Pediatric Familial Hypercholesterolemia: Targeting Intestinal Absorption and Other Therapeutic Strategies
Abstract
1. Introduction
2. Pathways Involved in Cholesterol Homeostasis and Basic Aspects of Pediatric FH
2.1. Cholesterol Metabolism
2.1.1. Endogenous Biosynthesis
2.1.2. Intestinal Absorption via NPC1L1
2.1.3. Bile Acid Cholesterol Re-Absorption
2.1.4. Efflux Through ABC Transporters
2.1.5. Cholesterol Balance
2.2. Basic Aspects of Pediatric FH
3. Therapeutic Options for Pediatric FH
3.1. Established Therapeutic Options for Pediatric FH and Ezetimibe Mechanism of Action
3.2. Novel FH Therapeutic Strategies Targeting Intestinal Cholesterol Metabolism
4. Discussion and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | coronary arterial disease |
EAS | European Atherosclerosis Society |
FH | familial hypercholesterolemia |
LDL-C | low-density lipoprotein cholesterol |
ANGPTL3 | angiopoietin protein like 3 |
PCSK9 | proprotein convertase subtilisin kexin-9 |
ACAT | acyl-coenzyme A: cholesterol acyltransferase |
CE | cholesterol esters |
LDL | low-density lipoprotein |
MTP | microsomal triacylglycerol transfer protein |
NPL1L1 | Niemann-Pick C1-Like1 |
ER | endoplasmic reticulum |
HDL | high-density lipoprotein |
LXRα | liver X receptor α |
SREBP2 | sterol regulatory element-binding protein 2 |
VLDL | very low-density lipoprotein |
LDLRAP1 | LDL receptor adaptor protein 1 |
HMGCR | HMG-CoA reductase |
MVA | mevalonate synthesis |
IPP | isopentenyl pyrophosphate dimethylallyl pyrophosphate |
DMAPP | dimethylallyl pyrophosphate |
CETP | cholesterylester transfer protein |
LCAT | lecithin-cholesterol acyltransferase |
RXR | retinoid X receptor |
LPL | lipoprotein lipase |
MELADL | methionine-glutamate-leucine-alanine-aspartate-leucine |
GLUT4 | glucose transporter 4 |
SCAP | SREBP cleavage-activating protein |
Insig-1 | insulin-induced gene protein-1 |
References
- Maxfield, F.R.; van Meer, G. Cholesterol, the Central Lipid of Mammalian Cells. Curr. Opin. Cell Biol. 2010, 22, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Szabó, A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int. J. Mol. Sci. 2023, 24, 15693. [Google Scholar] [CrossRef]
- Paukner, K.; Králová Lesná, I.; Poledne, R. Cholesterol in the Cell Membrane—An Emerging Player in Atherogenesis. Int. J. Mol. Sci. 2022, 23, 533. [Google Scholar] [CrossRef]
- Guo, J.; Chen, S.; Zhang, Y.; Liu, J.; Jiang, L.; Hu, L.; Yao, K.; Yu, Y.; Chen, X. Cholesterol Metabolism: Physiological Regulation and Diseases. MedComm 2024, 5, e476. [Google Scholar] [CrossRef]
- Duan, Y.; Gong, K.; Xu, S.; Zhang, F.; Meng, X.; Han, J. Regulation of Cholesterol Homeostasis in Health and Diseases: From Mechanisms to Targeted Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 265. [Google Scholar] [CrossRef]
- Luu, W.; Sharpe, L.J.; Capell-Hattam, I.; Gelissen, I.C.; Brown, A.J. Oxysterols: Old Tale, New Twists. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 447–467. [Google Scholar] [CrossRef]
- Benito-Vicente, A.; Belloso-Uribe, K.; Jebari Benslaiman, S.; Galicia Garcia, U.; Ostolaza, H.; Martin, C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int. J. Mol. Sci. 2018, 19, 3426. [Google Scholar] [CrossRef]
- Abifadel, M.; Boileau, C. Genetic and Molecular Architecture of Familial Hypercholesterolemia. J. Intern. Med. 2023, 293, 144–165. [Google Scholar] [CrossRef]
- Vallejo-Vaz, A.J.; Seshasai, S.R.K.; Cole, D.; Hovingh, G.K.; Kastelein, J.J.P.; Mata, P.; Raal, F.J.; Santos, R.D.; Soran, H.; Watts, G.F. Familial Hypercholesterolaemia: A Global Call to Arms. Atherosclerosis 2015, 243, 257–259. [Google Scholar] [CrossRef]
- Hu, P.; Dharmayat, K.I.; Stevens, C.A.T.; Sharabiani, M.T.A.; Jones, R.S.; Watts, G.F.; Genest, J.; Ray, K.K.; Vallejo-Vaz, A.J. Prevalence of Familial Hypercholesterolemia among the General Population and Patients with Atherosclerotic Cardiovascular Disease: A Systematic Review and Meta-Analysis. Circulation 2020, 141, 1742–1759. [Google Scholar] [CrossRef]
- Defesche, J.C.; Gidding, S.S.; Harada-Shiba, M.; Hegele, R.A.; Santos, R.D.; Wierzbicki, A.S. Familial Hypercholesterolaemia. Nat. Rev. Dis. Prim. 2017, 3, 17093. [Google Scholar] [CrossRef]
- Futema, M.; Taylor-Beadling, A.; Williams, M.; Humphries, S.E. Genetic Testing for Familial Hypercholesterolemia–Past, Present, and Future. J. Lipid Res. 2021, 62, 100139. [Google Scholar] [CrossRef]
