Natural Compounds and Their Potential in Eating-Related Aspects of Mental Health Disorders
Abstract
1. Introduction
2. Rosmarinus officinalis
3. Ginkgo biloba
4. Bupleurum chinense
5. Berberis vulgaris, Coptis chinensis, and Other Berberine-Containing Plants
6. Summary and Future Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Polivy, J.; Herman, C.P. Mental health and eating behaviours: A bi-directional relation. Can. J. Public Health 2005, 96 (Suppl. S3), S49–S53. [Google Scholar] [CrossRef]
- Tan, E.J.; Raut, T.; Le, L.K.-D.; Hay, P.; Ananthapavan, J.; Lee, Y.Y.; Mihalopoulos, C. The Association between Eating Disorders and Mental Health: An Umbrella Review. J. Eat. Disord. 2023, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis Essential Oil: A Review of Its Phytochemistry, Anti-Inflammatory Activity, and Mechanisms of Action Involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Quílez, M.; Ferreres, F.; López-Miranda, S.; Salazar, E.; Jordán, M.J. Seed Oil from Mediterranean Aromatic and Medicinal Plants of the Lamiaceae Family as a Source of Bioactive Components with Nutritional. Antioxidants 2020, 9, 510. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.D.; Singh, A.; Fathordoobady, F.; Doi, B.; Pratap Singh, A. Plant Extracts Inhibit the Formation of Hydroperoxides and Help Maintain Vitamin E Levels and Omega-3 Fatty Acids During High Temperature Processing and Storage of Hempseed and Soybean Oils. J. Food Sci. 2019, 84, 3147–3155. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- ISO 1342:2012; Essential Oil of Rosemary (Rosmarinus officinalis L.). International Organization for Standardization: Geneva, Switzerland, 2012. Available online: https://www.iso.org/standard/56521.html#lifecycle (accessed on 23 June 2025).
- Silva-Filho, S.; De Souza Silva-Comar, F.; Wiirzler, L.; Do Pinho, R.; Grespan, R.; Bersani-Amado, C.; Cuman, R. Effect of Camphor on the Behavior of Leukocytes In Vitro and In Vivo in Acute Inflammatory Response. Trop. J. Pharm. Res. 2015, 13, 2031. [Google Scholar] [CrossRef]
- Nam, S.-Y.; Chung, C.; Seo, J.-H.; Rah, S.-Y.; Kim, H.-M.; Jeong, H.-J. The Therapeutic Efficacy of α-Pinene in an Experimental Mouse Model of Allergic Rhinitis. Int. Immunopharmacol. 2014, 23, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Juhás, Š.; Bukovská, A.; Čikoš, Š.; Czikková, S.; Fabian, D.; Koppel, J. Anti-Inflammatory Effects of Rosmarinus officinalis Essential Oil in Mice. Acta Vet. Brno 2009, 78, 121–127. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Rinaldi Alvarenga, J.F.; Leal, L.N.; Lamuela-Raventos, R.M. A Comprehensive Study on the Phenolic Profile of Widely Used Culinary Herbs and Spices: Rosemary, Thyme, Oregano, Cinnamon, Cumin and Bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Del Baño, M.J.; Lorente, J.; Castillo, J.; Benavente-García, O.; Del Río, J.A.; Ortuño, A.; Quirin, K.-W.; Gerard, D. Phenolic Diterpenes, Flavones, and Rosmarinic Acid Distribution during the Development of Leaves, Flowers, Stems, and Roots of Rosmarinus officinalis. Antioxidant Activity. J. Agric. Food Chem. 2003, 51, 4247–4253. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5281792, Rosmarinic Acid. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Rosmarinic-acid (accessed on 23 June 2025).
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and Antimicrobial Activities of Rosemary Extracts Linked to Their Polyphenol Composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.R.; Camargo, S.E.A.; De Oliveira, L.D. Rosmarinus officinalis L. (Rosemary) as Therapeutic and Prophylactic Agent. J. Biomed. Sci. 2019, 26, 5. [Google Scholar] [CrossRef] [PubMed]
- Suganami, T.; Tanaka, M.; Ogawa, Y. Adipose Tissue Inflammation and Ectopic Lipid Accumulation. Endocr. J. 2012, 59, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Tarchi, L.; Cassioli, E.; Rossi, E.; Merola, G.P.; Ficola, A.; Cordasco, V.Z.; Ricca, V.; Castellini, G. A Transdiagnostic and Diagnostic-Specific Approach on Inflammatory Biomarkers in Eating Disorders: A Meta-Analysis and Systematic Review. Psychiatry Res. 2024, 340, 116115. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Lin, J.; Deng, Y.; Ji, Y.; Liang, C.; Wei, S.; Jing, X.; Yan, F. The Immunological Perspective of Major Depressive Disorder: Unveiling the Interactions between Central and Peripheral Immune Mechanisms. J. Neuroinflamm. 2025, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int. J. Mol. Sci. 2022, 23, 2810. [Google Scholar] [CrossRef] [PubMed]
- Ercan, P.; El, S.N. Bioaccessibility and inhibitory effects on digestive enzymes of carnosic acid in sage and rosemary. Int. J. Biol. Macromol. 2018, 115, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Romo Vaquero, M.; Yáñez-Gascón, M.-J.; García Villalba, R.; Larrosa, M.; Fromentin, E.; Ibarra, A.; Roller, M.; Tomás-Barberán, F.; Espín De Gea, J.C.; García-Conesa, M.-T. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid. PLoS ONE 2012, 7, e39773. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Hu, M.; Li, Y.; Cao, X. Carnosic Acid Alleviates Brain Injury through NF κB regulated Inflammation and Caspase 3 associated Apoptosis in High Fat induced Mouse Models. Mol. Med. Rep. 2019, 20, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Terzo, S.; Calvi, P.; Nuzzo, D.; Picone, P.; Allegra, M.; Mulè, F.; Amato, A. Long-Term Ingestion of Sicilian Black Bee Chestnut Honey and/or D-Limonene Counteracts Brain Damage Induced by High Fat-Diet in Obese Mice. Int. J. Mol. Sci. 2023, 24, 3467. [Google Scholar] [CrossRef] [PubMed]
