletal muscle index |
ROS | reactive oxygen species |
CKD | chronic kidney disease |
References
- Dziechciaż, M.; Filip, R. Biological psychological and social determinants of old age: Bio-psycho-social aspects of human aging. Ann. Agric. Environ. Med. 2014, 21, 835–838. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Dietary Guidelines for Americans, 2020–2025; U.S. Department of Agriculture and U.S. Department of Health and Human Services: Washington, DC, USA, 2020.
- Lees, M.; Carson, B. The Potential Role of Fish-Derived Protein Hydrolysates on Metabolic Health, Skeletal Muscle Mass and Function in Ageing. Nutrients 2020, 12, 2434. [Google Scholar] [CrossRef] [PubMed]
- Vranešić Bender, D.; Krznarić, Ž. Nutritional issues and considerations in the elderly: An update. Croat. Med. J. 2020, 61, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, L.B.; Solway, E.S.; Malani, P.N. Social Isolation and Loneliness in Older Adults. JAMA 2024, 331, 2058. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef]
- Rizzoli, R.; Stevenson, J.C.; Bauer, J.M.; Van Loon, L.J.C.; Walrand, S.; Kanis, J.A.; Cooper, C.; Brandi, M.-L.; Diez-Perez, A.; Reginster, J.-Y. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: A consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas 2014, 79, 122–132. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Woudstra, T.; Thomson, A.B.R. Nutrient absorption and intestinal adaptation with ageing. Best Pract. Res. Clin. Gastroenterol. 2002, 16, 1–15. [Google Scholar] [CrossRef]
- Borkent, J.; Manders, M.; Nijhof, A.; Wijker, L.; Feskens, E.; Naumann, E.; De Van Der Schueren, M. Too low protein and energy intake in nursing home residents. Nutrition 2023, 110, 112005. [Google Scholar] [CrossRef]
- Roberts, S.B.; Rosenberg, I. Nutrition and Aging: Changes in the Regulation of Energy Metabolism with Aging. Physiol. Rev. 2006, 86, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.A.; Triggs, E.J.; Cheung, M.; Broe, G.A.; Creasey, H. Gastric Emptying Rate in the Elderly: Implications for Drug Therapy. J. Am. Geriatr. Soc. 1981, 29, 201–205. [Google Scholar] [CrossRef]
- Coelho-Júnior, H.J.; Calvani, R.; Tosato, M.; Landi, F.; Picca, A.; Marzetti, E. Protein intake and physical function in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 81, 101731. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Diet strategies for promoting healthy aging and longevity: An epidemiological perspective. J. Intern. Med. 2024, 295, 508–531. [Google Scholar] [CrossRef] [PubMed]
- Muth, A.-K.; Park, S.Q. The impact of dietary macronutrient intake on cognitive function and the brain. Clin. Nutr. 2021, 40, 3999–4010. [Google Scholar] [CrossRef]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef]
- Wolfe, R.R. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br. J. Nutr. 2012, 108, S88–S93. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Sui, X.; Lobelo, F.; Morrow, J.R.; Jackson, A.W.; Sjostrom, M.; Blair, S.N. Association between muscular strength and mortality in men: Prospective cohort study. BMJ 2008, 337, a439. [Google Scholar] [CrossRef]
- Cawood, A.L.; Elia, M.; Stratton, R.J. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res. Rev. 2012, 11, 278–296. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.-L.; Li, D.; Woo Kim, S.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef]
- Lesourd, B. Nutrition and immunity in the elderly: Modification of immune responses with nutritional treatments. Am. J. Clin. Nutr. 1997, 66, 478S–484S. [Google Scholar] [CrossRef]
- Shahnaz, T.; Fawole, A.O.; Adeyanju, A.A.; Onuh, J.O. Food Proteins as Functional Ingredients in the Management of Chronic Diseases: A Concise Review. Nutrients 2024, 16, 2323. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.C.; Nuttall, F.Q.; Saeed, A.; Jordan, K.; Hoover, H. An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am. J. Clin. Nutr. 2003, 78, 734–741. [Google Scholar] [CrossRef]
