Relative Excess Risk of Metabolic Syndrome Due to Interaction Between Handgrip Strength and Dietary Patterns Among Korean Youth
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Definition of MetS
2.4. Assessment of HGS and Definition of Low Handgrip Strenght
2.5. Covariates
2.6. Assessment of Dietary Patterns
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MetS | Metabolic syndrome |
PCA | Principal component analysis |
HGS | Handgrip strength |
IFG | Impaired fasting glucose |
HDL-C | High-density lipoprotein cholesterol |
References
- Morrison, J.A.; Friedman, L.A.; Gray-McGuire, C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: The Princeton Lipid Research Clinics Follow-up Study. Pediatrics 2007, 120, 340–345. [Google Scholar] [CrossRef]
- Chung, Y.L.; Rhie, Y.-J. Metabolic Syndrome in Children and Adolescents. Ewha Med. J. 2022, 45, e13. [Google Scholar] [CrossRef]
- Jung, H.W.; Lee, J.; Kim, J. Handgrip Strength Is Associated with Metabolic Syndrome and Insulin Resistance in Children and Adolescents: Analysis of Korea National Health and Nutrition Examination Survey 2014–2018. JOMES 2022, 31, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Park, S.; Kim, S.; Koh, H. Handgrip Strength Among Korean Adolescents With Metabolic Syndrome in 2014–2015. J. Clin. Densitom. 2020, 23, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Liu, T.; Ma, C.; Fang, J.; Zhao, Z.; Luo, M.; Xia, Y.; Zhao, Y.; Ji, C. Association between handgrip strength and metabolic syndrome: A meta-analysis and systematic review. Front. Nutr. 2022, 9, 996645. [Google Scholar] [CrossRef]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [CrossRef]
- Hyde, P.N.; Sapper, T.N.; Crabtree, C.D.; LaFountain, R.A.; Bowling, M.L.; Buga, A.; Fell, B.; McSwiney, F.T.; Dickerson, R.M.; Miller, V.J.; et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight 2019, 4, e128308. [Google Scholar] [CrossRef]
- Lee, Y.A.; Song, S.W.; Kim, S.H.; Kim, H.N. Associations between Dietary Patterns and Metabolic Syndrome: Findings of the Korean National Health and Nutrition Examination Survey. Nutrients 2023, 15, 2676. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, J.S. Prevalence Trends of Metabolic Syndrome among Korean Children and Adolescents from a Population-Based Cross-Sectional Survey. Life 2022, 12, 1404. [Google Scholar] [CrossRef]
- Barker, D.J. The developmental origins of insulin resistance. Horm. Res. 2005, 64 (Suppl. 3), 2–7. [Google Scholar] [CrossRef]
- Shaibi, G.Q.; Cruz, M.L.; Ball, G.D.; Weigensberg, M.J.; Salem, G.J.; Crespo, N.C.; Goran, M.I. Effects of resistance training on insulin sensitivity in overweight Latino adolescent males. Med. Sci. Sports Exerc. 2006, 38, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Rattarasarn, C.; Leelawattana, R.; Soonthornpun, S. Contribution of skeletal muscle mass on sex differences in 2-hour plasma glucose levels after oral glucose load in Thai subjects with normal glucose tolerance. Metabolism 2010, 59, 172–176. [Google Scholar] [CrossRef]