- Akbari, S.; Sohouli, M.H.; Ebrahimzadeh, S.; Ghanaei, F.M.; Hosseini, A.F.; Aryaeian, N. Effect of Rosemary Leaf Powder with Weight Loss Diet on Lipid Profile, Glycemic Status, and Liver Enzymes in Patients with Nonalcoholic Fatty Liver Disease: A Randomized, Double-blind Clinical Trial. Phytother. Res. 2022, 36, 2186–2196. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.S.; Petersen, K.S.; Kris-Etherton, P.M.; Rogers, C.J. Spices in a High-Saturated-Fat, High-Carbohydrate Meal Reduce Postprandial Proinflammatory Cytokine Secretion in Men with Overweight or Obesity: A 3-Period, Crossover, Randomized Controlled Trial. J. Nutr. 2020, 150, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Mourya, A.; Akhtar, A.; Ahuja, S.; Sah, S.P.; Kumar, A. Synergistic Action of Ursolic Acid and Metformin in Experimental Model of Insulin Resistance and Related Behavioral Alterations. Eur. J. Pharmacol. 2018, 835, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Checker, R.; Sandur, S.K.; Sharma, D.; Patwardhan, R.S.; Jayakumar, S.; Kohli, V.; Sethi, G.; Aggarwal, B.B.; Sainis, K.B. Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT. PLoS ONE 2012, 7, e31318. [Google Scholar] [CrossRef] [PubMed]
- Mirza, F.J.; Amber, S.; Sumera; Hassan, D.; Ahmed, T.; Zahid, S. Rosmarinic Acid and Ursolic Acid Alleviate Deficits in Cognition, Synaptic Regulation and Adult Hippocampal Neurogenesis in an Aβ1-42-Induced Mouse Model of Alzheimer’s Disease. Phytomedicine 2021, 83, 153490. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.M.; Syeda, A.F.; Alshammari, M.; Alnasser, S.; Alenzi, N.D.; Alanazi, S.T.; Nandakumar, K. Cognition Enhancing Effect of Rosemary (Rosmarinus officinalis L.) in Lab Animal Studies: A Systematic Review and Meta-Analysis. Braz. J. Med. Biol. Res. 2022, 55, e11593. [Google Scholar] [CrossRef] [PubMed]
- Abdelhalim, A.; Karim, N.; Chebib, M.; Aburjai, T.; Khan, I.; Johnston, G.A.R.; Hanrahan, J. Antidepressant, Anxiolytic and Antinociceptive Activities of Constituents from Rosmarinus officinalis. J. Pharm. Pharm. Sci. 2015, 18, 448. [Google Scholar] [CrossRef] [PubMed]
- Juergens, U.R.; Stöber, M.; Vetter, H. Inhibition of Cytokine Production and Arachidonic Acid Metabolism by Eucalyptol (1.8-Cineole) in Human Blood Monocytes in Vitro. Eur. J. Med. Res. 1998, 3, 508–510. [Google Scholar] [PubMed]
- Takaki, I.; Bersani-Amado, L.E.; Vendruscolo, A.; Sartoretto, S.M.; Diniz, S.P.; Bersani-Amado, C.A.; Cuman, R.K.N. Anti-Inflammatory and Antinociceptive Effects of Rosmarinus officinalis L. Essential Oil in Experimental Animal Models. J. Med. Food 2008, 11, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell 2017, 168, 37–57. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Pries, R.; Jeschke, S.; Leichtle, A.; Bruchhage, K.-L. Modes of Action of 1,8-Cineol in Infections and Inflammation. Metabolites 2023, 13, 751. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, D.; Shi, Y.; Wang, Y.; Wu, Y.; Wu, X.; Shah, B.A.; Ye, G. 1,8-Cineole Alleviates Hippocampal Oxidative Stress in CUMS Mice via the PI3K/Akt/Nrf2 Pathway. Nutrients 2025, 17, 1027. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.G.; Bettio, L.E.B.; Cunha, M.P.; Capra, J.C.; Dalmarco, J.B.; Pizzolatti, M.G.; Rodrigues, A.L.S. Antidepressant-like Effect of the Extract of Rosmarinus officinalis in Mice: Involvement of the Monoaminergic System. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.G.; Neis, V.B.; Balen, G.O.; Colla, A.; Cunha, M.P.; Dalmarco, J.B.; Pizzolatti, M.G.; Prediger, R.D.; Rodrigues, A.L.S. Antidepressant-like Effect of Ursolic Acid Isolated from Rosmarinus officinalis L. in Mice: Evidence for the Involvement of the Dopaminergic System. Pharmacol. Biochem. Behav. 2012, 103, 204–211. [Google Scholar] [CrossRef]
- Machado, D.G.; Cunha, M.P.; Neis, V.B.; Balen, G.O.; Colla, A.; Bettio, L.E.B.; Oliveira, Á.; Pazini, F.L.; Dalmarco, J.B.; Simionatto, E.L.; et al. Antidepressant-like Effects of Fractions, Essential Oil, Carnosol and Betulinic Acid Isolated from Rosmarinus officinalis L. Food Chem. 2013, 136, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Tsuji, M.; Inazu, M.; Egashira, T.; Matsumiya, T. Rosmarinic Acid and Caffeic Acid Produce Antidepressive-like Effect in the Forced Swimming Test in Mice. Eur. J. Pharmacol. 2002, 449, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-H.; Chou, M.-L.; Chen, W.-C.; Lai, Y.-S.; Lu, K.-H.; Hao, C.-W.; Sheen, L.-Y. A Medicinal Herb, Melissa officinalis L. Ameliorates Depressive-like Behavior of Rats in the Forced Swimming Test via Regulating the Serotonergic Neurotransmitter. J. Ethnopharmacol. 2015, 175, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Tsuji, M.; Miyamoto, J.; Matsumiya, T. Rosmarinic Acid and Caffeic Acid Reduce the Defensive Freezing Behavior of Mice Exposed to Conditioned Fear Stress. Psychopharmacology 2002, 164, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Bartas, K.; Hui, M.; Chen, L.; Vasquez, J.J.; Azouz, G.; Derdeyn, P.; Manville, R.W.; Ho, E.L.; Fang, A.S.; et al. Molecular and Circuit Determinants in the Globus Pallidus Mediating Control of Cocaine-Induced Behavioral Plasticity. Neuron 2024, 112, 3470–3485.e12. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Ferdousi, F.; Fukumitsu, S.; Kuwata, H.; Isoda, H. Antidepressant- and Anxiolytic-like Activities of Rosmarinus officinalis Extract in Rodent Models: Involvement of Oxytocinergic System. Biomed. Pharmacother. 2021, 144, 112291. [Google Scholar] [CrossRef] [PubMed]
- Onaka, T.; Takayanagi, Y. Role of Oxytocin in the Control of Stress and Food Intake. J. Neuroendocrinol. 2019, 31, e12700. [Google Scholar] [CrossRef] [PubMed]