- Samkani, A.; Skytte, M.J.; Kandel, D.; Kjaer, S.; Astrup, A.; Deacon, C.F.; Holst, J.J.; Madsbad, S.; Rehfeld, J.F.; Haugaard, S.B.; et al. A carbohydrate-reduced high-protein diet acutely decreases postprandial and diurnal glucose excursions in type 2 diabetes patients. Br. J. Nutr. 2018, 119, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef]
- Nowson, C.; O’Connell, S. Protein Requirements and Recommendations for Older People: A Review. Nutrients 2015, 7, 6874–6899. [Google Scholar] [CrossRef]
- Peng, L.; Lin, M.; Tseng, S.; Yen, K.; Lee, H.; Hsiao, F.; Chen, L. Protein-enriched soup and weekly exercise improve muscle health: A randomized trial in mid-to-old age with inadequate protein intake. J. Cachexia Sarcopenia Muscle 2024, 15, 1348–1357. [Google Scholar] [CrossRef]
- Aragon, A.A.; Tipton, K.D.; Schoenfeld, B.J. Age-related muscle anabolic resistance: Inevitable or preventable? Nutr. Rev. 2023, 81, 441–454. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, H.J.; Lim, J.-Y. Effects of leucine-rich protein supplements in older adults with sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Arch. Gerontol. Geriatr. 2022, 102, 104758. [Google Scholar] [CrossRef]
- McClave, S.A.; Martindale, R.G.; Vanek, V.W.; McCarthy, M.; Roberts, P.; Taylor, B.; Ochoa, J.B.; Napolitano, L.; Cresci, G.; A.S.P.E.N. Board of Directors; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enter. Nutr. 2009, 33, 277–316. [Google Scholar] [CrossRef] [PubMed]
- Moyama, S.; Yamazaki, Y.; Takahashi, T.; Makabe, N.; Hamamoto, Y.; Kurose, T.; Yamada, Y.; Kuwata, H.; Seino, Y. Dietary Protein Intake Is a Determining Factor for Skeletal Muscle Mass in Japanese Older People with Type 2 Diabetes: A Cross-Sectional Study. Nutrients 2025, 17, 731. [Google Scholar] [CrossRef]
- Moyama, S.; Yamada, Y.; Makabe, N.; Fujita, H.; Araki, A.; Suzuki, A.; Seino, Y.; Shide, K.; Kimura, K.; Murotani, K.; et al. Efficacy and Safety of 6-Month High Dietary Protein Intake in Hospitalized Adults Aged 75 or Older at Nutritional Risk: An Exploratory, Randomized, Controlled Study. Nutrients 2023, 15, 2024. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Pisati, R.; Rondanelli, M.; Caccialanza, R. Whey Protein, Leucine- and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia. Nutrients 2022, 14, 1524. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, M.F.; Beydoun, M.A.; Zonderman, A.B.; Evans, M.K. Intakes of Total and Branched-Chain Essential Amino Acids are Positively Associated with Handgrip Strength in African American and White Urban Younger and Older Adults. J. Nutr. Gerontol. Geriatr. 2022, 41, 140–159. [Google Scholar] [CrossRef] [PubMed]
- Paulussen, K.J.M.; McKenna, C.F.; Beals, J.W.; Wilund, K.R.; Salvador, A.F.; Burd, N.A. Anabolic Resistance of Muscle Protein Turnover Comes in Various Shapes and Sizes. Front. Nutr. 2021, 8, 615849. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products. Scientific opinion on dietary reference values for protein. EFSA J. 2012, 10, 2557. [Google Scholar] [CrossRef]
- Ardisson Korat, A.V.; Shea, M.K.; Jacques, P.F.; Sebastiani, P.; Wang, M.; Eliassen, A.H.; Willett, W.C.; Sun, Q. Dietary protein intake in midlife in relation to healthy aging—Results from the prospective Nurses’ Health Study cohort. Am. J. Clin. Nutr. 2024, 119, 271–282. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ali, R.; Zhang, H.; Zafar, M.H.; Wang, M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front. Physiol. 2023, 14, 1252089. [Google Scholar] [CrossRef]
- Szwiega, S.; Pencharz, P.B.; Rafii, M.; Lebarron, M.; Chang, J.; Ball, R.O.; Kong, D.; Xu, L.; Elango, R.; Courtney-Martin, G. Dietary leucine requirement of older men and women is higher than current recommendations. Am. J. Clin. Nutr. 2021, 113, 410–419. [Google Scholar] [CrossRef]