- Okada, K.; Warabi, E.; Sugimoto, H.; Horie, M.; Tokushige, K.; Ueda, T.; Harada, N.; Taguchi, K.; Hashimoto, E.; Itoh, K. Nrf2 Inhibits Hepatic Iron Accumulation and Counteracts Oxidative Stress-Induced Liver Injury in Nutritional Steatohepatitis. J. Gastroenterol. 2012, 47, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Harada-Shiba, M.; Ohtake, A.; Sugiyama, D.; Tada, H.; Dobashi, K.; Matsuki, K.; Minamino, T.; Yamashita, S.; Yamamoto, Y. Guidelines for the Diagnosis and Treatment of Pediatric Familial Hypercholesterolemia 2022. J. Atheroscler. Thromb. 2023, 30, 531–557. [Google Scholar] [CrossRef]
- Prajapati, R.; Agrawal, V. Familial Hypercholesterolemia Supravalvular Aortic Stenosis and Extensive Atherosclerosis. Indian Heart J. 2018, 70, 575–577. [Google Scholar] [CrossRef]
- Fularski, P.; Hajdys, J.; Majchrowicz, G.; Stabrawa, M.; Młynarska, E.; Rysz, J.; Franczyk, B. Unveiling Familial Hypercholesterolemia—Review, Cardiovascular Complications, Lipid-Lowering Treatment and Its Efficacy. Int. J. Mol. Sci. 2024, 25, 1637. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Hear. J. 2020, 41, 111. [Google Scholar] [CrossRef]
- Wiegman, A.; Gidding, S.S.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Cuchel, M.; Ose, L.; Averna, M.; Boileau, C.; Borén, J. Familial Hypercholesterolaemia in Children and Adolescents: Gaining Decades of Life by Optimizing Detection and Treatment. Eur. Heart J. 2015, 36, 2425–2437. [Google Scholar] [CrossRef]
- Braamskamp, M.J.A.M.; Langslet, G.; McCrindle, B.W.; Cassiman, D.; Francis, G.A.; Gagne, C.; Gaudet, D.; Morrison, K.M.; Wiegman, A.; Turner, T. Effect of Rosuvastatin on Carotid Intima-Media Thickness in Children with Heterozygous Familial Hypercholesterolemia: The CHARON Study (Hypercholesterolemia in Children and Adolescents Taking Rosuvastatin Open Label). Circulation 2017, 136, 359–366. [Google Scholar] [CrossRef]
- Vuorio, A.; Kuoppala, J.; Kovanen, P.T.; Humphries, S.E.; Tonstad, S.; Wiegman, A.; Drogari, E.; Ramaswami, U. Statins for Children with Familial Hypercholesterolemia. Cochrane Database Syst. Rev. 2017, 7, 7. [Google Scholar] [CrossRef]
- Law, M.R.; Wald, N.J.; Rudnicka, A.R. Quantifying Effect of Statins on Low Density Lipoprotein Cholesterol, Ischaemic Heart Disease, and Stroke: Systematic Review and Meta-Analysis. BMJ 2003, 326, 1423. [Google Scholar] [CrossRef]
- Watts, G.F.; Gidding, S.; Wierzbicki, A.S.; Toth, P.P.; Alonso, R.; Brown, W.V.; Bruckert, E.; Defesche, J.; Lin, K.K.; Livingston, M. Integrated Guidance on the Care of Familial Hypercholesterolemia from the International FH Foundation. J. Clin. Lipidol. 2014, 8, 148–172. [Google Scholar] [CrossRef]
- O’Gorman, C.S.M.; O’Neill, M.B.; Conwell, L.S. Considering Statins for Cholesterol-Reduction in Children If Lifestyle and Diet Changes Do Not Improve Their Health: A Review of the Risks and Benefits. Vasc. Health Risk Manag. 2010, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Avis, H.J.; Hutten, B.A.; Gagné, C.; Langslet, G.; McCrindle, B.W.; Wiegman, A.; Hsia, J.; Kastelein, J.J.P.; Stein, E.A. Efficacy and Safety of Rosuvastatin Therapy for Children with Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2010, 55, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, G.; Sausen, G.; Cesa, C.C.; Santos, F.d.S.; Portal, V.L.; Neyeloff, J.L.; Pellanda, L.C. Statin Treatments and Dosages in Children with Familial Hypercholesterolemia: Meta-Analysis. Arq. Bras. Cardiol. 2018, 111, 810–821. [Google Scholar] [CrossRef]
- Clauss, S.B.; Holmes, K.W.; Hopkins, P.; Stein, E.; Cho, M.; Tate, A.; Johnson-Levonas, A.O.; Kwiterovich, P.O. Efficacy and Safety of Lovastatin Therapy in Adolescent Girls with Heterozygous Familial Hypercholesterolemia. Pediatrics 2005, 116, 682–688. [Google Scholar] [CrossRef]
- Wiegman, A.; Hutten, B.A.; De Groot, E.; Rodenburg, J.; Bakker, H.D.; Büller, H.R.; Sijbrands, E.J.G.; Kastelein, J.J.P. Efficacy and Safety of Statin Therapy in Children with Familial Hypercholesterolemia: A Randomized Controlled Trial. Jama 2004, 292, 331–337. [Google Scholar] [CrossRef]
- Luirink, I.K.; Wiegman, A.; Kusters, D.M.; Hof, M.H.; Groothoff, J.W.; de Groot, E.; Kastelein, J.J.P.; Hutten, B.A. 20-Year Follow-up of Statins in Children with Familial Hypercholesterolemia. N. Engl. J. Med. 2019, 381, 1547–1556. [Google Scholar] [CrossRef]
- Clauss, S.; Wai, K.-M.; Kavey, R.-E.W.; Kuehl, K. Ezetimibe Treatment of Pediatric Patients with Hypercholesterolemia. J. Pediatr. 2009, 154, 869–872. [Google Scholar] [CrossRef]