- Nematolahi, P.; Mehrabani, M.; Karami-Mohajeri, S.; Dabaghzadeh, F. Effects of Rosmarinus officinalis L. on Memory Performance, Anxiety, Depression, and Sleep Quality in University Students: A Randomized Clinical Trial. Complement. Ther. Clin. Pract. 2018, 30, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Araki, R.; Sasaki, K.; Onda, H.; Nakamura, S.; Kassai, M.; Kaneko, T.; Isoda, H.; Hashimoto, K. Effects of Continuous Intake of Rosemary Extracts on Mental Health in Working Generation Healthy Japanese Men: Post-Hoc Testing of a Randomized Controlled Trial. Nutrients 2020, 12, 3551. [Google Scholar] [CrossRef] [PubMed]
- Achour, M.; Ben Salem, I.; Ferdousi, F.; Nouira, M.; Ben Fredj, M.; Mtiraoui, A.; Isoda, H.; Saguem, S. Rosemary Tea Consumption Alters Peripheral Anxiety and Depression Biomarkers: A Pilot Study in Limited Healthy Volunteers. J. Am. Nutr. Assoc. 2022, 41, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; et al. Antidepressant Drugs Act by Directly Binding to TRKB Neurotrophin Receptors. Cell 2021, 184, 1299–1313.e19. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Mohamadi, N.; Sharififar, F.; Dehghannoudeh, G.; Jahanbakhsh, F.; Dabaghzadeh, F. Rosemary as an Adjunctive Treatment in Patients with Major Depressive Disorder: A Randomized, Double-blind, Placebo-controlled Trial. Complement. Ther. Clin. Pract. 2022, 49, 101685. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; Schmidt, R.; Cryan, J.F.; Hilbert, A. A Role for the Microbiota-Gut-Brain Axis in Avoidant/Restrictive Food Intake Disorder: A New Conceptual Model. Int. J. Eat. Disord. 2024, 57, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Helal, P.; Xia, W.; Sardar, P.; Conway-Morris, A.; Conway-Morris, A.; Pedicord, V.A.; Serfontein, J. Changes in the Firmicutes to Bacteriodetes Ratio in the Gut Microbiome in Individuals with Anorexia Nervosa Following Inpatient Treatment: A Systematic Review and a Case Series. Brain Behav. 2024, 14, e70014. [Google Scholar] [CrossRef] [PubMed]
- Romeo, M.; Cavaliere, G.; Traina, G. Bulimia Nervosa and Depression, from the Brain to the Gut Microbiota and Back. Front. Biosci. 2024, 29, 277. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Xiong, W. From Gut Microbiota to Brain: Implications on Binge Eating Disorders. Gut Microbes 2024, 16, 2357177. [Google Scholar] [CrossRef] [PubMed]
- Winter, G.; Hart, R.A.; Charlesworth, R.P.G.; Sharpley, C.F. Gut Microbiome and Depression: What We Know and What We Need to Know. Rev. Neurosci. 2018, 29, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Bogielski, B.; Michalczyk, K.; Głodek, P.; Tempka, B.; Gębski, W.; Stygar, D. Association between Small Intestine Bacterial Overgrowth and Psychiatric Disorders. Front. Biosci. 2024, 15, 1438066. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, C.; Squassina, A. We Are Not Alone in Our Body: Insights into the Involvement of Microbiota in the Etiopathogenesis and Pharmacology of Mental Illness. Curr. Drug Metab. 2018, 19, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut Microbiome Remodeling Induces Depressive-like Behaviors through a Pathway Mediated by the Host’s Metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Pferschy-Wenzig, E.-M.; Pausan, M.R.; Ardjomand-Woelkart, K.; Röck, S.; Ammar, R.M.; Kelber, O.; Moissl-Eichinger, C.; Bauer, R. Medicinal Plants and Their Impact on the Gut Microbiome in Mental Health: A Systematic Review. Nutrients 2022, 14, 2111. [Google Scholar] [CrossRef] [PubMed]
- Dinan, K.; Dinan, T. Antibiotics and Mental Health: The Good, the Bad and the Ugly. J. Intern. Med. 2022, 292, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.H.; Santos, M.H.D.M.; Scandorieiro, S.; Gonçalves, B.C.; Vespero, E.C.; Perugini, M.R.E.; Pavanelli, W.R.; Nakazato, G.; Kobayashi, R.K.T. Selective Serotonin Reuptake Inhibitors: Antimicrobial Activity Against ESKAPEE Bacteria and Mechanisms of Action. Antibiotics 2025, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Macedo, D.; Filho, A.J.M.C.; Soares De Sousa, C.N.; Quevedo, J.; Barichello, T.; Júnior, H.V.N.; Freitas De Lucena, D. Antidepressants, Antimicrobials or Both? Gut Microbiota Dysbiosis in Depression and Possible Implications of the Antimicrobial Effects of Antidepressant Drugs for Antidepressant Effectiveness. J. Affect. Disord. 2017, 208, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xie, J.; Li, X.; Yuan, Y.; Zhang, L.; Hu, W.; Luo, H.; Yu, H.; Zhang, R. Antidepressant Effects of Rosemary Extracts Associate With Anti-Inflammatory Effect and Rebalance of Gut Microbiota. Front. Pharmacol. 2018, 9, 1126. [Google Scholar] [CrossRef] [PubMed]
- Romo Vaquero, M.; García Villalba, R.; Larrosa, M.; Yáñez-Gascón, M.J.; Fromentin, E.; Flanagan, J.; Roller, M.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M. Bioavailability of the Major Bioactive Diterpenoids in a Rosemary Extract: Metabolic Profile in the Intestine, Liver, Plasma, and Brain of Zucker Rats. Mol. Nutr. Food Res. 2013, 57, 1834–1846. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Toxicity and Safety of Rosemary (Rosmarinus officinalis): A Comprehensive Review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 9–23. [Google Scholar] [CrossRef] [PubMed]
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Scientific Opinion on the refined exposure assessment of extracts of rosemary (E 392) from its use as food additive. EFSA J. 2018, 16, e05373. [Google Scholar] [CrossRef] [PubMed]
- Phipps, K.R.; Lozon, D.; Baldwin, N. Genotoxicity and Subchronic Toxicity Studies of Supercritical Carbon Dioxide and Acetone Extracts of Rosemary. Regul. Toxicol. Pharmacol. 2021, 119, 104826. [Google Scholar] [CrossRef] [PubMed]
- WHO. Safety Evaluation of Certain Food Additives: Prepared by the Eighty-Second Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series 73; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-166073-0.