- Casperson, S.L.; Sheffield-Moore, M.; Hewlings, S.J.; Paddon-Jones, D. Leucine supplementation chronically improves muscle protein synthesis in older adults consuming the RDA for protein. Clin. Nutr. 2012, 31, 512–519. [Google Scholar] [CrossRef]
- Voulgaridou, G.; Papadopoulou, S.D.; Spanoudaki, M.; Kondyli, F.S.; Alexandropoulou, I.; Michailidou, S.; Zarogoulidis, P.; Matthaios, D.; Giannakidis, D.; Romanidou, M.; et al. Increasing Muscle Mass in Elders through Diet and Exercise: A Literature Review of Recent RCTs. Foods 2023, 12, 1218. [Google Scholar] [CrossRef]
- Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.T.; Mets, T.; Seal, C.; Wijers, S.L.; et al. Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional Supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747. [Google Scholar] [CrossRef]
- Lee, E.-J.; Neppl, R.L. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes 2021, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Barkoukis, H. Muscle Building and Maintenance in the Elderly: The Use of Protein. Curr. Nutr. Rep. 2016, 5, 77–83. [Google Scholar] [CrossRef]
- Chen, S.; Lin, X.; Ma, J.; Li, M.; Chen, Y.; Fang, A.; Zhu, H. Dietary protein intake and changes in muscle mass measurements in community-dwelling middle-aged and older adults: A prospective cohort study. Clin. Nutr. 2023, 42, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Pickering, R.T.; Bradlee, M.L.; Mustafa, J.; Singer, M.R.; Moore, L.L. Animal protein intake reduces risk of functional impairment and strength loss in older adults. Clin. Nutr. 2021, 40, 919–927. [Google Scholar] [CrossRef]
- Wall, B.T.; Gorissen, S.H.; Pennings, B.; Koopman, R.; Groen, B.B.L.; Verdijk, L.B.; Van Loon, L.J.C. Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion. PLoS ONE 2015, 10, e0140903. [Google Scholar] [CrossRef]
- Tezze, C.; Sandri, M.; Tessari, P. Anabolic Resistance in the Pathogenesis of Sarcopenia in the Elderly: Role of Nutrition and Exercise in Young and Old People. Nutrients 2023, 15, 4073. [Google Scholar] [CrossRef]
- Trommelen, J.; Van Lieshout, G.A.A.; Nyakayiru, J.; Holwerda, A.M.; Smeets, J.S.J.; Hendriks, F.K.; Van Kranenburg, J.M.X.; Zorenc, A.H.; Senden, J.M.; Goessens, J.P.B.; et al. The anabolic response to protein ingestion during recovery from exercise has no upper limit in magnitude and duration in vivo in humans. Cell Rep. Med. 2023, 4, 101324. [Google Scholar] [CrossRef]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein Ingestion to Stimulate Myofibrillar Protein Synthesis Requires Greater Relative Protein Intakes in Healthy Older Versus Younger Men. J. Gerontol. Ser. A 2015, 70, 57–62. [Google Scholar] [CrossRef]
- Van Der Heijden, I.; West, S.; Monteyne, A.J.; Finnigan, T.J.A.; Abdelrahman, D.R.; Murton, A.J.; Stephens, F.B.; Wall, B.T. Ingestion of a variety of non-animal-derived dietary protein sources results in diverse postprandial plasma amino acid responses which differ between young and older adults. Br. J. Nutr. 2024, 131, 1540–1553. [Google Scholar] [CrossRef] [PubMed]
- Reitelseder, S.; Bülow, J.; Holm, L. Divergent Anabolic Response to Exercise in Young and Older Adult Men-Dependency on Time Frame of Measurement. J. Gerontol. Ser. A 2021, 76, 996–999. [Google Scholar] [CrossRef]
- Yu, X.; Sun, S.; Zhang, S.; Hao, Q.; Zhu, B.; Teng, Y.; Long, Q.; Li, S.; Lv, Y.; Yue, Q.; et al. A pooled analysis of the association between sarcopenia and osteoporosis. Medicine 2022, 101, e31692. [Google Scholar] [CrossRef]
- Coletta, G.; Phillips, S.M. An elusive consensus definition of sarcopenia impedes research and clinical treatment: A narrative review. Ageing Res. Rev. 2023, 86, 101883. [Google Scholar] [CrossRef]