- Rudney, H.; Sexton, R.C. Regulation of Cholesterol Biosynthesis. Annu. Rev. Nutr. 1986, 6, 245–272. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, Y.; Zhang, Z.; Tan, N.; Zhao, F.; Ge, C.; Liang, L.; Jia, D.; Chen, T.; Yao, M.; et al. Disruption of XCT Inhibits Cell Growth via the ROS/Autophagy Pathway in Hepatocellular Carcinoma. Cancer Lett. 2011, 312, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, N.; Oliveira, E.; Gesto, D.; Santos-Martins, D.; Moreira, C.; Moorthy, N.S.H.; Ramos, M.; Fernandes, P. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016, 55, 5483–5506. [Google Scholar] [CrossRef] [PubMed]
- Song, B.-L.; Javitt, N.B.; DeBose-Boyd, R.A. Insig-Mediated Degradation of HMG CoA Reductase Stimulated by Lanosterol, an Intermediate in the Synthesis of Cholesterol. Cell Metab. 2005, 1, 179–189. [Google Scholar] [CrossRef]
- Sun, L.-P.; Seemann, J.; Goldstein, J.L.; Brown, M.S. Sterol-Regulated Transport of SREBPs from Endoplasmic Reticulum to Golgi: Insig Renders Sorting Signal in Scap Inaccessible to COPII Proteins. Proc. Natl. Acad. Sci. USA 2007, 104, 6519–6526. [Google Scholar] [CrossRef]
- Brown, A.J.; Sun, L.; Feramisco, J.D.; Brown, M.S.; Goldstein, J.L. Cholesterol Addition to ER Membranes Alters Conformation of SCAP, the SREBP Escort Protein That Regulates Cholesterol Metabolism. Mol. Cell 2002, 10, 237–245. [Google Scholar] [CrossRef]
- Gong, Y.; Lee, J.N.; Lee, P.C.W.; Goldstein, J.L.; Brown, M.S.; Ye, J. Sterol-Regulated Ubiquitination and Degradation of Insig-1 Creates a Convergent Mechanism for Feedback Control of Cholesterol Synthesis and Uptake. Cell Metab. 2006, 3, 15–24. [Google Scholar] [CrossRef]
- Stieger, B. Biliary Cholesterol Secretion: More Lessons from Plants? J. Hepatol. 2003, 38, 843–846. [Google Scholar] [CrossRef]
- Jia, L.; Betters, J.; Yu, L. Niemann-Pick C1-Like 1 (NPC1L1) Protein in Intestinal and Hepatic Cholesterol Transport. Annu. Rev. Physiol. 2011, 73, 239–259. [Google Scholar] [CrossRef]
- Kobayashi, S. The Effect of Polyphenols on Hypercholesterolemia through Inhibiting the Transport and Expression of Niemann–Pick C1-Like 1. Int. J. Mol. Sci. 2019, 20, 4939. [Google Scholar] [CrossRef]
- Yu, L.; Bharadwaj, S.; Brown, J.M.; Ma, Y.; Du, W.; Davis, M.A.; Michaely, P.; Liu, P.; Willingham, M.C.; Rudel, L.L. Cholesterol-Regulated Translocation of NPC1L1 to the Cell Surface Facilitates Free Cholesterol Uptake. J. Biol. Chem. 2006, 281, 6616–6624. [Google Scholar] [CrossRef]
- Ge, L.; Wang, J.; Qi, W.; Miao, H.-H.; Cao, J.; Qu, Y.-X.; Li, B.-L.; Song, B.-L. The Cholesterol Absorption Inhibitor Ezetimibe Acts by Blocking the Sterol-Induced Internalization of NPC1L1. Cell Metab. 2008, 7, 508–519. [Google Scholar] [CrossRef]
- Brown, J.M.; Rudel, L.L.; Yu, L. NPC1L1 (Niemann–Pick C1-like 1) Mediates Sterol-Specific Unidirectional Transport of Non-Esterified Cholesterol in McArdle-RH7777 Hepatoma Cells. Biochem. J. 2007, 406, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Xiang, L.; Xiao, L. Acetyl-CoA Deficiency Is Involved in the Regulation of Iron Overload on Lipid Metabolism in Apolipoprotein E Knockout Mice. Molecules 2022, 27, 4966. [Google Scholar] [CrossRef] [PubMed]
- Hultin, M.; Olivecrona, T. Conversion of Chylomicrons into Remnants. Atherosclerosis 1998, 141, S25–S29. [Google Scholar] [CrossRef]
- Chu, B.-B.; Ge, L.; Xie, C.; Zhao, Y.; Miao, H.-H.; Wang, J.; Li, B.-L.; Song, B.-L. Requirement of Myosin Vb·Rab11a·Rab11-FIP2 Complex in Cholesterol-Regulated Translocation of NPC1L1 to the Cell Surface. J. Biol. Chem. 2009, 284, 22481–22490. [Google Scholar] [CrossRef]
- Johnson, T.A.; Pfeffer, S.R. Ezetimibe-Sensitive Cholesterol Uptake by NPC1L1 Protein Does Not Require Endocytosis. Mol. Biol. Cell 2016, 27, 1845–1852. [Google Scholar] [CrossRef]
- Hu, M.; Yang, F.; Huang, Y.; You, X.; Liu, D.; Sun, S.; Sui, S.-F. Structural Insights into the Mechanism of Human NPC1L1-Mediated Cholesterol Uptake. Sci. Adv. 2021, 7, eabg3188. [Google Scholar] [CrossRef]
- Long, T.; Liu, Y.; Qin, Y.; DeBose-Boyd, R.A.; Li, X. Structures of Dimeric Human NPC1L1 Provide Insight into Mechanisms for Cholesterol Absorption. Sci. Adv. 2021, 7, eabh3997. [Google Scholar] [CrossRef]
- Li, T.; Chiang, J.Y.L. Regulation of Bile Acid and Cholesterol Metabolism by PPARs. PPAR Res. 2009, 2009, 501739. [Google Scholar] [CrossRef]
- Zhang, B.; Kuipers, F.; de Boer, J.F.; Kuivenhoven, J.A. Modulation of Bile Acid Metabolism to Improve Plasma Lipid and Lipoprotein Profiles. J. Clin. Med. 2022, 11, 4. [Google Scholar] [CrossRef]
- Chiang, J.Y.L.; Ferrell, J.M. Up to Date on Cholesterol 7 Alpha-Hydroxylase (CYP7A1) in Bile Acid Synthesis. Liver Res. 2020, 4, 47–63. [Google Scholar] [CrossRef]