- Phipps, K.R.; Danielewska-Nikiel, B.; Mushonganono, J.; Baldwin, N. Reproductive and Developmental Toxicity Screening Study of an Acetone Extract of Rosemary. Regul. Toxicol. Pharmacol. 2021, 120, 104840. [Google Scholar] [CrossRef]
- Norwegian Institute of Public Health, W.H.O. Collaborating Centre for Drug Statistics Methodology. Last Updated 27 December 2024. Available online: https://atcddd.fhi.no/atc_ddd_index/?code=N06DX02 (accessed on 21 June 2025).
- European Union Herbal Monograph on Ginkgo biloba L., Folium EMA/HMPC/321097/2012. Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-ginkgo-biloba-l-folium_en.pdf (accessed on 21 June 2025).
- Kulić, Ž.; Lehner, M.D.; Dietz, G.P.H. Ginkgo biloba Leaf Extract EGb 761® as a Paragon of the Product by Process Concept. Front. Pharmacol. 2022, 13, 1007746. [Google Scholar] [CrossRef] [PubMed]
- Napryeyenko, O.; Sonnik, G.; Tartakovsky, I. Efficacy and Tolerability of Ginkgo biloba Extract EGb 761® by Type of Dementia: Analyses of a Randomised Controlled Trial. J. Neurol. Sci. 2009, 283, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Kanowski, S.; Hoerr, R. Ginkgo biloba Extract EGb 761 in Dementia: Intent-to-Treat Analyses of a 24-Week, Multi-Center, Double-Blind, Placebo-Controlled, Randomized Trial. Pharmacopsychiatry 2003, 36, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.; Coley, N.; Ousset, P.-J.; Berrut, G.; Dartigues, J.-F.; Dubois, B.; Grandjean, H.; Pasquier, F.; Piette, F.; Robert, P.; et al. Long-Term Use of Standardised Ginkgo biloba Extract for the Prevention of Alzheimer’s Disease (GuidAge): A Randomised Placebo-Controlled Trial. Lancet Neurol. 2012, 11, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Snitz, B.E.; O’Meara, E.S.; Carlson, M.C.; Arnold, A.M.; Ives, D.G.; Rapp, S.R.; Saxton, J.; Lopez, O.L.; Dunn, L.O.; Sink, K.M.; et al. Ginkgo biloba for Preventing Cognitive Decline in Older Adults: A Randomized Trial. JAMA 2009, 302, 2663–2670. [Google Scholar] [CrossRef] [PubMed]
- DeKosky, S.T.; Williamson, J.D.; Fitzpatrick, A.L.; Kronmal, R.A.; Ives, D.G.; Saxton, J.A.; Lopez, O.L.; Burke, G.; Carlson, M.C.; Fried, L.P.; et al. Ginkgo biloba for Prevention of Dementia: A Randomized Controlled Trial. JAMA 2008, 300, 2253–2262. [Google Scholar] [CrossRef] [PubMed]
- Necula, B.-R.; Necula, R.D.; Petric, P.S.; Ifteni, P.I.; Irimie, M.; Dima, L. EGb761 Trials for Mild-to-Moderate Dementia—What Have We Learned in the Past 18 Years? Am. J. Ther. 2024, 31, e645–e651. [Google Scholar] [CrossRef] [PubMed]
- Birks, J.; Grimley Evans, J. Ginkgo biloba for Cognitive Impairment and Dementia. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health (NIH), National Center for Complementary and Integrative Health (NCCIH). Last Updated February 2025. Available online: https://www.nccih.nih.gov/health/ginkgo (accessed on 21 June 2025).
- Savaskan, E.; Mueller, H.; Hoerr, R.; Von Gunten, A.; Gauthier, S. Treatment Effects of Ginkgo biloba Extract EGb 761® on the Spectrum of Behavioral and Psychological Symptoms of Dementia: Meta-Analysis of Randomized Controlled Trials. Int. Psychogeriatr. 2018, 30, 285–293. [Google Scholar] [CrossRef] [PubMed]
- DGN e. V. & DGPPN e. V. (Hrsg.) S3-Leitlinie Demenzen—Living Guideline, Version 5.1, 28 March 2025. Available online: https://register.awmf.org/de/leitlinien/detail/038-013 (accessed on 21 June 2025).
- Liu, L.; Wang, Y.; Zhang, J.; Wang, S. Advances in the Chemical Constituents and Chemical Analysis of Ginkgo biloba Leaf, Extract, and Phytopharmaceuticals. J. Pharm. Biomed. Anal. 2021, 193, 113704. [Google Scholar] [CrossRef] [PubMed]
- Le Bars, P.L.; Velasco, F.M.; Ferguson, J.M.; Dessain, E.C.; Kieser, M.; Hoerr, R. Influence of the Severity of Cognitive Impairment on the Effect of the Ginkgo biloba Extract EGb 761® in Alzheimer’s Disease. Neuropsychobiology 2002, 45, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J. Herbal Medicines in the Treatment of Psychiatric Disorders: 10-year Updated Review. Phytother. Res. 2018, 32, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R. Plants with Potential Importance in Supporting the Treatment of Depression: Current Trends, and Research. Pharmaceuticals 2024, 17, 1489. [Google Scholar] [CrossRef] [PubMed]
- Grosso, C.; Santos, M.; Barroso, M.F. From Plants to Psycho-Neurology: Unravelling the Therapeutic Benefits of Bioactive Compounds in Brain Disorders. Antioxidants 2023, 12, 1603. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Sun, X.; Yang, L. Effects and Safety of Ginkgo biloba on Depression: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2024, 15, 1364030. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, P.; Adamska, I.; Felisiak, K. The Potential of Ginkgo biloba as a Source of Biologically Active Compounds—A Review of the Recent Literature and Patents. Molecules 2023, 28, 3993. [Google Scholar] [CrossRef] [PubMed]