- Wiedmer, P.; Jung, T.; Castro, J.P.; Pomatto, L.C.D.; Sun, P.Y.; Davies, K.J.A.; Grune, T. Sarcopenia—Molecular mechanisms and open questions. Ageing Res. Rev. 2021, 65, 101200. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef]
- Lian, J.; Yue, Y.; Yu, W.; Zhang, Y. Immunosenescence: A key player in cancer development. J. Hematol. Oncol.J Hematol Oncol 2020, 13, 151. [Google Scholar] [CrossRef]
- Rodrigues, L.P.; Teixeira, V.R.; Alencar-Silva, T.; Simonassi-Paiva, B.; Pereira, R.W.; Pogue, R.; Carvalho, J.L. Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine Growth Factor Rev. 2021, 59, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): Can it be controlled by senolysis? Inflamm. Regen. 2022, 42, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, C.; Han, Y.; Gu, Z.; Sun, C. Immunosenescence, aging and successful aging. Front. Immunol. 2022, 13, 942796. [Google Scholar] [CrossRef]
- Iddir, M.; Brito, A.; Dingeo, G.; Fernandez Del Campo, S.S.; Samouda, H.; La Frano, M.R.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef]
- Fulop, T.; Wagner, J.R.; Khalil, A.; Weber, J.; Trottier, L.; Payette, H. Relationship Between the Response to Influenza Vaccination and the Nutritional Status in Institutionalized Elderly Subjects. J. Gerontol. A Biol. Sci. Med. Sci. 1999, 54, M59–M64. [Google Scholar] [CrossRef] [PubMed]
- Langsetmo, L.; Harrison, S.; Jonnalagadda, S.; Pereira, S.L.; Shikany, J.M.; Farsijani, S.; Lane, N.E.; Cauley, J.A.; Stone, K.; Cawthon, P.M. Low Protein Intake Irrespective of Source is Associated with Higher Mortality Among Older Community-Dwelling Men. J. Nutr. Health Aging 2020, 24, 900–905. [Google Scholar] [CrossRef]
- Nunes-Cabaço, H.; Moita, D.; Rôla, C.; Mendes, A.M.; Prudêncio, M. Impact of Dietary Protein Restriction on the Immunogenicity and Efficacy of Whole-Sporozoite Malaria Vaccination. Front. Immunol. 2022, 13, 869757. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.; Agger, E.M.; Cassidy, J.P.; Christensen, J.P.; Andersen, P. Protein Energy Malnutrition during Vaccination Has Limited Influence on Vaccine Efficacy but Abolishes Immunity if Administered during Mycobacterium tuberculosis Infection. Infect. Immun. 2015, 83, 2118–2126. [Google Scholar] [CrossRef]
- Collins, N. Dietary Regulation of Memory T Cells. Int. J. Mol. Sci. 2020, 21, 4363. [Google Scholar] [CrossRef]
- Kelly, B.; Pearce, E.L. Amino Assets: How Amino Acids Support Immunity. Cell Metab. 2020, 32, 154–175. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chu, Z.; Liu, M.; Zou, Q.; Li, J.; Liu, Q.; Wang, Y.; Wang, T.; Xiang, J.; Wang, B. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J. Hematol. Oncol. J. Hematol. Oncol. 2023, 16, 59. [Google Scholar] [CrossRef]
- Li, P.; Wu, G. Important roles of amino acids in immune responses. Br. J. Nutr. 2022, 127, 398–402. [Google Scholar] [CrossRef]
- Abnousian, A.; Vasquez, J.; Sasaninia, K.; Kelley, M.; Venketaraman, V. Glutathione Modulates Efficacious Changes in the Immune Response against Tuberculosis. Biomedicines 2023, 11, 1340. [Google Scholar] [CrossRef]
- Ko, G.-J.; Rhee, C.M.; Kalantar-Zadeh, K.; Joshi, S. The Effects of High-Protein Diets on Kidney Health and Longevity. J. Am. Soc. Nephrol. 2020, 31, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Jhee, J.H.; Kee, Y.K.; Park, S.; Kim, H.; Park, J.T.; Han, S.H.; Kang, S.-W.; Yoo, T.-H. High-protein diet with renal hyperfiltration is associated with rapid decline rate of renal function: A community-based prospective cohort study. Nephrol. Dial. Transplant. 2019, 35, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.W.; Yang, J.H.; Kim, M.-G.; Cho, W.Y.; Jo, S.K. Renal hyperfiltration as a risk factor for chronic kidney disease: A health checkup cohort study. PLoS ONE 2020, 15, e0238177. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, J.; Zhao, Y.; Du, D. Aging and chronic kidney disease: Epidemiology, therapy, management and the role of immunity. Clin. Kidney J. 2024, 17, sfae235. [Google Scholar] [CrossRef]