- Jiménez-Pavón, D.; Ortega, F.B.; Valtueña, J.; Castro-Piñero, J.; Gómez-Martínez, S.; Zaccaria, M.; Gottrand, F.; Molnár, D.; Sjöström, M.; González-Gross, M.; et al. Muscular strength and markers of insulin resistance in European adolescents: The HELENA Study. Eur. J. Appl. Physiol. 2012, 112, 2455–2465. [Google Scholar] [CrossRef]
- Agodi, A.; Maugeri, A.; Kunzova, S.; Sochor, O.; Bauerova, H.; Kiacova, N.; Barchitta, M.; Vinciguerra, M. Association of Dietary Patterns with Metabolic Syndrome: Results from the Kardiovize Brno 2030 Study. Nutrients 2018, 10, 898. [Google Scholar] [CrossRef]
- Brouns, F. Overweight and diabetes prevention: Is a low-carbohydrate-high-fat diet recommendable? Eur. J. Nutr. 2018, 57, 1301–1312. [Google Scholar] [CrossRef]
- Joung, H.; Hong, S.; Song, Y.; Ahn, B.C.; Park, M.J. Dietary patterns and metabolic syndrome risk factors among adolescents. Korean J. Pediatr. 2012, 55, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-López, G.; Flores-Aldana, M.; Salmerón, J. Associations between dietary patterns and metabolic syndrome in adolescents. Salud Publica Mex. 2019, 61, 619–628. [Google Scholar] [CrossRef]
- Kim, Y. The Korea National Health and Nutrition Examination Survey (KNHANES): Current status and challenges. Epidemiol. Health 2014, 36, e2014002. [Google Scholar] [CrossRef] [PubMed]
- Saif-Ali, R.; Kamaruddin, N.A.; Al-Habori, M.; Al-Dubai, S.A.; Ngah, W.Z.W. Relationship of metabolic syndrome defined by IDF or revised NCEP ATP III with glycemic control among Malaysians with Type 2 Diabetes. Diabetol. Metab. Syndr. 2020, 12, 67. [Google Scholar] [CrossRef]
- Jeong, W. Comparison of alcohol consumption and tobacco use among Korean adolescents before and during the COVID-19 pandemic. PLoS ONE 2023, 18, e0283462. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Agricultural Sciences. Korean Standard Food Composition Table. The 9th Revision. Available online: http://koreanfood.rda.go.kr/eng/fctFoodSrchEng/engMain (accessed on 4 June 2025).
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Bieler, G.S.; Brown, G.G.; Williams, R.L.; Brogan, D.J. Estimating model-adjusted risks, risk differences, and risk ratios from complex survey data. Am. J. Epidemiol. 2010, 171, 618–623. [Google Scholar] [CrossRef]
- Knol, M.J.; VanderWeele, T.J.; Groenwold, R.H.; Klungel, O.H.; Rovers, M.M.; Grobbee, D.E. Estimating measures of interaction on an additive scale for preventive exposures. Eur. J. Epidemiol. 2011, 26, 433–438. [Google Scholar] [CrossRef]
- Ji, C.; Zheng, L.; Zhang, R.; Wu, Q.; Zhao, Y. Handgrip strength is positively related to blood pressure and hypertension risk: Results from the National Health and nutrition examination survey. Lipids Health Dis. 2018, 17, 86. [Google Scholar] [CrossRef]
- Cohen, D.D.; Gómez-Arbeláez, D.; Camacho, P.A.; Pinzon, S.; Hormiga, C.; Trejos-Suarez, J.; Duperly, J.; Lopez-Jaramillo, P. Low muscle strength is associated with metabolic risk factors in Colombian children: The ACFIES study. PLoS ONE 2014, 9, e93150. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-A.; Choi, E.-Y.; Park, E.-W.; Cheong, Y.-S. The Association of relative handgrip strength with impaired fasting glucose among Koreans aged more than 20 Years old. Korean J. Fam. Pract. 2020, 10, 149–155. [Google Scholar] [CrossRef]
