Ultra-Processed Food Intake as an Effect Modifier in the Association Between Depression and Diabetes in Brazil: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Measures
2.2.1. Independent and Dependent Variables: Depression and Diabetes
2.2.2. Effect Modifier: Frequency of UPF Intake
2.2.3. Covariates
2.3. Statistical Methods
2.4. Ethical Approval
3. Results
3.1. Characteristics of Participants
3.2. Effect of UPF Intake on Comorbidities
3.3. Further Stratified Analysis Based on Age
4. Discussion
4.1. Summary of Findings
4.2. Potential Mechanisms and Pathophysiological Links
4.3. Age-Stratified Differences
4.4. Contributions and Implications for Future Research
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019 |
UPF | Ultra-processed food |
PNS | Pesquisa Nacional de Saúde, National Health Survey |
NCD | Noncommunicable disease |
FFQ | Food Frequency Questionnaire |
BMI | Body mass index |
SD | Standard deviations |
ANOVA | Analysis of variance |
References
- Woody, C.A.; Ferrari, A.J.; Siskind, D.J.; Whiteford, H.A.; Harris, M.G. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. J. Affect. Disord. 2017, 219, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Mattiello, R.; Ayala, C.O.; Pedron, F.F.; Ferreira, I.C.S.; Ley, L.L.G.; Paungartner, L.M.; Martins, M.d.S.; Bagatini, M.A.; Batista, N.O.W.; Cecagno, P.O.M.; et al. Prevalence of self-reported lifetime medical diagnosis of depression in Brazil: Analysis of data from the 2019 Brazilian National Health Survey. Br. Med. J. Open 2022, 12, e063902. [Google Scholar] [CrossRef] [PubMed]
- Leading Causes of Death, and Disability—PAHO/WHO|Pan American Health Organization. Available online: https://www.paho.org/en/enlace/leading-causes-death-and-disability (accessed on 4 July 2023).
- Lopez, A.D.; Mathers, C.D. Measuring the global burden of disease and epidemiological transitions: 2002–2030. Ann. Trop. Med. Parasitol. 2006, 100, 481–499. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Liao, W. Depression among Middle-Aged and Elderly People in China. Asian J. Humanit. Soc. Stud. 2016, 4, 151–160. [Google Scholar]
- Holt, R.I.G.; de Groot, M.; Golden, S.H. Diabetes and Depression. Curr. Diabetes Rep. 2014, 14, 491. [Google Scholar] [CrossRef] [PubMed]
- Egede, L.E. Diabetes, Major Depression, and Functional Disability Among U.S. Adults. Diabetes Care 2004, 27, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Bădescu, S.; Tătaru, C.; Kobylinska, L.; Georgescu, E.; Zahiu, D.; Zăgrean, A.; Zăgrean, L. The Association between Diabetes Mellitus and Depression. J. Med. Life 2016, 9, 120–125. [Google Scholar] [PubMed]
- Koning, E.; Grigolon, R.B.; Breda, V.; Gomes, F.A.; Zucatti, K.P.; Teixeira, P.P.; Colpani, V.; Gerchman, F.; Brietzke, E. The effect of lifestyle interventions on depressive symptom severity in individuals with type-2 diabetes: A meta-analysis of randomized controlled trials. J. Psychosom. Res. 2023, 173, 111445. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Martini, D. Ultra-Processed Foods, Diet Quality and Human Health. Nutrients 2023, 15, 2890. [Google Scholar] [CrossRef] [PubMed]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-Processed Foods and Health Outcomes: A Narrative Review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef] [PubMed]
