Lifestyle Intervention Improves Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Down Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Anthropometric and Biochemical Parameters
2.3. Liver Ultrasound
2.4. Assessment of the Adherence to MD, Supplement Intake, and Regular Physical Activity
2.5. Analysis of Markers of Low-Grade Systemic Inflammation
2.6. Statistical Analyses
2.7. GenAI
3. Results
3.1. The Population’s Characteristics and Adherence to Nutritional Counseling
3.2. Impact of Lifestyle Changes on Anthropometric and Laboratory Parameters, Steatosis, and Low-Grade Systemic Inflammation
3.3. Impact of HXT + VitE Supplement Consumption on Steatosis, Anthropometric and Laboratory Parameters, Low-Grade Systemic Inflammatory Markers, and Steatosis After 6 Months
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MASLD | metabolic dysfunction-associated steatotic liver disease |
DS | Down syndrome |
MetS | metabolic syndrome |
MD | Mediterranean diet |
BMI | body mass index |
VitE | vitamin E |
HXT | hydroxytyrosol |
WC | waist circumference |
DBP | diastolic blood pressure |
SBP | systolic blood pressure |
HDL | high-density lipoprotein |
LDL | low-density lipoprotein |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
GGT | gamma-glutamyl transferase |
CRP | C-reactive protein |
HbA1c | glycated hemoglobin |
HOMA-IR | homeostasis model assessment score |
KIDMED | mediterranean diet quality index |
IPA-Q | international physical activity questionnaire |
LPS | lipopolysaccharide |
IL | interleukin |
TNF | tumor necrosis factor |
References
- Chen, L.; Wang, L.; Wang, Y.; Hu, H.; Zhan, Y.; Zeng, Z.; Liu, L. Global, Regional, and National Burden and Trends of Down Syndrome From 1990 to 2019. Front. Genet. 2022, 13, 908482. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.J. Down Syndrome. N. Engl. J. Med. 2020, 382, 2344–2352. [Google Scholar] [CrossRef] [PubMed]
- Capone, G.T.; Chicoine, B.; Bulova, P.; Stephens, M.; Hart, S.; Crissman, B.; Videlefsky, A.; Myers, K.; Roizen, N.; Esbensen, A.; et al. Co-occurring medical conditions in adults with Down syndrome: A systematic review toward the development of health care guidelines. Am. J. Med. Genet. Part A 2018, 176, 116–133. [Google Scholar] [CrossRef] [PubMed]
- Bertapelli, F.; Pitetti, K.; Agiovlasitis, S.; Guerra-Junior, G. Overweight and obesity in children and adolescents with Down syndrome-prevalence, determinants, consequences, and interventions: A literature review. Res. Dev. Disabil. 2016, 57, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Buonuomo, P.S.; Bartuli, A.; Mastrogiorgio, G.; Vittucci, A.; Di Camillo, C.; Bianchi, S.; Pires Marafon, D.; Villani, A.; Valentini, D. Lipid profiles in a large cohort of Italian children with Down syndrome. Eur. J. Med. Genet. 2016, 59, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Magge, S.N.; Zemel, B.S.; Pipan, M.E.; Gidding, S.S.; Kelly, A. Cardiometabolic Risk and Body Composition in Youth With Down Syndrome. Pediatrics 2019, 144, e20190137. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.A.; Baksh, R.A.; Pape, S.E.; Strydom, A.; Gulliford, M.C.; Chan, L.F.; GO-DS21 Consortium. Diabetes and Obesity in Down Syndrome Across the Lifespan: A Retrospective Cohort Study Using U.K. Electronic Health Records. Diabetes Care 2022, 45, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Hoofnagle, J.H.; Doo, E. Letter to the Editor: A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2024, 79, E91–E92. [Google Scholar] [CrossRef] [PubMed]