- Lee, M.J.; Khang, A.R.; Yi, D.; Kang, Y.H. Low relative hand grip strength is associated with a higher risk for diabetes and impaired fasting glucose among the Korean population. PLoS ONE 2022, 17, e0275746. [Google Scholar] [CrossRef]
- Kalyani, R.R.; Kim, C.; Ferrucci, L.; Laughlin, G.A.; Kritz-Silverstein, D.; Kong, S.; Nan, B.; Barrett-Connor, E. Sex differences in the association of fasting and postchallenge glucose levels with grip strength among older adults: The Rancho Bernardo Study. BMJ Open Diabetes Res. Care 2015, 3, e000086. [Google Scholar] [CrossRef]
- Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Pannucci, T.E.; Lerman, J.L.; Herrick, K.A.; Zimmer, M.; Meyers Mathieu, K.; Stoody, E.E.; Reedy, J. Healthy Eating Index-2020: Review and Update Process to Reflect the Dietary Guidelines for Americans, 2020–2025. J. Acad. Nutr. Diet. 2023, 123, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- On, S.; Na, W.; Sohn, C. The mediating effect of the Korean Healthy Eating Index on the relationship between lifestyle patterns and metabolic syndrome in middle-aged Koreans: Data from the 2019–2021 Korea National Health and Nutrition Examination Survey. Nutr. Res. Pract. 2025, 19, 96–106. [Google Scholar] [CrossRef]
- Kang, M.; Choi, S.Y.; Jung, M. Dietary intake and nutritional status of Korean children and adolescents: A review of national survey data. Clin. Exp. Pediatr. 2021, 64, 443–458. [Google Scholar] [CrossRef]
- Shin, P.-K.; Park, S.-J.; Kim, M.S.; Kwon, D.Y.; Kim, M.J.; Kim, K.; Chun, S.; Lee, H.-J.; Choi, S.-W. A Traditional Korean Diet with a Low Dietary Inflammatory Index Increases Anti-Inflammatory IL-10 and Decreases Pro-Inflammatory NF-κB in a Small Dietary Intervention Study. Nutrients 2020, 12, 2468. [Google Scholar] [CrossRef] [PubMed]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)—Lessons learned, improvements made, and future directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Pollock, N.K.; Harris, R.A.; Gutin, B.; Su, S.; Wang, X. Associations between muscle mass, physical activity and dietary behaviour in adolescents. Pediatr. Obes. 2019, 14, e12471. [Google Scholar] [CrossRef]
- Agirbasli, M.; Agaoglu, N.B.; Orak, N.; Caglioz, H.; Ocek, T.; Poci, N.; Salaj, A.; Maya, S. Sex hormones and metabolic syndrome in children and adolescents. Metabolism 2009, 58, 1256–1262. [Google Scholar] [CrossRef]
- Cooper, S.B.; Dring, K.J.; Morris, J.G.; Cousins, B.E.; Nute, M.L.; Nevill, M.E. Sex differences in adolescents’ glycaemic and insulinaemic responses to high and low glycaemic index breakfasts: A randomised control trial. Br. J. Nutr. 2017, 117, 541–547. [Google Scholar] [CrossRef]
Unweighted (N, %) | Weighted (%) | |||||
---|---|---|---|---|---|---|
Male | MetS | Normal | p | MetS | Normal | p |
(n = 35) | (n = 1057) | (n = 61,791.83) | (n = 1,897,447.95) | |||
Age | 16.0 ± 1.6 | 14.7 ± 2.0 | <0.001 | 16.2 ± 0.2 | 15.2 ± 0.1 | 0.005 |
Dietary pattern | 0.197 | 0.168 | ||||
- Balanced | 6 (17.1%) | 327 (30.9%) | 18.7 | 32.8 | ||
- Processed Fat | 16 (45.7%) | 374 (35.4%) | 46.1 | 37.5 | ||
- Western | 13 (37.1%) | 356 (33.7%) | 35.1 | 29.7 | ||
Handgrip strength | <0.001 | 0.002 | ||||