- Fleishman, J.S.; Kumar, S. Bile Acid Metabolism and Signaling in Health and Disease: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Target. Ther. 2024, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Coy, D.J.; Wooton-Kee, C.R.; Yan, B.; Sabeva, N.; Su, K.; Graf, G.; Vore, M. ABCG5/ABCG8-Independent Biliary Cholesterol Excretion in Lactating Rats. Am. J. Physiol. Liver Physiol. 2010, 299, G228–G235. [Google Scholar] [CrossRef]
- Cohen, D.E. Balancing Cholesterol Synthesis and Absorption in the Gastrointestinal Tract. J. Clin. Lipidol. 2008, 2, S1–S3. [Google Scholar] [CrossRef] [PubMed]
- Apfel, R.; Benbrook, D.; Lernhardt, E.; Ortiz, M.A.; Salbert, G.; Pfahl, M. A Novel Orphan Receptor Specific for a Subset of Thyroid Hormone-Responsive Elements and Its Interaction with the Retinoid/Thyroid Hormone Receptor Subfamily. Mol. Cell. Biol. 1994, 14, 7025–7035. [Google Scholar]
- Laffitte, B.A.; Chao, L.C.; Li, J.; Walczak, R.; Hummasti, S.; Joseph, S.B.; Castrillo, A.; Wilpitz, D.C.; Mangelsdorf, D.J.; Collins, J.L. Activation of Liver X Receptor Improves Glucose Tolerance through Coordinate Regulation of Glucose Metabolism in Liver and Adipose Tissue. Proc. Natl. Acad. Sci. USA 2003, 100, 5419–5424. [Google Scholar] [CrossRef]
- Hazra, S.; Rasheed, A.; Bhatwadekar, A.; Wang, X.; Shaw, L.C.; Patel, M.; Caballero, S.; Magomedova, L.; Solis, N.; Yan, Y. Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes. Diabetes 2012, 61, 3270–3279. [Google Scholar] [CrossRef]
- El-Darzi, N.; Mast, N.; Buchner, D.A.; Saadane, A.; Dailey, B.; Trichonas, G.; Pikuleva, I.A. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer’s Disease. Front. Pharmacol. 2022, 13, 902254. [Google Scholar] [CrossRef]
- Calkin, A.C.; Tontonoz, P. Transcriptional Integration of Metabolism by the Nuclear Sterol-Activated Receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 2012, 13, 213–224. [Google Scholar] [CrossRef]
- Edwards, P.A.; Kennedy, M.A.; Mak, P.A. LXRs;: Oxysterol-Activated Nuclear Receptors That Regulate Genes Controlling Lipid Homeostasis. Vascul. Pharmacol. 2002, 38, 249–256. [Google Scholar] [CrossRef]
- Oram, J.F.; Vaughan, A.M. ATP-Binding Cassette Cholesterol Transporters and Cardiovascular Disease. Circ. Res. 2006, 99, 1031–1043. [Google Scholar] [CrossRef]
- Orsó, E.; Broccardo, C.; Kaminski, W.E.; Böttcher, A.; Liebisch, G.; Drobnik, W.; Götz, A.; Chambenoit, O.; Diederich, W.; Langmann, T. Transport of Lipids from Golgi to Plasma Membrane Is Defective in Tangier Disease Patients and Abc1-Deficient Mice. Nat. Genet. 2000, 24, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.A.; Barrera, G.C.; Nakamura, K.; Baldán, Á.; Tarr, P.; Fishbein, M.C.; Frank, J.; Francone, O.L.; Edwards, P.A. ABCG1 Has a Critical Role in Mediating Cholesterol Efflux to HDL and Preventing Cellular Lipid Accumulation. Cell Metab. 2005, 1, 121–131. [Google Scholar] [CrossRef]
- Afonso, M.S.; Machado, R.M.; Lavrador, M.S.; Quintao, E.C.R.; Moore, K.J.; Lottenberg, A.M. Molecular Pathways Underlying Cholesterol Homeostasis. Nutrients 2018, 10, 760. [Google Scholar] [CrossRef]
- Huang, C.-H.; Hsu, H.-S.; Chiang, M.-T. Influence of Varied Dietary Cholesterol Levels on Lipid Metabolism in Hamsters. Nutrients 2024, 16, 2472. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018, 10, 780. [Google Scholar] [CrossRef]
- Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Intestinal Absorption of Bile Acids in Health and Disease. In Comprehensive Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 21–56. ISBN 9780470650714. [Google Scholar]
- Dharmayat, K.I.; Vallejo-Vaz, A.J.; Stevens, C.A.T.; Brandts, J.M.; Lyons, A.R.M.; Groselj, U.; Abifadel, M.; Aguilar-Salinas, C.A.; Alhabib, K.; Alkhnifsawi, M.; et al. Familial Hypercholesterolaemia in Children and Adolescents from 48 Countries: A Cross-Sectional Study. Lancet 2024, 403, 55–66. [Google Scholar] [CrossRef]
- Timoshchenko, O.; Ivanoshchuk, D.; Semaev, S.; Orlov, P.; Zorina, V.; Shakhtshneider, E. Diagnosis of Familial Hypercholesterolemia in Children and Young Adults. Int. J. Mol. Sci. 2024, 25, 314. [Google Scholar] [CrossRef]
- Allen-Tice, C.; Steinberger, J.; Murdy, K.; Zierhut, H. Pediatric Cholesterol Screening Practices in 9- to 11-Year-Olds in a Large Midwestern Primary Care Setting. J. Clin. Lipidol. 2020, 14, 224–230. [Google Scholar] [CrossRef]
- Reyes-Soffer, G.; Yeang, C.; Michos, E.D.; Boatwright, W.; Ballantyne, C.M. High Lipoprotein(a): Actionable Strategies for Risk Assessment and Mitigation. Am. J. Prev. Cardiol. 2024, 18, 100651. [Google Scholar] [CrossRef]