- Valentini, D.; Alisi, A.; Sartorelli, M.R.; Crudele, A.; Bartuli, A.; Nobili, V.; Villani, A. Nonalcoholic Fatty Liver Disease in Italian Children with Down Syndrome: Prevalence and Correlation with Obesity-Related Features. J. Pediatr. 2017, 189, 92–97.e1. [Google Scholar] [CrossRef] [PubMed]
- Valentini, D.; Mosca, A.; Di Camillo, C.; Crudele, A.; Sartorelli, M.R.; Scoppola, V.; Tarani, L.; Villani, A.; Raponi, M.; Novelli, A.; et al. PNPLA3 gene polymorphism is associated with liver steatosis in children with Down syndrome. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1564–1572. [Google Scholar] [CrossRef] [PubMed]
- Karjoo, S.; Braglia-Tarpey, A.; Chan, A.P.; Ayala Germán, A.G.; Herdes, R.E.; Pai, N.; Sierra-Velez, D.; Whitehead, B.; Quiros-Tejeira, R.E.; Duro, D. Evidence-based review of the nutritional treatment of obesity and metabolic dysfunction-associated steatotic liver disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2025. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Sangro, P.; de la Torre Aláez, M.; Sangro, B.; D’Avola, D. Metabolic dysfunction-associated fatty liver disease (MAFLD): An update of the recent advances in pharmacological treatment. J. Physiol. Biochem. 2023, 79, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Spiezia, C.; Di Rosa, C.; Fintini, D.; Ferrara, P.; De Gara, L.; Khazrai, Y.M. Nutritional Approaches in Children with Overweight or Obesity and Hepatic Steatosis. Nutrients 2023, 15, 2435. [Google Scholar] [CrossRef] [PubMed]
- Riolo, R.; De Rosa, R.; Simonetta, I.; Tuttolomondo, A. Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int. J. Mol. Sci. 2022, 23, 16002. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet: A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Yurtdaş, G.; Akbulut, G.; Baran, M.; Yılmaz, C. The effects of Mediterranean diet on hepatic steatosis, oxidative stress, and inflammation in adolescents with non-alcoholic fatty liver disease: A randomized controlled trial. Pediatr. Obes. 2022, 17, e12872. [Google Scholar] [CrossRef] [PubMed]
- Cakir, M.; Akbulut, U.E.; Okten, A. Association between Adherence to the Mediterranean Diet and Presence of Nonalcoholic Fatty Liver Disease in Children. Child. Obes. 2016, 12, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Panera, N.; Barbaro, B.; Della Corte, C.; Mosca, A.; Nobili, V.; Alisi, A. A review of the pathogenic and therapeutic role of nutrition in pediatric nonalcoholic fatty liver disease. Nutr. Res. 2018, 58, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, C.; Mosca, A.; Vania, A.; Alterio, A.; Iasevoli, S.; Nobili, V. Good adherence to the Mediterranean diet reduces the risk for NASH and diabetes in pediatric patients with obesity: The results of an Italian Study. Nutrition 2017, 39–40, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Ockenga, J.; Eshraghian, A.; Barazzoni, R.; Busetto, L.; Campmans-Kuijpers, M.; Cardinale, V.; Chermesh, I.; Kani, H.T.; Khannoussi, W.; et al. Practical guideline on obesity care in patients with gastrointestinal and liver diseases—Joint ESPEN/UEG guideline. Clin. Nutr. 2023, 42, 987–1024. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Zhang, P.H.; Yan, H.H. Functional foods and dietary supplements in the management of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front. Nutr. 2023, 10, 1014010. [Google Scholar] [CrossRef] [PubMed]
- European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN); European Association for the Study of the Liver (EASL); North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (NASPGHAN); Latin-American Society for Pediatric Gastroenterology, Hepatology, and Nutrition (LASPGHAN); Asian Pan-Pacific Society for Pediatric Gastroenterology, Hepatology and Nutrition (APPSPGHAN); Pan Arab Society for Pediatric Gastroenterology and Nutrition (PASPGHAN); Commonwealth Association of Paediatric Gastroenterology & Nutrition (CAPGAN); Federation of International Societies of Pediatric Hepatology, Gastroenterology and Nutrition (FISPGHAN). Paediatric steatotic liver disease has unique characteristics: A multisociety statement endorsing the new nomenclature. J. Pediatr. Gastroenterol. Nutr. 2023, 78, 1190–1196. [Google Scholar] [CrossRef]
- Fox, B.; Moffett, G.E.; Kinnison, C.; Brooks, G.; Case, L.E. Physical Activity Levels of Children with Down Syndrome. Pediatr. Phys. Ther. 2019, 31, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Behme, N.; Breuer, C. Physical Activity of Children and Adolescents During the COVID-19 Pandemic—A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 11440. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.J.; Committee on Genetics. Health supervision for children with Down syndrome. Pediatrics 2011, 128, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Stepánek, L.; Horáková, D.; Cibičková, Ľ.; Karásek, D.; Vaverková, H.; Nakládalová, M.; Juríčková, Ľ.; Kollárová, H. Associations between homeostasis model assessment (HOMA) and routinely examined parameters in individuals with metabolic syndrome. Physiol. Res. 2019, 68, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Vajro, P.; Lenta, S.; Socha, P.; Dhawan, A.; McKiernan, P.; Baumann, U.; Durmaz, O.; Lacaille, F.; McLin, V.; Nobili, V. Diagnosis of nonalcoholic fatty liver disease in children and adolescents: Position paper of the ESPGHAN Hepatology Committee. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in Children and Adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Ballestri, S.; Mantovani, A.; Targher, G.; Bril, F. Endpoints in NASH Clinical Trials: Are We Blind in One Eye? Metabolites 2024, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Grinshpan, L.S.; Even Haim, Y.; Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Nov, Y.; Webb, M.