- Bogacz, A.; Karasiewicz, M.; Dziekan, K.; Procyk, D.; Górska-Paukszta, M.; Kowalska, A.; Mikołajczak, P.Ł.; Ożarowski, M.; Czerny, B. Impact of Panax Ginseng and Ginkgo biloba Extracts on Expression Level of Transcriptional Factors and Xenobiotic-Metabolizing Cytochrome P450 Enzymes. Herba Pol. 2016, 62, 42–54. [Google Scholar] [CrossRef]
- Suárez-González, E.; Sandoval-Ramírez, J.; Flores-Hernández, J.; Carrasco-Carballo, A. Ginkgo biloba: Antioxidant Activity and In Silico Central Nervous System Potential. Curr. Issues Mol. Biol. 2023, 45, 9674–9691. [Google Scholar] [CrossRef] [PubMed]
- Ayatollahi, S.A.; Khoshsirat, S.; Peyvandi, A.A.; Rezaei, O.; Mehrjardi, F.Z.; Nahavandi, A.; Niknazar, S. Ginkgo biloba modulates hippocampal BDNF expression in a rat model of chronic restraint stress-induced depression. Physiol. Pharmacol. 2020, 24, 285–297. [Google Scholar] [CrossRef]
- Yeh, K.-Y.; Shou, S.-S.; Lin, Y.-X.; Chen, C.-C.; Chiang, C.-Y.; Yeh, C.-Y. Effect of Ginkgo biloba Extract on Lipopolysaccharide-Induced Anhedonic Depressive-like Behavior in Male Rats. Phytother. Res. 2015, 29, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Montes, P.; Ruiz-Sanchez, E.; Rojas, C.; Rojas, P. Ginkgo biloba Extract 761: A Review of Basic Studies and Potential Clinical Use in Psychiatric Disorders. CNS Neurol. Disord. Drug Targets 2015, 14, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Kuribara, H.; Weintraub, S.T.; Yoshihama, T.; Maruyama, Y. An Anxiolytic-Like Effect of Ginkgo biloba Extract and Its Constituent, Ginkgolide-A, in Mice. J. Nat. Prod. 2003, 66, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez De Turco, E.B.; Droy-Lefaix, M.T.; Bazan, N.G. EGb 761 Inhibits Stress-Induced Polydipsia in Rats. Physiol. Behav. 1993, 53, 1001–1002. [Google Scholar] [CrossRef] [PubMed]
- Banin, R.M.; Hirata, B.K.S.; Andrade, I.S.; Zemdegs, J.C.S.; Clemente, A.P.G.; Dornellas, A.P.S.; Boldarine, V.T.; Estadella, D.; Albuquerque, K.T.; Oyama, L.M.; et al. Beneficial Effects of Ginkgo biloba Extract on Insulin Signaling Cascade, Dyslipidemia, and Body Adiposity of Diet-Induced Obese Rats. Braz. J. Med. Biol. Res. 2014, 47, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Hirata, B.K.S.; Pedroso, A.P.; Machado, M.M.F.; Neto, N.I.P.; Perestrelo, B.O.; De Sá, R.D.C.C.; Alonso-Vale, M.I.C.; Nogueira, F.N.; Oyama, L.M.; Ribeiro, E.B.; et al. Ginkgo biloba Extract Modulates the Retroperitoneal Fat Depot Proteome and Reduces Oxidative Stress in Diet-Induced Obese Rats. Front. Pharmacol. 2019, 10, 686. [Google Scholar] [CrossRef] [PubMed]
- Banin, R.M.; De Andrade, I.S.; Cerutti, S.M.; Oyama, L.M.; Telles, M.M.; Ribeiro, E.B. Ginkgo biloba Extract (GbE) Stimulates the Hypothalamic Serotonergic System and Attenuates Obesity in Ovariectomized Rats. Front. Pharmacol. 2017, 8, 605. [Google Scholar] [CrossRef] [PubMed]
- Huguet, F.; Drieu, K.; Piriou, A. Decreased Cerebral 5-HT1A Receptors during Ageing: Reversal by Ginkgo biloba Extract (EGb 761). J. Pharm. Pharmacol. 1994, 46, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Bolaños-Jiménez, F.; De Castro, R.M.; Sarhan, H.; Prudhomme, N.; Drieu, K.; Fillion, G. Stress-induced 5-HT1A Receptor Desensitization: Protective Effects of Ginkgo biloba Extract (EGb 761). Fundam. Clin. Pharmacol. 1995, 9, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Sloley, B.D.; Urichuk, L.J.; Morley, P.; Durkin, J.; Shan, J.J.; Pang, P.K.T.; Coutts, R.T. Identification of Kaempferol as a Monoamine Oxidase Inhibitor and Potential Neuroprotectant in Extracts of Ginkgo biloba Leaves. J. Pharm. Pharmacol. 2000, 52, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.M.F.; Pereira, J.P.; Hirata, B.K.S.; Júlio, V.S.; Banin, R.M.; Andrade, H.M.; Ribeiro, E.B.; Cerutti, S.M.; Telles, M.M. A Single Dose of Ginkgo biloba Extract Induces Gene Expression of Hypothalamic Anorexigenic Effectors in Male Rats. Brain Sci. 2021, 11, 1602. [Google Scholar] [CrossRef] [PubMed]
- Unger, M. Pharmacokinetic Drug Interactions Involving Ginkgo biloba. Drug Metab. Rev. 2013, 45, 353–385. [Google Scholar] [CrossRef] [PubMed]
- Mai, N.T.Q.; Hieu, N.V.; Ngan, T.T.; Van Anh, T.; Van Linh, P.; Thu Phuong, N.T. Impact of Ginkgo biloba Drug Interactions on Bleeding Risk and Coagulation Profiles: A Comprehensive Analysis. PLoS ONE 2025, 20, e0321804. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Cao, Y.; Wang, L.; Dai, Y.; Hu, L.; Wang, Q.; Zhu, L.; Bao, W.; Zou, Y.; Chen, Y.; et al. Role of Medicinal Plants for Liver-Qi Regulation Adjuvant Therapy in Post-stroke Depression: A Systematic Review of Literature. Phytother. Res. 2017, 31, 40–52. [Google Scholar] [CrossRef] [PubMed]
- National Medical Products Administration. Available online: https://english.nmpa.gov.cn/drugs.html (accessed on 21 June 2025).