- Normal | 19 (54.3%) | 964 (91.2%) | 63.9 | 91.2 | ||
- Low | 16 (45.7%) | 93 (8.8%) | 36.1 | 8.8 | ||
Socioeconomic status | 0.386 | 0.563 | ||||
- High | 15 (42.9%) | 325 (30.7%) | 37.4 | 30 | ||
- Mid-high | 8 (22.9%) | 368 (34.8%) | 22.7 | 33.9 | ||
- Mid-low | 9 (25.7%) | 264 (25.0%) | 28.1 | 25.5 | ||
- Low | 3 ( 8.6%) | 100 (9.5%) | 11.8 | 10.6 | ||
Residential area | 0.689 | 0.466 | ||||
- Rural | 22 (62.9%) | 613 (58.0%) | 62.2 | 55.5 | ||
- Urban | 13 (37.1%) | 444 (42.0%) | 37.8 | 44.5 | ||
Smoking status | 0.628 | 0.987 | ||||
- No | 29 (82.9%) | 921 (87.1%) | 84 | 84.1 | ||
- Yes | 6 (17.1%) | 136 (12.9%) | 16 | 15.9 | ||
Alcohol consumption | 1 | 0.971 | ||||
- No | 31 (88.6%) | 940 (88.9%) | 85.2 | 85.4 | ||
- Yes | 4 (11.4%) | 117 (11.1%) | 14.8 | 14.6 | ||
Physical activity | 1 | 0.650 | ||||
- N | 21 (60.0%) | 624 (59.0%) | 62.2 | 58.2 | ||
- Y | 14 (40.0%) | 433 (41.0%) | 37.8 | 41.8 | ||
Female | MetS | Normal | p | MetS | Normal | p |
(n = 18) | (n = 1008) | (n = 29,581.48) | (n = 1,760,928.04) | |||
Age | 16.1 ± 2.1 | 14.8 ± 2.0 | 0.007 | 16.4 ± 0.4 | 15.2 ± 0.1 | 0.005 |
Dietary pattern | 0.482 | 0.288 | ||||
- Balanced | 7 (38.9%) | 268 (26.6%) | 47.5 | 26.7 | ||
- Processed Fat | 6 (33.3%) | 366 (36.3%) | 30.7 | 35.7 | ||
- Western | 5 (27.8%) | 374 (37.1%) | 21.8 | 37.6 | ||
Handgrip strength | <0.001 | 0.003 | ||||
- Normal | 6 (33.3%) | 919 (91.2%) | 33.9 | 91 | ||
- Low | 12 (66.7%) | 89 (8.8%) | 66.1 | 9 | ||
Socioeconomic status | 0.074 | 0.018 | ||||
- High | 1 (5.6%) | 350 (34.7%) | 5.1 | 33.9 | ||
- Mid-high | 9 (50.0%) | 331 (32.8%) | 48.5 | 32.4 | ||
- Mid-low | 3 (16.7%) | 103 (10.2%) | 21.7 | 11.7 | ||
- Low | 5 (27.8%) | 224 (22.2%) | 24.7 | 22.1 | ||
Residential area | 0.772 | 0.914 | ||||
- Rural | 9 (50.0%) | 567 (56.2%) | 55.2 | 53.8 | ||
- Urban | 9 (50.0%) | 441 (43.8%) | 44.8 | 46.2 | ||
Smoking status | 1 | 0.860 | ||||
- No | 17 (94.4%) | 955 (94.7%) | 94.8 | 93.9 | ||
- Yes | 1 (5.6%) | 53 (5.3%) | 5.2 | 6.1 | ||
Alcohol consumption | 0.812 | 0.769 | ||||
- No | 16 (88.9%) | 939 (93.2%) | 89.3 | 91.4 | ||
- Yes | 2 (11.1%) | 69 (6.8%) | 10.7 | 8.6 | ||
Physical activity | 0.907 | 0.649 | ||||
- N | 12 (66.7%) | 630 (62.5%) | 69 | 63.4 | ||
- Y | 6 (33.3%) | 378 (37.5%) | 31 | 36.6 |
Male | Female | ||
---|---|---|---|
Metabolic Syndrome | |||
Handgrip Strength | Normal | 1 (Ref) | 1 (Ref) |
Low HGS | 1.108 (1.038–1.182) | 1.128 (1.047–1.216) | |
Food style | Balanced | 1 (Ref) | 1 (Ref) |
Processed Fat | 1.024 (0.992–1.056) | 0.982 (0.953–1.013) | |
Western | 1.006 (0.980–1.033) | 0.975 (0.947–1.005) | |
Central obesity | |||
Handgrip Strength | Normal | 1 (Ref) | 1 (Ref) |
Low HGS | 1.596 (1.438–1.771) | 1.395 (1.258–1.547) | |
Food style | Balanced | 1 (Ref) | 1 (Ref) |
Processed Fat | 1.039 (0.987–1.094) | 0.977 (0.928–1.029) | |
Western | 1.036 (0.985–1.090) | 1.023 (0.966–1.085) | |
Hypertension | |||
Handgrip Strength | Normal | 1 (Ref) | 1 (Ref) |
Low HGS | 1.124 (1.040–1.215) | 1.010 (0.978–1.044) | |
Food style | Balanced | 1 (Ref) | 1 (Ref) |
Processed Fat | 1.002 (0.967–1.038) | 1.003 (0.981–1.024) | |
Western | 1.021 (0.983–1.062) | 1.009 (0.986–1.032) | |
Hyperglycemia | |||