- Hahn, D.; Hodson, E.M.; Fouque, D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst. Rev. 2018, 10, CD001892. [Google Scholar] [CrossRef]
- Ko, G.-J.; Kalantar-Zadeh, K. How important is dietary management in chronic kidney disease progression? A role for low protein diets. Korean J. Intern. Med. 2021, 36, 795–806. [Google Scholar] [CrossRef]
- Pradhan, N.; Dobre, M. Emerging Preventive Strategies in Chronic Kidney Disease: Recent Evidence and Gaps in Knowledge. Curr. Atheroscler. Rep. 2023, 25, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Garneata, L.; Mocanu, C.-A.; Mircescu, G. Low-Protein Diets Could Be Effective and Safe in Elderly Patients with Advanced Diabetic Kidney Disease. Nutrients 2024, 16, 2230. [Google Scholar] [CrossRef]
- Carballo-Casla, A.; Avesani, C.M.; Beridze, G.; Ortolá, R.; García-Esquinas, E.; Lopez-Garcia, E.; Dai, L.; Dunk, M.M.; Stenvinkel, P.; Lindholm, B.; et al. Protein Intake and Mortality in Older Adults with Chronic Kidney Disease. JAMA Netw. Open 2024, 7, e2426577. [Google Scholar] [CrossRef]
- Rautakallio-Järvinen, P.; Kunvik, S.; Laaksonen, M.; Fogelholm, L.; Nykänen, I.; Schwab, U. Cost-effectiveness of protein-rich meals and snacks for increasing protein intake in older adults. J. Nutr. Health Aging 2024, 28, 100381. [Google Scholar] [CrossRef]
- Papanikolaou, Y.; Fulgoni, V.L. Eggs Are Cost-Efficient in Delivering Several Shortfall Nutrients in the American Diet: A Cost-Analysis in Children and Adults. Nutrients 2020, 12, 2406. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.M.; Cifelli, C.J.; Agarwal, S.; Fulgoni, V.L. Comparing the cost of essential nutrients from different food sources in the American diet using NHANES 2011–2014. Nutr. J. 2019, 18, 68. [Google Scholar] [CrossRef]
- Rehm, C.D.; Monsivais, P.; Drewnowski, A. The quality and monetary value of diets consumed by adults in the United States. Am. J. Clin. Nutr. 2011, 94, 1333–1339. [Google Scholar] [CrossRef]
- Dismore, L.; Sayer, A.; Robinson, S. Exploring the experience of appetite loss in older age: Insights from a qualitative study. BMC Geriatr. 2024, 24, 117. [Google Scholar] [CrossRef]
- Warner, J.; Stocker, R.; Brandt, K.; Crabtree, D.R.; Ormond, L.; Stevenson, E.; Holliday, A. Appetite, food intake, and gut hormone responses to glycomacropeptide protein ingestion in older adults: A feasibility, acceptability, and pilot study. Appetite 2024, 200, 107509. [Google Scholar] [CrossRef]
- Hendriks-Hartensveld, A.E.M.; Havermans, R.C.; Nederkoorn, C.; Van Den Heuvel, E. Exploring within-meal variety to promote appeal of home-cooked meals in older adults. Appetite 2024, 197, 107318. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, M.A.; Silva, W.R.D.; Spexoto, M.C.B.; Silva Júnior, S.I.D. Factors of food choice and nutritional intake of Brazilian older adults according sociodemographic and health characteristics. Appetite 2024, 199, 107379. [Google Scholar] [CrossRef]
- Kotronia, E.; Brown, H.; Papacosta, A.O.; Lennon, L.T.; Weyant, R.J.; Whincup, P.H.; Wannamethee, S.G.; Ramsay, S.E. Poor oral health and the association with diet quality and intake in older people in two studies in the UK and USA. Br. J. Nutr. 2021, 126, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Leveille, S.G.; Shi, L. Multiple Chronic Diseases Associated with Tooth Loss Among the US Adult Population. Front. Big Data 2022, 5, 932618. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Oral Health Surveillance Report: Trends in Dental Caries and Sealants, Tooth Retention, and Edentulism, United States, 1999–2004 and 2011–2016; Center for Disease Control and Prevention, U.S. Department of Health and Human Services: Atlanta, GA, USA, 2019.