- Sawhney, J.P.S.; Madan, K. Familial Hypercholesterolemia. Indian Heart J. 2024, 76, S108–S112. [Google Scholar] [CrossRef] [PubMed]
- Krzemińska, J.; Młynarska, E.; Radzioch, E.; Wronka, M.; Rysz, J.; Franczyk, B. Management of Familial Hypercholesterolemia with Special Emphasis on Evinacumab. Biomedicines 2022, 10, 3273. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.C.; Gidding, S.S.; Wiegman, A.; Watts, G.F. Knowns and Unknowns in the Care of Pediatric Familial Hypercholesterolemia. J. Lipid Res. 2017, 58, 1765–1776. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; De Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, 3168–3209. [Google Scholar] [CrossRef]
- Ramaswami, U.; Futema, M.; Bogsrud, M.P.; Holven, K.B.; van Lennep, J.R.; Wiegman, A.; Descamps, O.S.; Vrablik, M.; Freiberger, T.; Dieplinger, H. Comparison of the Characteristics at Diagnosis and Treatment of Children with Heterozygous Familial Hypercholesterolaemia (FH) from Eight European Countries. Atherosclerosis 2020, 292, 178–187. [Google Scholar] [CrossRef]
- Wald, D.S.; Bestwick, J.P.; Morris, J.K.; Whyte, K.; Jenkins, L.; Wald, N.J. Child–Parent Familial Hypercholesterolemia Screening in Primary Care. N. Engl. J. Med. 2016, 375, 1628–1637. [Google Scholar] [CrossRef]
- Cohen, H.; Stefanutti, C.; Di Giacomo, S.; Morozzi, C.; Widhalm, K.; Bjelakovic, B.B.; Berni, A.; Martino, F.; Bosco, G. The Mighty Medic Satellite Research Group for Pediatric Dyslipidemia. Current Approach to the Diagnosis and Treatment of Heterozygote and Homozygous FH Children and Adolescents. Curr. Atheroscler. Rep. 2021, 23, 30. [Google Scholar] [CrossRef]
- Xu, D.; Ma, R.; Ju, Y.; Song, X.; Niu, B.; Hong, W.; Wang, R.; Yang, Q.; Zhao, Z.; Zhang, Y.; et al. Cholesterol Sulfate Alleviates Ulcerative Colitis by Promoting Cholesterol Biosynthesis in Colonic Epithelial Cells. Nat. Commun. 2022, 13, 4428. [Google Scholar] [CrossRef]
- Brown, M.S.; Radhakrishnan, A.; Goldstein, J.L. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu. Rev. Biochem. 2018, 87, 783–807. [Google Scholar] [CrossRef]
- Fryer, L.G.D.; Jones, B.; Duncan, E.J.; Hutchison, C.E.; Ozkan, T.; Williams, P.A.; Alder, O.; Nieuwdorp, M.; Townley, A.K.; Mensenkamp, A.R.; et al. The Endoplasmic Reticulum Coat Protein II Transport Machinery Coordinates Cellular Lipid Secretion and Cholesterol Biosynthesis. J. Biol. Chem. 2014, 289, 4244–4261. [Google Scholar] [CrossRef]
- Sakakura, Y.; Shimano, H.; Sone, H.; Takahashi, A.; Inoue, N.; Toyoshima, H.; Suzuki, S.; Yamada, N.; Inoue, K. Sterol Regulatory Element-Binding Proteins Induce an Entire Pathway of Cholesterol Synthesis. Biochem. Biophys. Res. Commun. 2001, 286, 176–183. [Google Scholar] [CrossRef]
- Xiao, X.; Luo, Y.; Peng, D. Updated Understanding of the Crosstalk Between Glucose/Insulin and Cholesterol Metabolism. Front. Cardiovasc. Med. 2022, 9, 879355. [Google Scholar] [CrossRef]
- Versmissen, J.; Oosterveer, D.M.; Yazdanpanah, M.; Defesche, J.C.; Basart, D.C.G.; Liem, A.H.; Heeringa, J.; Witteman, J.C.; Lansberg, P.J.; Kastelein, J.J.P. Efficacy of Statins in Familial Hypercholesterolaemia: A Long Term Cohort Study. BMJ 2008, 337, a2423. [Google Scholar] [CrossRef]
- Neil, A.; Cooper, J.; Betteridge, J.; Capps, N.; McDowell, I.; Durrington, P.; Seed, M.; Humphries, S.E. Reductions in All-Cause, Cancer, and Coronary Mortality in Statin-Treated Patients with Heterozygous Familial Hypercholesterolaemia: A Prospective Registry Study. Eur. Heart J. 2008, 29, 2625–2633. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.-Y.; Li, H.; Tang, J.-J.; Wang, J.; Luo, J.; Liu, B.; Wang, J.-K.; Shi, X.-J.; Cui, H.-W.; Tang, J.; et al. Discovery of a Potent HMG-CoA Reductase Degrader That Eliminates Statin-Induced Reductase Accumulation and Lowers Cholesterol. Nat. Commun. 2018, 9, 5138. [Google Scholar] [CrossRef]
- Enjoji, M.; Machida, K.; Kohjima, M.; Kato, M.; Kotoh, K.; Matsunaga, K.; Nakashima, M.; Nakamuta, M. NPC1L1 Inhibitor Ezetimibe Is a Reliable Therapeutic Agent for Non-Obese Patients with Nonalcoholic Fatty Liver Disease. Lipids Health Dis. 2010, 9, 29. [Google Scholar] [CrossRef]
- Van Heek, M.; Farley, C.; Compton, D.S.; Hoos, L.; Davis, H.R. Ezetimibe Selectively Inhibits Intestinal Cholesterol Absorption in Rodents in the Presence and Absence of Exocrine Pancreatic Function. Br. J. Pharmacol. 2001, 134, 409–417. [Google Scholar] [CrossRef]
- Wüstner, D.; Solanko, K. How Cholesterol Interacts with Proteins and Lipids during Its Intracellular Transport. Biochim. Biophys. Acta-Biomembr. 2015, 1848, 1908–1926. [Google Scholar] [CrossRef]