- Adams, J. The NOVA system can be used to address harmful foods and harmful food systems. PLoS Med. 2024, 21, e1004492. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Gamage, E.; Travica, N.; Dissanayaka, T.; Ashtree, D.N.; Gauci, S.; Lotfaliany, M.; O’neil, A.; Jacka, F.N.; Marx, W. Ultra-Processed Food Consumption and Mental Health: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2022, 14, 2568. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, M. Ultra-Processed Food Intakes Are Associated with Depression in the General Population: The Korea National Health and Nutrition Examination Survey. Nutrients 2023, 15, 2169. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Bonaccio, M.; Al-Qahtani, W.H.; Marx, W.; Lane, M.M.; Leggio, G.M.; Grosso, G. Ultra-Processed Food Consumption and Depressive Symptoms in a Mediterranean Cohort. Nutrients 2023, 15, 504. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Sun, J.; Yu, X.; Zhang, D. Ultra-Processed Food Is Positively Associated With Depressive Symptoms Among United States Adults. Front. Nutr. 2020, 7, 600449. [Google Scholar] [CrossRef] [PubMed]
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and Diabetes in the Developing World—A Growing Challenge. N. Engl. J. Med. 2007, 356, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Delpino, F.M.; Figueiredo, L.M.; Bielemann, R.M.; da Silva, B.G.C.; dos Santos, F.S.; Mintem, G.C.; Flores, T.R.; Arcêncio, R.A.; Nunes, B.P. Ultra-processed food and risk of type 2 diabetes: A systematic review and meta-analysis of longitudinal studies. Leuk. Res. 2021, 51, 1120–1141. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of all-cause mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- Pereira, Z.S.; da Silva, A.S.; Melo, J.C.D.N.; dos Santos, J.C.; Sampaio, P.Y.S.; Silva, R.J.d.S.; Araújo, R.H.d.O.; Sampaio, R.A.C. Differential Factors Are Associated with Physical Activity in Older Adults in Brazil with and without Non-Communicable Chronic Diseases: A Cross-Sectional Analysis of the 2019 National Health Survey. Int. J. Environ. Res. Public Health 2023, 20, 6329. [Google Scholar] [CrossRef] [PubMed]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. In Obesity and Lipotoxicity; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2017; Volume 960. [Google Scholar] [CrossRef]
- Kent, G.; Kehoe, L.; Flynn, A.; Walton, J. Plant-based diets: A review of the definitions and nutritional role in the adult diet. Proc. Nutr. Soc. 2021, 81, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Nilson, E.A.F.; Ferrari, G.; Louzada, M.L.d.C.; Levy, R.B.; Monteiro, C.A.; Rezende, L.F.M. The estimated burden of ultra-processed foods on cardiovascular disease outcomes in Brazil: A modeling study. Front. Nutr. 2022, 9, 1043620. [Google Scholar] [CrossRef] [PubMed]
- Louzada, M.L.D.C.; Martins, A.P.B.; Canella, D.S.; Baraldi, L.G.; Levy, R.B.; Claro, R.M.; Moubarac, J.-C.; Cannon, G.; Monteiro, C.A. Ultra-Processed Foods and the Nutritional Dietary Profile in Brazil. Rev. Saude Publica 2015, 49, 38. [Google Scholar] [CrossRef] [PubMed]