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. A healthy lifestyle is prospectively associated with lower onset of metabolic dysfunction-associated steatotic liver disease. Hepatol. Commun. 2024, 8, e0583. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.P.; de Lima Sanches, P.; de Abreu-Silva, E.O.; Marcadenti, A. Nutrition and Physical Activity in Nonalcoholic Fatty Liver Disease. J Diabetes Res. 2016, 2016, 4597246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Y.; Brandman, D. A Clinical Update on MASLD. JAMA Intern. Med. 2025, 185, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Xanthakos, S.A.; Ibrahim, S.H.; Adams, K.; Kohli, R.; Sathya, P.; Sundaram, S.; Vos, M.B.; Dhawan, A.; Caprio, S.; Behling, C.A.; et al. AASLD Practice Statement on the evaluation and management of metabolic dysfunction-associated steatotic liver disease in children. Hepatology 2025. early view. [Google Scholar] [CrossRef] [PubMed]
- Labayen, I.; Medrano, M.; Arenaza, L.; Maiz, E.; Oses, M.; Martinez-Vizcaino, V.; Ruiz, J.R.; Ortega, F.B. Effects of exercise in addition to a family-based lifestyle intervention program on hepatic fat in children with overweight. Diabetes Care 2020, 43, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Blond, E.; Disse, E.; Cuerq, C.; Drai, J.; Valette, P.J.; Laville, M.; Thivolet, C.; Simon, C.; Caussy, C. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease in severely obese people: Do they lead to over-referral? Diabetologia 2017, 60, 1218–1222. [Google Scholar] [CrossRef] [PubMed]
- Perez-Guisado, J.; Munoz-Serrano, A. The effect of the Spanish Ketogenic Mediterranean Diet on non-alcoholic fatty liver disease: A pilot study. J. Med. Food 2011, 14, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Plaz Torres, M.C.; Aghemo, A.; Lleo, A.; Bodini, G.; Furnari, M.; Marabotto, E.; Miele, L.; Giannini, E.G. Mediterranean Diet and NAFLD: What We Know and Questions That Still Need to Be Answered. Nutrients 2019, 11, 2971. [Google Scholar] [CrossRef] [PubMed]
- Montemayor, S.; García, S.; Monserrat-Mesquida, M.; Tur, J.A.; Bouzas, C. Dietary Patterns, Foods, and Nutrients to Ameliorate Non-Alcoholic Fatty Liver Disease: A Scoping Review. Nutrients 2023, 15, 3987. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Gambardella, M.L.; Scarlata, G.G.M.; Lenci, I.; Baiocchi, L.; Luzza, F. The Many Faces of Metabolic Dysfunction-Associated Fatty Liver Disease Treatment: From the Mediterranean Diet to Fecal Microbiota Transplantation. Medicina 2024, 60, 563. [Google Scholar] [CrossRef] [PubMed]
- Mascaró, C.M.; Bouzas, C.; Tur, J.A. Association between Non-Alcoholic Fatty Liver Disease and Mediterranean Lifestyle: A Systematic Review. Nutrients 2022, 14, 1063. [Google Scholar] [CrossRef] [PubMed]
- Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxid. Med. Cell. Longev. 2018, 2018, 9547613. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.P.; Raponi, M.; Nobili, V. Clinical implications of understanding the association between oxidative stress and pediatric NAFLD. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Svobodová, G.; Horní, M.; Velecká, E.; Boušová, I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: A review. Arch. Toxicol. 2025, 99, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Lavine, J.E.; Schwimmer, J.B.; Van Natta, M.L.; Molleston, J.P.; Murray, K.F.; Rosenthal, P.; Abrams, S.H.; Scheimann, A.O.; Sanyal, A.J.; Chalasani, N.; et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: The TONIC randomized controlled trial. JAMA 2011, 305, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Antonella, M.; Pietrobattista, A.; Maggiore, G. Metabolic-Associated Steatotic Liver Disease (MASLD): A New Term for a More Appropriate Therapy in Pediatrics? Pediatr. Rep. 2024, 16, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Zöhrer, E.; Alisi, A.; Mosca, A.; Della Corte, C.; Crudele, A.; Fauler, G.; Nobili, V. Efficacy of docosahexaenoic acid-choline-vitamin E in paediatric NASH: A randomised controlled clinical trial. Appl. Physiol. Nutr. Metab. 2017, 42, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Nobili, V.; Alisi, A.; Crudele, A.; Zaffina, S.; Denaro, M.; Smeriglio, A.; Trombetta, D. The Antioxidant Effects of Hydroxytyrosol and Vitamin E on Pediatric Nonalcoholic Fatty Liver Disease, in a Clinical Trial: A New Treatment? Antioxid. Redox Signal. 2019, 31, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Mosca, A.; Crudele, A.; Smeriglio, A.; Braghini, M.R.; Panera, N.; Comparcola, D.; Alterio, A.; Sartorelli, M.R.; Tozzi, G.; Raponi, M.; et al. Antioxidant activity of Hydroxytyrosol and Vitamin E reduces systemic inflammation in children with paediatric NAFLD. Dig. Liver Dis. 2021, 53, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- Panera, N.; Braghini, M.R.; Crudele, A.; Smeriglio, A.; Bianchi, M.; Condorelli, A.G.; Nobili, R.; Conti, L.A.; De Stefanis, C.; Lioci, G.; et al. Combination Treatment with Hydroxytyrosol and Vitamin E Improves NAFLD-Related Fibrosis. Nutrients 2022, 14, 3791. [Google Scholar] [CrossRef] [PubMed]
- Fytili, C.; Nikou, T.; Tentolouris, N.; Tseti, I.K.; Dimosthenopoulos, C.; Sfikakis, P.P.; Simos, D.; Kokkinos, A.; Skaltsounis, A.L.; Katsilambros, N.; et al. Effect of Long-Term Hydroxytyrosol Administration on Body Weight, Fat Mass and Urine Metabolomics: A Randomized Double-Blind Prospective Human Study. Nutrients 2022, 14, 1525. [Google Scholar] [CrossRef] [PubMed]
- Vacca, R.A.; Valenti, D.; Caccamese, S.; Daglia, M.; Braidy, N.; Nabavi, S.M. Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neurosci. Biobehav. Rev. 2016, 71, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Parisotto, E.B.; Garlet, T.R.; Cavalli, V.L.; Zamoner, A.; da Rosa, J.S.; Bastos, J.; Micke, G.A.; Fröde, T.S.; Pedrosa, R.C.; Wilhelm Filho, D.; et al. Antioxidant intervention attenuates oxidative stress in children and teenagers with Down syndrome. Res. Dev. Disabil. 2014, 35, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.; Mollo, N.; Nitti, M.; Paladino, S.; Calì, G.; Genesio, R.; Bonfiglio, F.; Cicatiello, R.; Barbato, M.; Sarnataro, V.; et al. Mitochondrial dysfunction in down syndrome: Molecular mechanisms and therapeutic targets. Mol. Med. 2018, 24, 2. [Google Scholar] [CrossRef] [PubMed]