- Calandra, S.; Tarugi, P.; Speedy, H.E.; Dean, A.F.; Bertolini, S.; Shoulders, C.C. Mechanisms and Genetic Determinants Regulating Sterol Absorption, Circulating LDL Levels, and Sterol Elimination: Implications for Classification and Disease Risk. J. Lipid Res. 2011, 52, 1885–1926. [Google Scholar] [CrossRef]
- Kounatidis, D.; Vallianou, N.G.; Poulaki, A.; Evangelopoulos, A.; Panagopoulos, F.; Stratigou, T.; Geladari, E.; Karampela, I.; Dalamaga, M. ApoB100 and Atherosclerosis: What’s New in the 21st Century? Metabolites 2024, 14, 123. [Google Scholar] [CrossRef]
- Gugliucci, A. Triglyceride-Rich Lipoprotein Metabolism: Key Regulators of Their Flux. J. Clin. Med. 2023, 12, 4399. [Google Scholar] [CrossRef] [PubMed]
- Fraunberger, P.; Gröne, E.; Gröne, H.-J.; Drexel, H.; Walli, A.K. Ezetimibe Reduces Cholesterol Content and NF-KappaB Activation in Liver but Not in Intestinal Tissue in Guinea Pigs. J. Inflamm. 2017, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Han, S. Personalized Statin Therapy: Targeting Metabolic Processes to Modulate the Therapeutic and Adverse Effects of Statins. Heliyon 2025, 11, e41629. [Google Scholar] [CrossRef] [PubMed]
- Descamps, O.; Tomassini, J.E.; Lin, J.; Polis, A.B.; Shah, A.; Brudi, P.; Hanson, M.E.; Tershakovec, A.M. Variability of the LDL-C Lowering Response to Ezetimibe and Ezetimibe + Statin Therapy in Hypercholesterolemic Patients. Atherosclerosis 2015, 240, 482–489. [Google Scholar] [CrossRef]
- Hammersley, D.; Signy, M. Ezetimibe: An Update on Its Clinical Usefulness in Specific Patient Groups. Ther. Adv. Chronic Dis. 2017, 8, 4–11. [Google Scholar] [CrossRef]
- Hamilton-Craig, I.; Kostner, K.; Colquhoun, D.; Woodhouse, S. Combination Therapy of Statin and Ezetimibe for the Treatment of Familial Hypercholesterolemia. Vasc. Health Risk Manag. 2010, 6, 1023–1037. [Google Scholar] [CrossRef]
- Llewellyn, A.; Simmonds, M.; Marshall, D.; Harden, M.; Woods, B.; Humphries, S.E.; Ramaswami, U.; Priestley-Barnham, L.; Fisher, M.; Tata, L.J.; et al. Efficacy and Safety of Statins, Ezetimibe and Statins-Ezetimibe Therapies for Children and Adolescents with Heterozygous Familial Hypercholesterolaemia: Systematic Review, Pairwise and Network Meta-Analyses of Randomised Controlled Trials. Atherosclerosis 2025, 401, 118598. [Google Scholar] [CrossRef]
- Ezhov, M.V.; Sergienko, I.V.; Kryzhanovskiy, S.M.; Manko, K.S.; Timoshina, E. V Comparative Efficacy and Safety of Statin Monotherapy and Statin plus Ezetimibe Combination in a Real-World Setting. Diseases 2023, 11, 168. [Google Scholar] [CrossRef]
- Yeste, D.; Chacón, P.; Clemente, M.; Albisu, M.A.; Gussinyé, M.; Carrascosa, A. Ezetimibe as Monotherapy in the Treatment of Hypercholesterolemia in Children and Adolescents. J. Pediatr. Endocrinol. Metab. 2009, 22, 487–492. [Google Scholar] [CrossRef]
- Banach, M.; Bytyçi, I.; Bytyqi, S.; Lewek, J.; Surma, S.; Bajraktari, G.; Henein, M.; Sahebkar, A.; Alkhnifsawi, M.; Gouni-Berthold, I.; et al. Management of Children with Heterozygous Familial Hypercholesterolemia Worldwide: A Meta-Analysis. Eur. Heart J. Open 2025, 5, oeaf001. [Google Scholar] [CrossRef]
- Xiao, Y.; Ba, Z.; Pang, S.; Liu, D.; Wang, H.; Liang, H.; Wang, Y.; Yuan, J. PCSK9 Inhibitor: Safe Alternative to Fill the Treatment Gap in Statin-Limited Conditions? RCM 2022, 23, 380. [Google Scholar] [CrossRef]
- Rosenson, R.S. Existing and Emerging Therapies for the Treatment of Familial Hypercholesterolemia. J. Lipid Res. 2021, 62, 100060. [Google Scholar] [CrossRef]
- Thedrez, A.; Blom, D.J.; Ramin-Mangata, S.; Blanchard, V.; Croyal, M.; Chemello, K.; Nativel, B.; Pichelin, M.; Cariou, B.; Bourane, S. Homozygous Familial Hypercholesterolemia Patients With Identical Mutations Variably Express the LDLR (Low-Density Lipoprotein Receptor) Implications for the Efficacy of Evolocumab. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 592–598. [Google Scholar] [CrossRef]
- Stein, E.A.; Dann, E.J.; Wiegman, A.; Skovby, F.; Gaudet, D.; Sokal, E.; Charng, M.-J.; Mohamed, M.; Luirink, I.; Raichlen, J.S. Efficacy of Rosuvastatin in Children with Homozygous Familial Hypercholesterolemia and Association with Underlying Genetic Mutations. J. Am. Coll. Cardiol. 2017, 70, 1162–1170. [Google Scholar] [CrossRef]
- Cuchel, M.; Lee, P.C.; Hudgins, L.C.; Duell, P.B.; Ahmad, Z.; Baum, S.J.; Linton, M.F.; de Ferranti, S.D.; Ballantyne, C.M.; Larry, J.A. Contemporary Homozygous Familial Hypercholesterolemia in the United States: Insights from the CASCADE FH Registry. J. Am. Heart Assoc. 2023, 12, e029175. [Google Scholar] [CrossRef] [PubMed]