- Dessen, M.A.; Torres, C.V. Family and Socialization Factors in Brazil: An Overview. Online Read. Psychol. Cult. 2019, 6, 2. [Google Scholar] [CrossRef]
- Stopa, S.R.; Szwarcwald, C.L.; de Oliveira, M.M.; Gouvea, E.d.C.D.P.; Vieira, M.L.F.P.; de Freitas, M.P.S.; Sardinha, L.M.V.; Macário, E.M. Pesquisa Nacional de Saúde 2019: Histórico, métodos e perspectivas. Epidemiol. E Serv. Saude 2020, 29, e2020315. [Google Scholar] [CrossRef] [PubMed]
- Travassos, G.F.; Coelho, A.B.; Arends-Kuenning, M.P. The elderly in Brazil: Demographic transition, profile, and socioeconomic condition. Rev. Bras. Estud. Popul. 2020, 37, e0129. [Google Scholar] [CrossRef]
- Hsieh, F.Y.; Bloch, D.A.; Larsen, M.D. A simple method of sample size calculation for linear and logistic regression. Stat. Med. 1998, 17, 1623–1634. [Google Scholar] [CrossRef]
- Konttinen, H.; Männistö, S.; Sarlio-Lähteenkorva, S.; Silventoinen, K.; Haukkala, A. Emotional eating, depressive symptoms and self-reported food consumption. A population-based study. Appetite 2010, 54, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Paans, N.P.; Gibson-Smith, D.; Bot, M.; van Strien, T.; Brouwer, I.A.; Visser, M.; Penninx, B.W. Depression and eating styles are independently associated with dietary intake. Appetite 2019, 134, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Deuschle, M. Effects of antidepressants on glucose metabolism and diabetes mellitus type 2 in adults. Curr. Opin. Psychiatry 2013, 26, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Burcu, M.; Zito, J.M.; Safer, D.J.; Magder, L.S.; Dosreis, S.; Shaya, F.T.; Rosenthal, G.L. Association of Antidepressant Medications With Incident Type 2 Diabetes Among Medicaid-Insured Youths. J. Am. Med. Assoc. Pediatr. 2017, 171, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Reales-Moreno, M.; Tonini, P.; Escorihuela, R.M.; Solanas, M.; Fernández-Barrés, S.; Romaguera, D.; Contreras-Rodríguez, O. Ultra-Processed Foods and Drinks Consumption Is Associated with Psychosocial Functioning in Adolescents. Nutrients 2022, 14, 4831. [Google Scholar] [CrossRef] [PubMed]
- Nouwen, A.; Winkley, K.; Twisk, J.; Lloyd, C.E.; Peyrot, M.; Ismail, K.; Pouwer, F.; European Depression in Diabetes (EDID) Research Consortium. Type 2 Diabetes Mellitus as a Risk Factor for the Onset of Depression: A Systematic Review and Meta-Analysis. Diabetologia 2010, 53, 2480–2486. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Bendig, E.; Baumeister, H.; Hermanns, N.; Kulzer, B. Associations of depression and diabetes distress with self-management behavior and glycemic control. Health Psychol. 2021, 40, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Barker, M.M.; Davies, M.J.; Zaccardi, F.; Brady, E.M.; Hall, A.P.; Henson, J.J.; Khunti, K.; Lake, A.; Redman, E.L.; Rowlands, A.V.; et al. Age at Diagnosis of Type 2 Diabetes and Depressive Symptoms, Diabetes-Specific Distress, and Self-Compassion. Diabetes Care 2023, 46, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
Total (n = 81,524) | Non-Diabetes (n = 74,448, 91.3%) | Diabetes (n = 7076, 8.7%) | p a | N | ||||
---|---|---|---|---|---|---|---|---|