- Wang, Y.; Fan, R.; Huang, X. Meta-Analysis of the Clinical Effectiveness of Traditional Chinese Medicine Formula Chaihu-Shugan-San in Depression. J. Ethnopharmacol. 2012, 141, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shergis, J.L.; Di, Y.M.; Zhang, A.L.; Lu, C.; Guo, X.; Fang, Z.; Xue, C.C.; Li, Y. Managing Depression with Bupleurum chinense Herbal Formula: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Altern. Complement. Med. 2020, 26, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Guo, X.; Ma, Y.; Xu, L.; Wei, J.; Xiao, P. A Comprehensive Review on Traditional and Modern Research of the Genus Bupleurum (Bupleurum L., Apiaceae) in Recent 10 Years. J. Ethnopharmacol. 2023, 306, 116129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Luo, C.; Wang, P.; He, Q.; Zhou, J.; Peng, H. Saikosaponin A Mediates the Inflammatory Response by Inhibiting the MAPK and NF-κB Pathways in LPS-Stimulated RAW 264.7 Cells. Exp. Ther. Med. 2013, 5, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, F.; Lemaur, V.; Cornil, J.; Lazzaroni, R.; Duroux, J.-L.; Olivier, Y.; Trouillas, P. Free Radical Scavenging by Natural Polyphenols: Atom versus Electron Transfer. J. Phys. Chem. A 2013, 117, 2082–2092. [Google Scholar] [CrossRef] [PubMed]
- Figueira, I.; Menezes, R.; Macedo, D.; Costa, I.; Dos Santos, C.N. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr. Neuropharmacol. 2017, 15, 562–594. [Google Scholar] [CrossRef] [PubMed]
- Stępnik, K. Biomimetic Chromatographic Studies Combined with the Computational Approach to Investigate the Ability of Triterpenoid Saponins of Plant Origin to Cross the Blood–Brain Barrier. Int. J. Mol. Sci. 2021, 22, 3573. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, T.; Hu, E.; Duan, L.; Zhang, C.; Wang, Y.; Tang, T.; Yang, Z.; Fan, R. Proteomics Study Reveals the Anti-Depressive Mechanisms and the Compatibility Advantage of Chaihu-Shugan-San in a Rat Model of Chronic Unpredictable Mild Stress. Front. Pharmacol. 2022, 12, 791097. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qin, X.-M.; Tian, J.-S.; Gao, X.-X.; Du, G.-H.; Zhou, Y.-Z. Integrated Network Pharmacology and Metabolomics to Dissect the Combination Mechanisms of Bupleurum chinense DC-Paeonia Lactiflora Pall Herb Pair for Treating Depression. J. Ethnopharmacol. 2021, 264, 113281. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yin, Q.; Tian, J.; Gao, X.; Qin, X.; Du, G.; Zhou, Y. Studies on the Changes of Pharmacokinetics Behaviors of Phytochemicals and the Influence on Endogenous Metabolites After the Combination of Radix Bupleuri and Radix Paeoniae Alba Based on Multi-Component Pharmacokinetics and Metabolomics. Front. Pharmacol. 2021, 12, 630970. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J.; Yuan, L.; Zhou, L.; Jia, X.; Tan, X. Interaction of the Main Components from the Traditional Chinese Drug Pair Chaihu-Shaoyao Based on Rat Intestinal Absorption. Molecules 2011, 16, 9600–9610. [Google Scholar] [CrossRef] [PubMed]
- He, D.-Y.; Dai, S.-M. Anti-Inflammatory and Immunomodulatory Effects of Paeonia Lactiflora Pall., a Traditional Chinese Herbal Medicine. Front. Pharmacol. 2011, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gong, W.; Tian, J.; Gao, X.; Qin, X.; Du, G.; Zhou, Y. Radix Paeoniae Alba Attenuates Radix Bupleuri-Induced Hepatotoxicity by Modulating Gut Microbiota to Alleviate the Inhibition of Saikosaponins on Glutathione Synthetase. J. Pharm. Anal. 2023, 13, 640–659. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, H.-M.; Bing, Y.-F.; Zheng, Y.; Li, W.-L.; Zou, X.; Qu, Z.-Y. Bupleurum Scorzonerifolium: Systematic Research through Pharmacodynamics and Serum Pharmacochemistry on Screening Antidepressant Q-Markers for Quality Control. J. Pharm. Biomed. Anal. 2023, 225, 115202. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Zhao, Y.-H.; Zeng, M.-J.; Fang, F.; Li, M.; Qin, T.-T.; Ye, L.-Y.; Li, H.-W.; Qu, R.; Ma, S.-P. Saikosaponin D Relieves Unpredictable Chronic Mild Stress Induced Depressive-like Behavior in Rats: Involvement of HPA Axis and Hippocampal Neurogenesis. Psychopharmacology 2017, 234, 3385–3394. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-L.; Geng, C.-A.; Huang, X.-Y.; Ma, Y.-B.; Zheng, X.-H.; Yang, T.-H.; Chen, X.-L.; Yin, X.-J.; Zhang, X.-M.; Chen, J.-J. Bioassay-Guided Isolation of Saikosaponins with Agonistic Activity on 5-Hydroxytryptamine 2C Receptor from Bupleurum chinense and Their Potential Use for the Treatment of Obesity. Chin. J. Nat. Med. 2017, 15, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Maccioni, P.; Fara, F.; Gessa, G.L.; Carai, M.A.M.; Chin, Y.-W.; Lee, J.H.; Kwon, H.C.; Colombo, G. Reducing Effect of Saikosaponin A, an Active Ingredient of Bupleurum Falcatum, on Intake of Highly Palatable Food in a Rat Model of Overeating. Front. Psychiatry 2018, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- Maccioni, P.; Chin, Y.-W.; Corelli, F.; Kwon, H.C.; Colombo, G. Reducing Effect of Intragastrically Administered Saikosaponin A on Alcohol and Sucrose Self-Administration in Rats. Nat. Prod. Res. 2023, 37, 4256–4260. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Li, M.; Wang, Y.; Yao, J.; Wang, Y.; Wang, S.; Zhuang, L.; Liu, S.; Li, Z.; Hao, Z.; et al. Saikosaponins from Bupleurum Scorzonerifolium Willd. Alleviates Microglial Pyroptosis in Depression by Binding and Inhibiting P2X7 Expression. Phytomedicine 2025, 136, 156240. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Q.; Zhu, T.; Liu, G.; Chen, W.; Chen, Y.; Bu, X.; Zhang, Z.; Zhang, Y. Broadly Targeted Metabolomics Analysis of Differential Metabolites Between Bupleurum chinense DC. and Bupleurum Scorzonerifolium Willd. Metabolites 2025, 15, 119. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, L.; Xiao, Y.; Zhao, M.; Chang, Y.; Zhou, Y.; Liu, S.; Zhao, H.; Xiu, Y. Quantitative and Differential Analysis between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. Using HPLC-MS and GC-MS Coupled with Multivariate Statistical Analysis. Molecules 2023, 28, 5630. [Google Scholar] [CrossRef]
- National Institutes of Health (NIH), National Center for Complementary and Integrative Health (NCCIH). Last Updated June 2023. Available online: https://www.nccih.nih.gov/health/in-the-news-berberine (accessed on 21 June 2025).
- National Institutes of Health (NIH), National Center for Complementary and Integrative Health (NCCIH). Last Updated November 2023. Available online: https://www.nccih.nih.gov/health/berberine-and-weight-loss-what-you-need-to-know (accessed on 21 June 2025).