- Cuchel, M.; Raal, F.J.; Hegele, R.A.; Al-Rasadi, K.; Arca, M.; Averna, M.; Bruckert, E.; Freiberger, T.; Gaudet, D.; Harada-Shiba, M. 2023 Update on European Atherosclerosis Society Consensus Statement on Homozygous Familial Hypercholesterolaemia: New Treatments and Clinical Guidance. Eur. Heart J. 2023, 44, 2277–2291. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Hovingh, G.K.; Catapano, A.L. Familial Hypercholesterolemia Treatments: Guidelines and New Therapies. Atherosclerosis 2018, 277, 483–492. [Google Scholar] [CrossRef]
- Fiorentino, R.; Chiarelli, F. Treatment of Dyslipidaemia in Children. Biomedicines 2021, 9, 78. [Google Scholar] [CrossRef]
- Sosnowska, B.; Adach, W.; Surma, S.; Rosenson, R.S.; Banach, M. Evinacumab, an ANGPTL3 Inhibitor, in the Treatment of Dyslipidemia. J. Clin. Med. 2023, 12, 168. [Google Scholar] [CrossRef]
- Gusarova, V.; Alexa, C.A.; Wang, Y.; Rafique, A.; Kim, J.H.; Buckler, D.; Mintah, I.J.; Shihanian, L.M.; Cohen, J.C.; Hobbs, H.H. ANGPTL3 Blockade with a Human Monoclonal Antibody Reduces Plasma Lipids in Dyslipidemic Mice and Monkeys. J. Lipid Res. 2015, 56, 1308–1317. [Google Scholar] [CrossRef]
- Coppinger, C.; Movahed, M.; Azemawah, V.; Peyton, L.; Gregory, J.; Hashemzadeh, M. A Comprehensive Review of PCSK9 Inhibitors. J. Cardiovasc. Pharmacol. Ther. 2022, 27, 107424842211001. [Google Scholar] [CrossRef]
- Xia, X.D.; Peng, Z.S.; Gu, H.M.; Wang, M.; Wang, G.Q.; Zhang, D.W. Regulation of PCSK9 Expression and Function: Mechanisms and Therapeutic Implications. Front. Cardiovasc. Med. 2021, 8, 764038. [Google Scholar] [CrossRef]
- Feingold, K.R.; Moser, A.H.; Shigenaga, J.K.; Patzek, S.M.; Grunfeld, C. Inflammation Stimulates the Expression of PCSK9. Biochem. Biophys. Res. Commun. 2008, 374, 341–344. [Google Scholar] [CrossRef]
- Ito, M.K.; Santos, R.D. PCSK9 Inhibition with Monoclonal Antibodies: Modern Management of Hypercholesterolemia. J. Clin. Pharmacol. 2017, 57, 7–32. [Google Scholar] [CrossRef] [PubMed]
- Abduljabbar, M.H. PCSK9 Inhibitors: Focus on Evolocumab and Its Impact on Atherosclerosis Progression. Pharmaceuticals 2024, 17, 1581. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Santos, R.D.; Stein, E.A.; Hovingh, G.K.; Blom, D.J.; Soran, H.; Watts, G.F.; López, J.A.G.; Bray, S.; Kurtz, C.E.; Hamer, A.W. Long-Term Evolocumab in Patients with Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2020, 75, 565–574. [Google Scholar] [CrossRef]
- Raal, F.J.; Stein, E.A.; Dufour, R.; Turner, T.; Civeira, F.; Burgess, L.; Langslet, G.; Scott, R.; Olsson, A.G.; Sullivan, D. PCSK9 Inhibition with Evolocumab (AMG 145) in Heterozygous Familial Hypercholesterolaemia (RUTHERFORD-2): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2015, 385, 331–340. [Google Scholar] [CrossRef]
- Koren, M.J.; Sabatine, M.S.; Giugliano, R.P.; Langslet, G.; Wiviott, S.D.; Ruzza, A.; Ma, Y.; Hamer, A.W.; Wasserman, S.M.; Raal, F.J. Long-Term Efficacy and Safety of Evolocumab in Patients with Hypercholesterolemia. J. Am. Coll. Cardiol. 2019, 74, 2132–2146. [Google Scholar] [CrossRef]
- Wołowiec, Ł.; Osiak, J.; Wołowiec, A.; Wijata, A.; Grześk, E.; Kozakiewicz, M.; Banach, J.; Nowaczyk, A.; Nowaczyk, J.; Grześk, G. Inclisiran—Safety and Effectiveness of Small Interfering RNA in Inhibition of PCSK-9. Pharmaceutics 2023, 15, 323. [Google Scholar] [CrossRef]
- Lagace, T.A. PCSK9 and LDLR Degradation: Regulatory Mechanisms in Circulation and in Cells. Curr. Opin. Lipidol. 2014, 25, 387–393. [Google Scholar] [CrossRef]
- Raal, F.J.; Hegele, R.A.; Ruzza, A.; López, J.A.G.; Bhatia, A.K.; Wu, J.; Wang, H.; Gaudet, D.; Wiegman, A.; Wang, J. Evolocumab Treatment in Pediatric Patients with Homozygous Familial Hypercholesterolemia: Pooled Data from Three Open-Label Studies. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1156–1164. [Google Scholar] [CrossRef]
- Raal, F.J.; Honarpour, N.; Blom, D.J.; Hovingh, G.K.; Xu, F.; Scott, R.; Wasserman, S.M.; Stein, E.A. Inhibition of PCSK9 with Evolocumab in Homozygous Familial Hypercholesterolaemia (TESLA Part B): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2015, 385, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Ruzza, A.; Sawhney, J.P.S.; Kulkarni, G.; Iyengar, S.; Mehta, V.; Hamer, A.; Wu, Y.; Raal, F.J. Evolocumab in Patients with Homozygous Familial Hypercholesterolemia in India. J. Clin. Lipidol. 2021, 15, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Mehta, V.; Kayikcioglu, M.; Blom, D.J.; Gupta, P.; Durst, R.; Asprusten, E.A.; Turner, T.; Bahassi, E.M.; Vest, J. Response to PCSK9 Inhibition in Homozygous Familial Hypercholesterolemia Patients Is Variable in Different Regions of the World and According to Age. Circulation 2023, 148, A15073. [Google Scholar] [CrossRef]