n (M) b | %(SD) | n (M) | %(SD) | n (M) | %(SD) | |||
1. Depression | <0.001 | 81,524 | ||||||
No | 73,520 | 90.18 | 67,418 | 91.70 | 6102 | 8.30 | ||
Yes | 8004 | 9.82 | 7030 | 87.83 | 974 | 12.17 | ||
2. Dietary patterns | ||||||||
UPF consumption (UPF1) c | <0.001 | 81,524 | ||||||
Low | 25,002 | 30.67 | 21,317 | 85.26 | 3685 | 14.74 | ||
High | 56,522 | 69.33 | 53,131 | 94.00 | 3391 | 6.00 | ||
UPF consumption (UPF2) | <0.001 | 81,524 | ||||||
Low | 78,061 | 95.75 | 71,106 | 91.10 | 6955 | 8.90 | ||
High | 3463 | 4.25 | 3342 | 95.97 | 121 | 4.03 | ||
Plant-based whole food consumption | <0.001 | 81,524 | ||||||
Low | 6637 | 8.14 | 6151 | 92.68 | 486 | 7.32 | ||
Intermediate | 67,161 | 82.38 | 61,391 | 91.41 | 5770 | 8.59 | ||
High | 7726 | 9.48 | 6906 | 89.39 | 820 | 10.61 | ||
Animal-based whole food consumption | 0.17 | 81,524 | ||||||
Low | 4491 | 5.51 | 4118 | 91.69 | 373 | 8.31 | ||
Intermediate | 74,776 | 91.72 | 68,291 | 91.33 | 6485 | 8.67 | ||
High | 2257 | 2.77 | 2039 | 90.34 | 218 | 9.66 | ||
3. Health | ||||||||
Smoking status | <0.001 | 71,752 | ||||||
Never | 49,321 | 68.74 | 45,759 | 92.78 | 3562 | 7.22 | ||
Ever | 22,431 | 31.26 | 19,596 | 87.36 | 2835 | 12.64 | ||
Alcohol consumption last month | <0.001 | 81,524 | ||||||
No | 49,618 | 60.86 | 44,245 | 89.17 | 5373 | 10.83 | ||
Yes | 31,906 | 39.14 | 30,203 | 94.66 | 1703 | 5.34 | ||
Obesity | <0.001 | 81,524 | ||||||
No | 64,317 | 78.89 | 59,472 | 92.47 | 4845 | 7.53 | ||
Yes | 17,207 | 21.11 | 14,976 | 87.03 | 2231 | 12.97 | ||
Physically active | <0.001 | 81,524 | ||||||
No | 54,282 | 66.58 | 48,861 | 90.01 | 5421 | 9.99 | ||
Yes | 27,242 | 33.42 | 25,587 | 93.92 | 1655 | 6.08 | ||
4. Demographic and socioeconomic status | ||||||||
Sex | <0.001 | 81,524 | ||||||
Male | 37,378 | 45.85 | 34,500 | 92.30 | 2878 | 7.70 | ||
Female | 44,146 | 54.15 | 39,948 | 90.49 | 4198 | 9.51 | ||
Race | 0.06 | 81,517 | ||||||
White | 30,577 | 37.51 | 27,848 | 91.07 | 2729 | 8.93 | ||
Non-white | 50,940 | 62.49 | 46,593 | 91.47 | 4347 | 8.53 | ||
Region | <0.001 | 81,524 | ||||||
North | 14,830 | 18.19 | 13,788 | 92.97 | 1042 | 7.03 | ||
Northeast | 27,970 | 34.31 | 25,557 | 91.37 | 2413 | 8.63 | ||
Southeast | 18,579 | 22.79 | 16,751 | 90.16 | 1828 | 9.84 | ||
South | 10,656 | 13.07 | 9690 | 90.93 | 966 | 9.07 | ||
Central | 9489 | 11.64 | 8662 | 91.28 | 827 | 8.72 | ||
Highest education obtained | <0.001 | 70,659 | ||||||
Elementary school- | 31,618 | 44.75 | 27,794 | 87.91 | 3824 | 12.09 | ||
High school | 25,142 | 35.58 | 23,706 | 94.29 | 1436 | 5.71 | ||
University+ | 13,899 | 19.67 | 13,113 | 94.34 | 786 | 5.66 | ||
Household income per capita | 0.14 | 81,504 | ||||||
<2 × minimum wage | 63,995 | 78.52 | 58,504 | 91.42 | 5491 | 8.58 | ||
2~3 × minimum wage | 7215 | 8.85 | 6565 | 90.99 | 650 | 9.01 | ||
≥3 × minimum wage | 10,294 | 12.63 | 9359 | 90.92 | 935 | 9.08 | ||
Residence | <0.001 | 81,524 | ||||||
Urban | 64,080 | 78.60 | 58,350 | 91.06 | 5730 | 8.94 | ||
Rural | 17,444 | 21.40 | 16,098 | 92.28 | 1346 | 7.72 | ||
Marital status | <0.001 | 81,524 | ||||||
Married | 32,985 | 40.46 | 29,890 | 90.62 | 3095 | 9.38 | ||
Other | 48,539 | 59.54 | 44,558 | 91.80 | 3981 | 8.20 | ||