- Kimble, R.; Papacosta, A.O.; Lennon, L.T.; Whincup, P.H.; Weyant, R.J.; Mathers, J.C.; Wannamethee, S.G.; Ramsay, S.E. The Relationship of Oral Health with Progression of Physical Frailty among Older Adults: A Longitudinal Study Composed of Two Cohorts of Older Adults from the United Kingdom and United States. J. Am. Med. Dir. Assoc. 2023, 24, 468–474.e3. [Google Scholar] [CrossRef]
- Mendonça, N.; Granic, A.; Mathers, J.C.; Hill, T.R.; Siervo, M.; Adamson, A.J.; Jagger, C. Prevalence and determinants of low protein intake in very old adults: Insights from the Newcastle 85+ Study. Eur. J. Nutr. 2018, 57, 2713–2722. [Google Scholar] [CrossRef] [PubMed]
- Albani, V.; Nishio, K.; Ito, T.; Kotronia, E.; Moynihan, P.; Robinson, L.; Hanratty, B.; Kingston, A.; Abe, Y.; Takayama, M.; et al. Associations of poor oral health with frailty and physical functioning in the oldest old: Results from two studies in England and Japan. BMC Geriatr. 2021, 21, 187. [Google Scholar] [CrossRef]
- Chan, A.K.Y.; Tsang, Y.C.; Jiang, C.M.; Leung, K.C.M.; Lo, E.C.M.; Chu, C.H. Diet, Nutrition, and Oral Health in Older Adults: A Review of the Literature. Dent. J. 2023, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Agergaard, J.; Justesen, T.E.H.; Jespersen, S.E.; Tagmose Thomsen, T.; Holm, L.; Van Hall, G. Even or skewed dietary protein distribution is reflected in the whole-body protein net-balance in healthy older adults: A randomized controlled trial. Clin. Nutr. 2023, 42, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Verreijen, A.M.; Van Den Helder, J.; Streppel, M.T.; Rotteveel, I.; Heman, D.; Van Dronkelaar, C.; Memelink, R.G.; Engberink, M.F.; Visser, M.; Tieland, M.; et al. A higher protein intake at breakfast and lunch is associated with a higher total daily protein intake in older adults: A post-hoc cross-sectional analysis of four randomised controlled trials. J. Hum. Nutr. Diet. 2021, 34, 384–394. [Google Scholar] [CrossRef]
- Souza, L.B.D.; Martins, K.A.; Bomfim, R.A. Inadequate distribution of dietary protein and muscle mass in older adults. Geriatr. Gerontol. Aging 2022, 16, e0220001. [Google Scholar] [CrossRef]
- Hiol, A.N.; Von Hurst, P.R.; Conlon, C.A.; Beck, K.L. Associations of protein intake, sources and distribution on muscle strength in community-dwelling older adults living in Auckland, New Zealand. J. Nutr. Sci. 2023, 12, e94. [Google Scholar] [CrossRef]
- Koopmans, L.; Van Oppenraaij, S.; Heijmans, M.W.F.; Verlaan, S.; Schoufour, J.D.; Ten Haaf, D.S.M.; Van Der Avoort, C.M.T.; Van Den Helder, J.; Memelink, R.; Verreijen, A.; et al. Dietary protein intake, protein sources & distribution patterns in community-dwelling older adults: A harmonized analysis of eight studies. Clin. Nutr. 2025, 47, 177–184. [Google Scholar] [CrossRef]
- Famularo, P. Protein Requirements for Older Adults: What Are the Current Recommendations for Intake? Caring Ages 2023, 24, 9. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Leidy, H. Dietary protein and muscle in older persons. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 5–11. [Google Scholar] [CrossRef]