- Raal, F.; Bruckert, E.; Blom, D.; Kurtz, C.; Coll, B.; Tang, L.; Somaratne, R.; Stein, E.A. Evolocumab Treatment in Paediatric Patients with Homozygous Familial Hypercholesterolaemia: The Trial Assessing Long-Term Use of PCSK9 Inhibition in Subjects with Genetic LDL Disorders (TAUSSIG): 3105. Eur. Heart J. 2017, 38, ehx5043105. [Google Scholar] [CrossRef]
- Bruckert, E.; Caprio, S.; Wiegman, A.; Charng, M.-J.; Zárate-Morales, C.A.; Baccara-Dinet, M.T.; Manvelian, G.; Ourliac, A.; Scemama, M.; Daniels, S.R. Efficacy and Safety of Alirocumab in Children and Adolescents with Homozygous Familial Hypercholesterolemia: Phase 3, Multinational Open-Label Study. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 1447–1457. [Google Scholar] [CrossRef]
- Xiao, G.; Gao, S.; Xie, Y.; Wang, Z.; Shu, M. Efficacy and Safety of Evolocumab and Alirocumab as PCSK9 Inhibitors in Pediatric Patients with Familial Hypercholesterolemia: A Systematic Review and Meta-Analysis. Medicina 2024, 60, 1646. [Google Scholar] [CrossRef]
- Daniels, S.; Caprio, S.; Chaudhari, U.; Manvelian, G.; Baccara-Dinet, M.T.; Brunet, A.; Scemama, M.; Loizeau, V.; Bruckert, E. PCSK9 Inhibition with Alirocumab in Pediatric Patients with Heterozygous Familial Hypercholesterolemia: The ODYSSEY KIDS Study. J. Clin. Lipidol. 2020, 14, 322–330. [Google Scholar] [CrossRef]
- Santos, R.D.; Ruzza, A.; Hovingh, G.K.; Wiegman, A.; Mach, F.; Kurtz, C.E.; Hamer, A.; Bridges, I.; Bartuli, A.; Bergeron, J.; et al. Evolocumab in Pediatric Heterozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 383, 1317–1327. [Google Scholar] [CrossRef]
- Mormone, A.; Tortorella, G.; Esposito, F.; Caturano, A.; Marrone, A.; Cozzolino, D.; Galiero, R.; Marfella, R.; Sasso, F.C.; Rinaldi, L. Advances in Pharmacological Approaches for Managing Hypercholesterolemia: A Comprehensive Overview of Novel Treatments. Biomedicines 2024, 12, 432. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Langsted, A. Lipoprotein (a) as a Cause of Cardiovascular Disease: Insights from Epidemiology, Genetics, and Biology. J. Lipid Res. 2016, 57, 1953–1975. [Google Scholar] [CrossRef]
Clinical Studies/Trials | Medication | Target | Mechanism of Action | % Reduction in LDL-C | Efficacy in Pediatric FH | Serious Adverse Events |
---|---|---|---|---|---|---|
Approved [117,118,119,120] | Evolocumab | PCSK9 | Prevents PCSK9 from degrading LDL-C receptor, increasing LDL-C receptor availability | 20–60% | Efficient and approved for pediatric FH from 12 years of age | Not reported |
ODYSSEY KIDS [130] | Alirocumab | PCSK9 | Prevents PCSK9 from degrading LDL-C receptor, increasing LDL-C receptor availability | 21–62% | Efficient and off-label used for pediatric patients above 8 years of age with severe FH | Not reported |
ORION-16 [121] | Inclisiran | PCSK9 | PCSK9 gene-silencing medication | 35–43% | Evaluated in pediatric FH in the ORION-16 study | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arvanitakis, K.; Chatzikalil, E.; Antza, C.; Topalidis, C.; Kalopitas, G.; Solomou, E.; Kotsis, V.; Germanidis, G.; Koufakis, T.; Doumas, M. Pediatric Familial Hypercholesterolemia: Targeting Intestinal Absorption and Other Therapeutic Strategies. Nutrients 2025, 17, 2357. https://doi.org/10.3390/nu17142357
Arvanitakis K, Chatzikalil E, Antza C, Topalidis C, Kalopitas G, Solomou E, Kotsis V, Germanidis G, Koufakis T, Doumas M. Pediatric Familial Hypercholesterolemia: Targeting Intestinal Absorption and Other Therapeutic Strategies. Nutrients. 2025; 17(14):2357. https://doi.org/10.3390/nu17142357
Chicago/Turabian StyleArvanitakis, Konstantinos, Elena Chatzikalil, Christina Antza, Christos Topalidis, Georgios Kalopitas, Elena Solomou, Vasilios Kotsis, Georgios Germanidis, Theocharis Koufakis, and Michael Doumas. 2025. "Pediatric Familial Hypercholesterolemia: Targeting Intestinal Absorption and Other Therapeutic Strategies" Nutrients 17, no. 14: 2357. https://doi.org/10.3390/nu17142357
APA StyleArvanitakis, K., Chatzikalil, E., Antza, C., Topalidis, C., Kalopitas, G., Solomou, E., Kotsis, V., Germanidis, G., Koufakis, T., & Doumas, M. (2025). Pediatric Familial Hypercholesterolemia: Targeting Intestinal Absorption and Other Therapeutic Strategies. Nutrients, 17(14), 2357. https://doi.org/10.3390/nu17142357