- Rueda Revilla, N.; Martínez-Cué, C. Antioxidants in Down Syndrome: From Preclinical Studies to Clinical Trials. Antioxidants 2020, 9, 692. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Rustamov, N.; Roh, Y.S. The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants 2023, 12, 1928. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M.Á.; Ortiz, M.; Hernandez-Rodas, M.C.; Valenzuela, A.; Videla, L.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct. 2017, 8, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Xu, Y.; Ren, X.; Xiang, D.; Lei, K.; Zhang, C.; Liu, D. Vitamin E Ameliorates Lipid Metabolism in Mice with Nonalcoholic Fatty Liver Disease via Nrf2/CES1 Signaling Pathway. Dig. Dis. Sci. 2019, 64, 3182–3191. [Google Scholar] [CrossRef] [PubMed]
- Paul, Y.; Ellapen, T.J.; Barnard, M.; Hammill, H.V.; Swanepoel, M. The health benefits of exercise therapy for patients with Down syndrome: A systematic review. Afr. J. Disabil. 2019, 8, 576. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Luo, Y.; Lu, H.; Xie, T.; Hu, Z.; Chu, Z.; Luo, F. The Potential Role of Vitamin E and the Mechanism in the Prevention and Treatment of Inflammatory Bowel Disease. Foods 2024, 13, 898. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, M.; Wang, J.; Zhang, H.; Wang, Z.; Lei, Z.; Wang, C.; Chen, W. Hydroxytyrosol Ameliorates Colon Inflammation: Mechanistic Insights into Anti-Inflammatory Effects, Inhibition of the TLR4/NF-κB Signaling Pathway, Gut Microbiota Modulation, and Liver Protection. Foods 2025, 14, 1270. [Google Scholar] [CrossRef] [PubMed]
- Alisi, A.; McCaughan, G.; Grønbæk, H. Role of gut microbiota and immune cells in metabolic-associated fatty liver disease: Clinical impact. Hepatol. Int. 2024, 18 (Suppl. S2), 861–872. [Google Scholar] [CrossRef] [PubMed]
Variables | Median (25th–75th Centile) at T0 | Median (25th–75th Centile) at T1 | p Values |
---|---|---|---|
Age, years | 11 (9.00 to 15.75) | 12 (9.25 to 16.00) | - |
Sex (Male)% | 64.50% | 64.50% | - |
Weight, Kg | 58.30 (38.85 to 73.95) | 52.88 (42.50 to 71.95) | 0.50 |
BMI, kg/m2 | 28.93 (24.25 to 33.70) | 27.98 (23.91 to 31.77) | 0.02 |
BMI, centile | 91 (83.00 to 97.00) | 90 (79.00 to 94.00) | 0.0004 |
WC, cm (IQR) | 93 (80.50 to 102.00) | 87 (73.50 to 96.50) | 0.0015 |
DBP, mmHg | 72 (64.00 to 78.00) | 58 (54.00 to 71.00) | 0.0009 |
SBP, mmHg | 124 (109.00 to 133.00) | 108 (102.00 to 115.00) | 0.0031 |
Total cholesterol, mg/dL | 158 (136.00 to 182.00) | 161 (138.00 to 168.00) | 0.21 |
HDL-cholesterol, mg/dL | 45 (41.00 to 54.00) | 44 (40.00 to 51.00) | 0.29 |
LDL-cholesterol, mg/dL | 100 (83.00 to 118.00) | 101 (78.00 to 113.00) | 0.30 |
Triglycerides, mg/dL | 88 (73.00 to 111.00) | 80 (63.00 to 109.00) | 0.24 |
ALT, UI/L | 23 (17.00 to 36.00) | 24 (17.00 to 30.00) | 0.11 |
AST, UI/L | 24 (20.00 to 28.00) | 22 (18.00 to 26.00) | 0.0095 |
GGT, UI/L | 16 (13.00 to 19.00) | 17 (13.00 to 23.00) | 0.26 |
CRP, mg/dL | 0.13 (0.06 to 0.50) | 0.22 (0.09 to 0.50) | 0.37 |
Glucose, mg/dL | 90 (83.00 to 97.00) | 88 (81.00 to 92.00) | 0.08 |
Insulin, μUI/mL | 20.75 (13.68 to 26.00) | 16.5 (11.88 to 21.90) | 0.03 |