- Justesen, T.E.H.; Jespersen, S.E.; Tagmose Thomsen, T.; Holm, L.; Van Hall, G.; Agergaard, J. Comparing Even with Skewed Dietary Protein Distribution Shows No Difference in Muscle Protein Synthesis or Amino Acid Utilization in Healthy Older Individuals: A Randomized Controlled Trial. Nutrients 2022, 14, 4442. [Google Scholar] [CrossRef]
- Jespersen, S.E.; Agergaard, J. Evenness of dietary protein distribution is associated with higher muscle mass but not muscle strength or protein turnover in healthy adults: A systematic review. Eur. J. Nutr. 2021, 60, 3185–3202. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.; Bergia, R.; Campbell, W. Protein Distribution and Muscle-Related Outcomes: Does the Evidence Support the Concept? Nutrients 2020, 12, 1441. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, J.; Reijnierse, E.M.; Kew, N.; Fetterplace, K.; Tan, S.-Y.; Maier, A.B. The effect of dose, frequency, and timing of protein supplementation on muscle mass in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2024, 99, 102325. [Google Scholar] [CrossRef]
- Campbell, W.W.; Deutz, N.E.P.; Volpi, E.; Apovian, C.M. Nutritional Interventions: Dietary Protein Needs and Influences on Skeletal Muscle of Older Adults. J. Gerontol. Ser. A 2023, 78, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Holwerda, A.M.; Trommelen, J.; Kouw, I.W.K.; Senden, J.M.; Goessens, J.P.B.; Van Kranenburg, J.; Gijsen, A.P.; Verdijk, L.B.; Van Loon, L.J.C. Exercise Plus Presleep Protein Ingestion Increases Overnight Muscle Connective Tissue Protein Synthesis Rates in Healthy Older Men. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 217–226. [Google Scholar] [CrossRef]
- Trommelen, J.; Van Loon, L. Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training. Nutrients 2016, 8, 763. [Google Scholar] [CrossRef]
- Weijzen, M.E.G.; Kohlen, M.; Monsegue, A.; Houtvast, D.C.J.; Nyakayiru, J.; Beijer, S.; Geerlings, P.; Verdijk, L.B.; Van Loon, L.J.C. Access to a pre-sleep protein snack increases daily energy and protein intake in surgical hospitalized patients. Clin. Nutr. 2024, 43, 1073–1078. [Google Scholar] [CrossRef]
- Res, P.T.; Groen, B.; Pennings, B.; Beelen, M.; Wallis, G.A.; Gijsen, A.P.; Senden, J.M.G.; Van Loon, L.J.C. Protein Ingestion before Sleep Improves Postexercise Overnight Recovery. Med. Sci. Sports Exerc. 2012, 44, 1560–1569. [Google Scholar] [CrossRef]
- Trommelen, J.; Van Lieshout, G.A.A.; Pabla, P.; Nyakayiru, J.; Hendriks, F.K.; Senden, J.M.; Goessens, J.P.B.; Van Kranenburg, J.M.X.; Gijsen, A.P.; Verdijk, L.B.; et al. Pre-sleep Protein Ingestion Increases Mitochondrial Protein Synthesis Rates During Overnight Recovery from Endurance Exercise: A Randomized Controlled Trial. Sports Med. 2023, 53, 1445–1455. [Google Scholar] [CrossRef]
- Höglund, E.; Ekman, S.; Stuhr-Olsson, G.; Lundgren, C.; Albinsson, B.; Signäs, M.; Karlsson, C.; Rothenberg, E.; Wendin, K. A meal concept designed for older adults—Small, enriched meals including dessert. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef]