- Zamani, M.; Zarei, M.; Nikbaf-Shandiz, M.; Hosseini, S.; Shiraseb, F.; Asbaghi, O. The Effects of Berberine Supplementation on Cardiovascular Risk Factors in Adults: A Systematic Review and Dose-Response Meta-Analysis. Front. Nutr. 2022, 9, 1013055. [Google Scholar] [CrossRef] [PubMed]
- Miedlich, S.U.; Lamberti, J.S. Connecting the Dots: Understanding and Addressing the Metabolic Impact of Antipsychotic and Antidepressant Medications. Ann. N. Y. Acad. Sci. 2025, 1546, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Li, M.; Zhang, Y.; Liu, Y.; Zhao, Y.; Zhang, J.; Jia, Q.; Li, J. Berberine Treatment for Weight Gain in Patients with Schizophrenia by Regulating Leptin Rather than Adiponectin. Asian J. Psychiatry 2022, 67, 102896. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.; Sun, Y.; Jiang, H.; Hou, Q.; Yan, H.; Wen, H.; Li, G. Effects of Berberine on Gut Microbiota in Patients with Mild Metabolic Disorders Induced by Olanzapine. Am. J. Chin. Med. 2021, 49, 1949–1963. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Young, A.J.; Ehli, E.A.; Nowotny, D.; Davies, P.S.; Droke, E.A.; Soundy, T.J.; Davies, G.E. Metformin and Berberine Prevent Olanzapine-Induced Weight Gain in Rats. PLoS ONE 2014, 9, e93310. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bansal, Y.; Sodhi, R.K.; Singh, D.P.; Bishnoi, M.; Kondepudi, K.K.; Medhi, B.; Kuhad, A. Berberine Attenuated Olanzapine-Induced Metabolic Alterations in Mice: Targeting Transient Receptor Potential Vanilloid Type 1 and 3 Channels. Life Sci. 2020, 247, 117442. [Google Scholar] [CrossRef] [PubMed]
- Moss, L.; Laudenslager, M.; Steffen, K.J.; Sockalingam, S.; Coughlin, J.W. Antidepressants and Weight Gain: An Update on the Evidence and Clinical Implications. Curr. Obes. Rep. 2025, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Piątkowska-Chmiel, I.; Wicha-Komsta, K.; Pawłowski, K.; Syrytczyk, A.; Kocki, T.; Dudka, J.; Herbet, M. Beyond Diabetes: Semaglutide’s Role in Modulating Mood Disorders through Neuroinflammation Pathways. Cell. Mol. Neurobiol. 2025, 45, 22. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, Y.; He, Y.; Dai, J.; Luo, Y.; Xie, J.; Ding, W. GLP-1 and IL-6 Regulates Obesity in the Gut and Brain. Life Sci. 2025, 362, 123339. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Vella, A. Effects of GLP-1 on Appetite and Weight. Rev. Endocr. Metab. Disord. 2014, 15, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Himmerich, H.; McElroy, S.L. Glucagon-Like Peptide 1 Receptor Agonists in Psychiatry. J. Clin. Psychopharmacol. 2024, 44, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Trott, M.; Arnautovska, U.; Siskind, D. GLP-1 Receptor Agonists and Weight Loss in Schizophrenia—Past, Present, and Future. Curr. Opin. Psychiatry 2024, 37, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Qin, Z.; Man, S.; Lam, M.; Lai, W.H.; Ng, R.M.K.; Lee, C.K.; Wong, T.L.; Lee, E.H.M.; Wong, H.K.; et al. Adjunctive Berberine Reduces antipsychotic-associated Weight Gain and Metabolic Syndrome in Patients with Schizophrenia: A Randomized Controlled Trial. Psychiatry Clin. Neurosci. 2022, 76, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, L.; Wang, X.; Liu, X.; Liu, X.; Xie, L.; Wang, G. Modulation of Glucagon-like Peptide-1 Release by Berberine: In Vivo and in Vitro Studies. Biochem. Pharmacol. 2010, 79, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xia, Q.; Guo, Y.; Wang, H.; Dong, H.; Lu, F.; Yuan, F. Berberine Enhances the Function of Db/Db Mice Islet β Cell through GLP-1/GLP-1R/PKA Signaling Pathway in Intestinal L Cell and Islet α Cell. Front. Pharmacol. 2023, 14, 1228722. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-J.; Jung, E.; Shim, I. Berberine for Appetite Suppressant and Prevention of Obesity. Biomed. Res. Int. 2020, 2020, 3891806. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Shi, D.-D.; Li, W.; Cheng, D.; Zhang, Y.-D.; Zhang, S.; Tsoi, B.; Zhao, J.; Wang, Z.; Zhang, Z.-J. Berberine Ameliorates Depression-like Behaviors in Mice via Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation and Preventing Neuroplasticity Disruption. J. Neuroinflammation 2023, 20, 54. [Google Scholar] [CrossRef] [PubMed]
- Ge, P.; Qu, S.; Ni, S.; Yao, Z.; Qi, Y.; Zhao, X.; Guo, R.; Yang, N.; Zhang, Q.; Zhu, H. Berberine Ameliorates Depression-like Behavior in CUMS Mice by Activating TPH1 and Inhibiting IDO1 -associated with Tryptophan Metabolism. Phytother. Res. 2023, 37, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.; Wen, H.; Jiang, H.; Hou, Q.; Yan, H. Berberine Improves Negative Symptoms and Cognitive Function in Patients with Chronic Schizophrenia via Anti-Inflammatory Effect: A Randomized Clinical Trial. Chin. Med. 2023, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qiu, Y.; Zhang, J.; Zhang, Y.; Liu, Y.; Zhao, Y.; Jia, Q.; Fan, X.; Li, J. Improvement of Adjunctive Berberine Treatment on Negative Symptoms in Patients with Schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-T.; Hao, H.-P.; Xie, H.-G.; Lai, L.; Wang, Q.; Liu, C.-X.; Wang, G.-J. Extensive Intestinal First-Pass Elimination and Predominant Hepatic Distribution of Berberine Explain Its Low Plasma Levels in Rats. Drug Metab. Dispos. 2010, 38, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.-S.; Ma, J.-Y.; Feng, R.; Ma, C.; Chen, W.-J.; Sun, Y.-P.; Fu, J.; Huang, M.; He, C.-Y.; Shou, J.-W.; et al. Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats. PLoS ONE 2013, 8, e77969. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Miao, Y.-Q.; Fan, D.-J.; Yang, S.-S.; Lin, X.; Meng, L.-K.; Tang, X. Bioavailability Study of Berberine and the Enhancing Effects of TPGS on Intestinal Absorption in Rats. AAPS PharmSciTech 2011, 12, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-S.; Zheng, Y.-R.; Zhang, Y.-F.; Long, X.