HbA1c, mmol/mol | 30 (28.00 to 34.00) | 32 (30.00 to 34.00) | 0.10 |
HOMA-IR | 4.61 (3.00 to 5.64) | 3.26 (2.59 to 4.93) | 0.02 |
ALT/AST ratio | 0.94 (0.79 to 1.43) | 0.93 (0.73 to 1.29) | 0.79 |
Steatosis Grade | Number of Patients | Percentage |
---|---|---|
at T0 | ||
0 | 0 | 0.00% |
1 | 16 | 51.60% |
2 | 9 | 29.00% |
3 | 6 | 19.40% |
at T1 | ||
0 | 2 | 6.50% |
1 | 16 | 51.60% |
2 | 13 | 41.90% |
3 | 0 | 0.00% |
Parameters | Median (25th–75th Centile) at T0 | Median (25th–75th Centile) at T1 | p Values |
---|---|---|---|
LPS, EU/mL | 8.9 (7.90 to 11.10) | 9.10 (7.90 to 11.10) | 0.83 |
IL-6, pg/mL | 190.9 (125.3 to 322.8) | 243.1 (147.8 to 744.7) | 0.33 |
TNF-α, pg/mL | 199.7 (121.1 to 310.1) | 204.1 (104.3 to 296.8) | 0.62 |
IL-1β, pg/mL | 335.0 (191.7 to 581.7) | 144.2 (40.60 to 623.2) | 0.0029 |
IL-10, pg/mL | 67.70 (52.10 to 81.50) | 184.4 (176.9 to 203.1) | <0.0001 |
Without HXT + VitE | With HXT + VitE | p Values | |||||
---|---|---|---|---|---|---|---|
Parameters | T0 | T1 | p Values T0 vs. T1 | T0 | T1 | p Values T0 vs. T1 | T1 with vs. T1 Without HXT + VitE |
Age, years | 10 (8.25 to 12.50) | 10 (8.25 to 12.75) | 13 (11.00 to 16.50) | 14 (11.50 to 17.00) | - | - | |
Sex (M)% | 81.80 | 81.80 | 55.00 | 55.00 | - | - | |
Weight, Kg | 40.98 (33.40 to 73.95) | 43.33 (34.60 to 70.00) | 0.17 | 61.55 (44.89 to 75.91) | 61.03 (45.46 to 73.76) | 0.99 | 0.11 |
BMI, kg/m2 | 23.99 (22.73 to 32.60) | 23.94 (22.66 to 30.44) | 0.36 | 30.23 (25.48 to 33.79) | 28.87 (26.10 to 33.57) | 0.04 | 0.13 |
BMI, centile | 89.00 (87.00 to 97.00) | 88.00 (86.00 to 95.00) | 0.07 | 91.50 (81.25 to 96.00) | 90.00 (72.00 to 93.50) | 0.004 | 0.21 |
z-BMI | 1.97 (1.69 to 2.57) | 1.88 (0.70 to 2.02) | 0.82 | 2.18 (1.92 to 2.35) | 1.86 (1.56 to 2.15) | 0.81 | 0.13 |
WC, cm | 81.50 (72.50 to 97.00) | 76.00 (67.00 to 95.00) | 0.06 | 94.50 (83.69 to 103.0) | 92.88 (80.75 to 97.25) | 0.015 | 0.08 |
DBP, mmHg | 71.00 (54.00 to 75.00) | 63.00 (54.00 to 75.00) | 0.15 | 73.00 (64.25 to 82.13) | 57.50 (54.00 to 61.25) | 0.002 | 0.26 |
SBP, mmHg | 115.0 (102.0 to 126.0) | 107.0 (101.0 to 114.0) | 0.03 | 127.0 (109.0 to 134.4) | 110.5 (102.0 to 118.8) | 0.04 | 0.23 |
Total cholesterol, mg/dL | 166.0 (144.0 to 190.0) | 161.0 (155.0 to 176.0) | 0.83 | 158.0 (135.3 to 181.1) | 150.5 (130.3 to 167.5) | 0.19 | 0.33 |
HDL-cholesterol, mg/dL | 46.00 (39.00 to 58.00) | 49.00 (38.00 to 57.00) | 0.45 | 44.00 (42.00 to 49.25) | 43.50 (40.25 to 49.00) | 0.49 | 0.5 |
LDL-cholesterol, mg/dL | 104.0 (86.00 to 118.0) | 106.0 (93.00 to 114.0) | 0.84 | 97.50 (81.50 to 120.5) | 92.50 (78.00 to 110.3) | 0.17 | 0.49 |
ALT, UI/L | 23.00 (17.00 to 40.00) | 23.00 (14.00 to 29.00) | 0.47 | 24.50 (17.25 to 35.50) | 24.50 (17.25 to 34.50) | 0.15 | 0.21 |
AST, UI/L | 28.00 (20.00 to 34.00) | 23.00 (21.00 to 30.00) | 0.08 | 24.00 (19.75 to 26.00) | 21.50 (17.00 to 25.00) | 0.06 | 0.11 |
GGT, UI/L | 16.00 (13.00 to 19.00) | 19.00 (14.00 to 25.00) | 0.25 | 15.50 (13.00 to 18.75) | 16.5.0 (12.25 to 21.50) | 0.84 | 0.17 |
AST/ALT | 1.47 (0.95 to 1.68) | 1.30 (1.04 to 1.50) | 0.93 | 0.86 (0.75 to 1.13) | 0.82 (0.66 to 1) | 0.60 | 0.001 |