- Delsoglio, M.; Griffen, C.; Syed, R.; Cookson, T.; Saliba, H.; Vowles, A.; Davies, S.; Willey, N.; Thomas, J.; Millen, N.; et al. A multi-center prospective study of plant-based nutritional support in adult community-based patients at risk of disease-related malnutrition. Front. Nutr. 2023, 10, 1297624. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.-H.; Lee, J.W.; Shin, W.-K.; Lee, S.-Y.; Kim, Y. Association between plant protein intake and grip strength in Koreans aged 50 years or older: Korea National Health and Nutrition Examination Survey 2016–2018. Nutr. Res. Pract. 2023, 17, 969. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Arai, H.; Assantachai, P.; Akishita, M.; Chew, S.T.H.; Dumlao, L.C.; Duque, G.; Woo, J. Roles of nutrition in muscle health of community-dwelling older adults: Evidence-based expert consensus from Asian Working Group for Sarcopenia. J. Cachexia Sarcopenia Muscle 2022, 13, 1653–1672. [Google Scholar] [CrossRef]
- Habumugisha, T.; Engebretsen, I.M.S.; Måren, I.E.; Kaiser, C.W.M.; Dierkes, J. Reducing meat and/or dairy consumption in adults: A systematic review and meta-analysis of effects on protein intake, anthropometric values, and body composition. Nutr. Rev. 2024, 82, 277–301. [Google Scholar] [CrossRef]
- Pinckaers, P.J.; Domić, J.; Petrick, H.L.; Holwerda, A.M.; Trommelen, J.; Hendriks, F.K.; Houben, L.H.; Goessens, J.P.; Van Kranenburg, J.M.; Senden, J.M.; et al. Higher Muscle Protein Synthesis Rates Following Ingestion of an Omnivorous Meal Compared with an Isocaloric and Isonitrogenous Vegan Meal in Healthy, Older Adults. J. Nutr. 2024, 154, 2120–2132. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.R.; Mangano, K.M.; Hannan, M.T.; Kiel, D.P.; Sahni, S. Dietary Protein Intake Is Protective Against Loss of Grip Strength Among Older Adults in the Framingham Offspring Cohort. J. Gerontol. A. Biol. Sci. Med. Sci. 2016, 71, 356–361. [Google Scholar] [CrossRef]
- Lim, M.T.; Pan, B.J.; Toh, D.W.K.; Sutanto, C.N.; Kim, J.E. Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 661. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Woo, J. Association of Plant Protein Intake with Change in Physical Performance in Chinese Community-Dwelling Older Adults. Nutrients 2022, 14, 4534. [Google Scholar] [CrossRef]
- Du, Q.; Lu, Y.; Hu, F.; Feng, X.; Zhang, Y.; Li, S.; Zhang, C.; Zhang, H.; Zeng, Y.; Yao, Y.; et al. Dietary diversity and possible sarcopenia among older people in China: A nationwide population-based study. Front. Nutr. 2023, 10, 1218453. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, Y.; Kaimori, J.-Y.; Isaka, Y. Plant-Dominant Low Protein Diet: A Potential Alternative Dietary Practice for Patients with Chronic Kidney Disease. Nutrients 2023, 15, 1002. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, S.; DePalma, J.; Barkoukis, H. Protein and Aging: Practicalities and Practice. Nutrients 2025, 17, 2461. https://doi.org/10.3390/nu17152461
Harris S, DePalma J, Barkoukis H. Protein and Aging: Practicalities and Practice. Nutrients. 2025; 17(15):2461. https://doi.org/10.3390/nu17152461
Chicago/Turabian StyleHarris, Stephanie, Jessica DePalma, and Hope Barkoukis. 2025. "Protein and Aging: Practicalities and Practice" Nutrients 17, no. 15: 2461. https://doi.org/10.3390/nu17152461
APA StyleHarris, S., DePalma, J., & Barkoukis, H. (2025). Protein and Aging: Practicalities and Practice. Nutrients, 17(15), 2461. https://doi.org/10.3390/nu17152461