Age | 47.36 | 17.09 | 46.66 | 16.77 | 62.07 | 12.96 | <0.001 | 81,524 |
Model | No Depression | Odds Ratio (95% CI) | p |
---|---|---|---|
Depression | |||
UPF1 | |||
Unadjusted | Reference | 1.515 (1.408, 1.629) | <0.001 |
Basic | Reference | 1.258 (1.064, 1.489) | 0.01 |
Interactive | Reference | 1.035 (0.836, 1.281) | 0.71 |
Stratified—low consumption | Reference | 1.045 (0.844, 1.294) | 0.66 |
Stratified—high consumption | Reference | 1.401 (1.107, 1.774) | <0.01 |
UPF2 | |||
Unadjusted | Reference | 1.529 (1.422, 1.643) | <0.001 |
Basic | Reference | 1.251 (1.059, 1.478) | 0.01 |
Interactive | Reference | 1.209 (1.021, 1.432) | 0.02 |
Stratified—low consumption | Reference | 1.211 (1.023, 1.434) | 0.02 |
Stratified—high consumption | Reference | 3.551 (1.394, 9.046) | 0.01 |
Depression − | Depression + | Total | |
---|---|---|---|
Age 18–59 | |||
Total | 53,842 | 5657 | 59,499 |
Diabetes+ | 2364 | 438 | 2802 |
% of diabetes | 4.39 | 7.74 | 4.71 |
Age ≥ 60 | |||
Total | 19,678 | 2347 | 22,025 |
Diabetes+ | 3738 | 536 | 4274 |
% of diabetes | 19.00 | 22.84 | 19.41 |
Models | No Depression | Odds Ratio (95% CI) | p | R2 (%, Adjusted) |
---|---|---|---|---|
Depression | ||||
UPF1 | ||||
low consumption, 18–59 years | Reference | 0.941 (0.682, 1.298) | 0.61 | 12.83 |
low consumption, 60+ years | Reference | 1.075 (0.813, 1.420) | 0.82 | 3.36 |
high consumption, 18–59 years | Reference | 1.596 (1.127, 2.260) | 0.01 | 12.49 |
high consumption, 60+ years | Reference | 1.112 (0.840, 1.472) | 0.40 | 2.73 |
UPF2 | ||||
low consumption, 18–59 years | Reference | 1.238 (0.947, 1.618) | 0.11 | 13.51 |
low consumption, 60+ years | Reference | 1.098 (0.900, 1.339) | 0.32 | 2.37 |
high consumption, 18–59 years | Reference | 6.726 (2.625, 17.233) | <0.001 | 14.37 |
high consumption, 60+ years | Reference | 0.323 (0.036, 2.865) | 0.31 | 12.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Correia, P.E.; Teixeira, P.P.; Spiazzi, B.F.; Brietzke, E.; Socal, M.P.; Gerchman, F. Ultra-Processed Food Intake as an Effect Modifier in the Association Between Depression and Diabetes in Brazil: A Cross-Sectional Study. Nutrients 2025, 17, 2454. https://doi.org/10.3390/nu17152454
Sun Y, Correia PE, Teixeira PP, Spiazzi BF, Brietzke E, Socal MP, Gerchman F. Ultra-Processed Food Intake as an Effect Modifier in the Association Between Depression and Diabetes in Brazil: A Cross-Sectional Study. Nutrients. 2025; 17(15):2454. https://doi.org/10.3390/nu17152454
Chicago/Turabian StyleSun, Yunxiang, Poliana E. Correia, Paula P. Teixeira, Bernardo F. Spiazzi, Elisa Brietzke, Mariana P. Socal, and Fernando Gerchman. 2025. "Ultra-Processed Food Intake as an Effect Modifier in the Association Between Depression and Diabetes in Brazil: A Cross-Sectional Study" Nutrients 17, no. 15: 2454. https://doi.org/10.3390/nu17152454
APA StyleSun, Y., Correia, P. E., Teixeira, P. P., Spiazzi, B. F., Brietzke, E., Socal, M. P., & Gerchman, F. (2025). Ultra-Processed Food Intake as an Effect Modifier in the Association Between Depression and Diabetes in Brazil: A Cross-Sectional Study. Nutrients, 17(15), 2454. https://doi.org/10.3390/nu17152454