CRP, mg/dL | 0.090 (0.050 to 0.29) | 0.130 (0.050 to 0.240) | 0.79 | 0.160 (0.070 to 0.590) | 0.240 (0.110 to 0.590) | 0.37 | 0.79 |
Triglycerides, mg/dL | 89.00 (69.00 to 118.00) | 80.00 (67.00 to 109.00) | 0.53 | 86.50 (76.00 to 107.5) | 77.00 (61.50 to 107.00) | 0.22 | 0.56 |
Glucose, mg/dL | 88.00 (86.00 to 98.00) | 89.00 (83.00 to 93,00) | 0.75 | 90.50 (82.00 to 96.25) | 86.00 (79.50 to 91.50) | 0.05 | 0.16 |
HbA1c, mmol/mol | 28.00 (27.00 to 30.00) | 30.00 (28.00 to 33.00) | 0.77 | 31.50 (30.00 to 34.75) | 32.00 (30.50 to 35.00) | 0.45 | 0.04 |
Insulin, μUI/mL | 20.40 (13.90 to 25.90) | 14.30 (10.40 to 20.70) | 0.04 | 23.00 (13.60 to 26.30) | 17.00 (13.50 to 23.60) | 0.27 | 0.27 |
HOMA-IR | 4.272 (2.952 to 5.628) | 2.860 (2.054 to 4.498) | 0.04 | 4.657 (3.018 to 5.679) | 3.442 (2.629 to 5.007) | 0.24 | 0.49 |
LPS, EU/mL | 9.700 (6.800 to 15.60) | 8.800 (7.800 to 9.900) | 0.51 | 8.850 (7.600 to 10.75) | 9.300 (7.950 to 11.98) | 0.43 | 0.31 |
IL-6, pg/mL | 296.3 (176.6 to 367.2) | 185.3 (136.9 to 351.9) | 0.20 | 141.0 (107.3 to 240.7) | 280.2 (150.1 to 929.0) | 0.06 | 0.1 |
TNF-α, pg/mL | 226.2 (131.1 to 295.9) | 240.5 (193.8 to 321.6) | 0.51 | 174.8 (111.9 to 316.7) | 188.3 (97.03 to 239.4) | 0.27 | 0.1 |
IL-1β, pg/mL | 326.1 (191.7 to 531.1) | 270.6 (72.20 to 914.2) | 0.89 | 373.2 (145.7 to 655.4) | 130.0 (29.18 to 285.9) | 0.0001 | 0.05 |
IL-10, pg/mL | 78.20 (62.60 to 91.10) | 181.0 (171.9 to 191.3) | 0.0010 | 66.95 (47.90 to 79.08) | 185.3 (178.0 to 211.9) | <0.0001 | 0.32 |
Steatosis Grade | Without HXT + VitE | With HXT + VitE |
---|---|---|
at T0 | ||
0 | 0 (0.00%) | 0 (0.00%) |
1 | 8 (72.70%) | 8 (40.00%) |
2 | 2 (18.20%) | 7 (35.00%) |
3 | 1 (9.10%) | 5 (25.00%) |
at T1 | ||
0 | 0 (0.00%) | 0 (0.00%) |
1 | 1 (9.10%) | 14 (70.00%) |
2 | 6 (54.50%) | 6 (30.00%) |
3 | 4 (36.40%) | 0 (0.00%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scoppola, V.; Crudele, A.; Mosca, A.; Panera, N.; Camillo, C.d.; Bock, C.; Raponi, M.; Villani, A.; Alisi, A.; Valentini, D. Lifestyle Intervention Improves Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Down Syndrome. Nutrients 2025, 17, 2331. https://doi.org/10.3390/nu17142331
Scoppola V, Crudele A, Mosca A, Panera N, Camillo Cd, Bock C, Raponi M, Villani A, Alisi A, Valentini D. Lifestyle Intervention Improves Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Down Syndrome. Nutrients. 2025; 17(14):2331. https://doi.org/10.3390/nu17142331
Chicago/Turabian StyleScoppola, Vittorio, Annalisa Crudele, Antonella Mosca, Nadia Panera, Chiara di Camillo, Caterina Bock, Massimiliano Raponi, Alberto Villani, Anna Alisi, and Diletta Valentini. 2025. "Lifestyle Intervention Improves Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Down Syndrome" Nutrients 17, no. 14: 2331. https://doi.org/10.3390/nu17142331
APA StyleScoppola, V., Crudele, A., Mosca, A., Panera, N., Camillo, C. d., Bock, C., Raponi, M., Villani, A., Alisi, A., & Valentini, D. (2025). Lifestyle Intervention Improves Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Down Syndrome. Nutrients, 17(14), 2331. https://doi.org/10.3390/nu17142331