-Y. Research Progress on Berberine with a Special Focus on Its Oral Bioavailability. Fitoterapia 2016, 109, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.-F.; Shen, L. Molecular Basis of Inhibitory Activities of Berberine against Pathogenic Enzymes in Alzheimer’s Disease. Sci. World J. 2012, 2012, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Spinozzi, S.; Colliva, C.; Camborata, C.; Roberti, M.; Ianni, C.; Neri, F.; Calvarese, C.; Lisotti, A.; Mazzella, G.; Roda, A. Berberine and Its Metabolites: Relationship between Physicochemical Properties and Plasma Levels after Administration to Human Subjects. J. Nat. Prod. 2014, 77, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, C.; Chen, S.; Li, Z.; Jia, X.; Wang, K.; Bao, J.; Liang, Y.; Wang, X.; Chen, M.; et al. Berberine Protects against 6-OHDA-Induced Neurotoxicity in PC12 Cells and Zebrafish through Hormetic Mechanisms Involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 Pathways. Redox Biol. 2017, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. Berberine Pharmacology and the Gut Microbiota: A Hidden Therapeutic Link. Pharmacol. Res. 2020, 155, 104722. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Zhang, Y. Berberine: An Isoquinoline Alkaloid Targeting the Oxidative Stress and Gut-Brain Axis in the Models of Depression. Eur. J. Med. Chem. 2025, 290, 117475. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ren, G.; Wang, Y.-X.; Kong, W.-J.; Yang, P.; Wang, Y.-M.; Li, Y.-H.; Yi, H.; Li, Z.-R.; Song, D.-Q.; et al. Bioactivities of Berberine Metabolites after Transformation through CYP450 Isoenzymes. J. Transl. Med. 2011, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Shou, J.-W.; Zhao, Z.-X.; He, C.-Y.; Ma, C.; Huang, M.; Fu, J.; Tan, X.-S.; Li, X.-Y.; Wen, B.-Y.; et al. Transforming Berberine into Its Intestine-Absorbable Form by the Gut Microbiota. Sci. Rep. 2015, 5, 12155. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The Gut Microbiota in Anxiety and Depression—A Systematic Review. Clin. Psychol. Rev. 2021, 83, 101943. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, V.L.; Smith, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-Analysis. JAMA Psychiatry 2021, 78, 1343. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Sun, Y.; Zhang, C.; Liu, H. Effects of Berberine on a Rat Model of Chronic Stress and Depression via Gastrointestinal Tract Pathology and Gastrointestinal Flora Profile Assays. Mol. Med. Rep. 2017, 15, 3161–3171. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; He, Y.; Tian, L.; Yu, L.; Cheng, Q.; Li, Z.; Gao, L.; Gao, S.; Yu, C. Gut Microbiota-SCFAs-Brain Axis Associated with the Antidepressant Activity of Berberine in CUMS Rats. J. Affect. Disord. 2023, 325, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, X.; Yang, R.; Chen, F.; Liao, Y.; Zhu, Z.; Wu, Z.; Sun, X.; Wang, L. Effects of Berberine on the Gastrointestinal Microbiota. Front. Cell. Infect. Microbiol. 2021, 10, 588517. [Google Scholar] [CrossRef] [PubMed]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The Role of Short-Chain Fatty Acids in Microbiota–Gut–Brain Communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Strandwitz, P. Neurotransmitter Modulation by the Gut Microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Morisaki, Y.; Miyata, N.; Nakashima, M.; Hata, T.; Takakura, S.; Yoshihara, K.; Suematsu, T.; Nomoto, K.; Miyazaki, K.; Tsuji, H.; et al. Persistence of Gut Dysbiosis in Individuals with Anorexia Nervosa. PLoS ONE 2023, 18, e0296037. [Google Scholar] [CrossRef] [PubMed]
- Scala, M.; Tabone, M.; Paolini, M.; Salueña, A.; Iturra, R.A.; Ferreiro, V.R.; Alvarez-Mon, M.Á.; Serretti, A.; Soltero, M.D.R.G.; Rodriguez-Jimenez, R. Unlocking the Link Between Gut Microbiota and Psychopathological Insights in Anorexia Nervosa: A Systematic Review. Eur. Eat. Disord. Rev. 2025, 33, 700–718. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Kodancha, P.; Das, S. Gut Microbiome Changes in Anorexia Nervosa: A Comprehensive Review. Pathophysiology 2024, 31, 68–88. [Google Scholar] [CrossRef] [PubMed]
- Prochazkova, P.; Roubalova, R.; Dvorak, J.; Kreisinger, J.; Hill, M.; Tlaskalova-Hogenova, H.; Tomasova, P.; Pelantova, H.; Cermakova, M.; Kuzma, M.; et al. The Intestinal Microbiota and Metabolites in Patients with Anorexia Nervosa. Gut Microbes 2021, 13, 1902771. [Google Scholar] [CrossRef] [PubMed]
- Carbone, E.A.; D’Amato, P.; Vicchio, G.; De Fazio, P.; Segura-Garcia, C. A Systematic Review on the Role of Microbiota in the Pathogenesis and Treatment of Eating Disorders. Eur. Psychiatry 2020, 64, e2. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tong, Q.; Ma, S.-R.; Zhao, Z.-X.; Pan, L.-B.; Cong, L.; Han, P.; Peng, R.; Yu, H.; Lin, Y.; et al. Oral Berberine Improves Brain Dopa/Dopamine Levels to Ameliorate Parkinson’s Disease by Regulating Gut Microbiota. Signal Transduct. Target. Ther. 2021, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Tarrago, T.; Kichik, N.; Seguí, J.; Giralt, E. The Natural Product Berberine is a Human Prolyl Oligopeptidase Inhibitor. ChemMedChem 2007, 2, 354–359. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Regenthal, R.; Krügel, U. Natural Compounds and Their Potential in Eating-Related Aspects of Mental Health Disorders. Nutrients 2025, 17, 2383. https://doi.org/10.3390/nu17142383
Ma W, Regenthal R, Krügel U. Natural Compounds and Their Potential in Eating-Related Aspects of Mental Health Disorders. Nutrients. 2025; 17(14):2383. https://doi.org/10.3390/nu17142383
Chicago/Turabian StyleMa, Wenbin, Ralf Regenthal, and Ute Krügel. 2025. "Natural Compounds and Their Potential in Eating-Related Aspects of Mental Health Disorders" Nutrients 17, no. 14: 2383. https://doi.org/10.3390/nu17142383
APA StyleMa, W., Regenthal, R., & Krügel, U. (2025). Natural Compounds and Their Potential in Eating-Related Aspects of Mental Health Disorders. Nutrients, 17(14), 2383. https://doi.org/10.3390/nu17142383