Handgrip Strength | Normal | 1 (Ref) | 1 (Ref) |
Low HGS | 1.024 (0.949–1.104) | 1.156 (1.060–1.260) | |
Food style | Balanced | 1 (Ref) | 1 (Ref) |
Processed Fat | 1.026 (0.974–1.080) | 0.999 (0.958–1.041) | |
Western | 1.031 (0.977–1.087) | 1.004 (0.962–1.048) | |
Low HDL-C | |||
Handgrip Strength | Normal | 1 (Ref) | 1 (Ref) |
Low HGS | 1.201 (1.091–1.322) | 1.177 (1.061–1.306) | |
Food style | Balanced | 1 (Ref) | 1 (Ref) |
Processed Fat | 0.994 (0.940–1.051) | 0.992 (0.925–1.065) | |
Western | 0.999 (0.945–1.056) | 0.974 (0.907–1.045) | |
High TG | |||
Handgrip Strength | Normal | 1 (Ref) | 1 (Ref) |
Low HGS | 1.089 (1.008–1.175) | 1.127 (1.030–1.234) | |
Food style | Balanced | 1 (Ref) | 1 (Ref) |
Processed Fat | 0.992 (0.944–1.042) | 1.001 (0.955–1.050) | |
Western | 0.995 (0.948–1.045) | 0.969 (0.927–1.013) |
Outcome | HGS | Dietary Pattern | OR (Male) (95% CI) | RERI (Male) (95% CI) | OR (Female) (95% CI) | RERI (Female) (95% CI) |
---|---|---|---|---|---|---|
Metabolic Syndrome | Normal | Balanced | 1.00 (Ref) | — | 1.00 (Ref) | — |
Processed Fat | 1.005 (0.976–1.036) | — | 0.991 (0.971–1.011) | — | ||
Western | 0.997 (0.971–1.023) | — | 0.982 (0.964–1.000) | — | ||
Low | Balanced | 1.001 (0.956–1.048) | — | 1.146 (0.974–1.347) | — | |
Processed Fat | 1.223 (1.055–1.418) | −0.22 (−0.37–−0.07) | 1.133 (0.985–1.304) | −0.14 (−0.28–0.00) | ||
Western | 1.106 (0.994–1.231) | −0.11 (−0.21–0.00) | 1.085 (0.989–1.190) | −0.10 (−0.19–−0.01) | ||
Central Obesity | Normal | Balanced | 1.00 (Ref) | — | 1.00 (Ref) | — |
Processed Fat | 1.020 (0.977–1.065) | — | 1.011 (0.970–1.054) | — | ||
Western | 1.020 (0.977–1.065) | — | 1.033 (0.985–1.083) | — | ||
Low | Balanced | 1.378 (1.144–1.661) | — | 1.443 (1.196–1.741) | — | |
Processed Fat | 1.771 (1.483–2.115) | −0.75 (−0.93–−0.57) | 1.326 (1.102–1.597) | −0.32 (−0.50–−0.13) | ||
Western | 1.722 (1.465–2.023) | −0.70 (−0.86–−0.54) | 1.453 (1.236–1.708) | −0.42 (−0.58–−0.26) | ||
Hypertension | Normal | Balanced | 1.00 (Ref) | — | 1.00 (Ref) | — |
Processed Fat | 1.015 (0.982–1.048) | — | 1.009 (0.987–1.031) | — | ||
Western | 1.023 (0.987–1.060) | — | 1.013 (0.989–1.037) | — | ||
Low | Balanced | 1.173 (1.019–1.350) | — | 1.039 (0.966–1.118) | — | |
Processed Fat | 1.054 (0.952–1.167) | −0.04 (−0.14–0.06) | 0.987 (0.970–1.004) | 0.02 (0.00–0.04) | ||
Western | 1.200 (1.033–1.393) | −0.18 (−0.33–−0.03) | 1.021 (0.974–1.071) | −0.01 (−0.06–−0.04) | ||
Hyperglycemia | Normal | Balanced | 1.00 (Ref) | — | 1.00 (Ref) | — |
Processed Fat | 1.013 (0.960–1.069) | — | 1.021 (0.984–1.058) | — | ||
Western | 1.021 (0.965–1.081) | — | 1.005 (0.969–1.042) | — | ||
Low | Balanced | 0.950 (0.852–1.058) | — | 1.196 (1.010–1.416) | — | |
Processed Fat | 1.098 (0.947–1.273) | −0.09 (−0.23–0.06) | 1.035 (0.930–1.151) | −0.01 (−0.12–−0.09) | ||
Western | 1.061 (0.935–1.203) | −0.04 (−0.17–0.09) | 1.223 (1.065–1.404) | −0.22 (−0.36–−0.08) | ||
Low HDL-C | Normal | Balanced | 1.00 (Ref) | — | 1.00 (Ref) | — |
Processed Fat | 0.993 (0.940–1.049) | — | 1.006 (0.936–1.082) | — | ||
Western | 1.005 (0.950–1.062) | — | 0.974 (0.906–1.048) | — | ||
Low | Balanced | 1.205 (1.013–1.433) | — | 1.186 (0.980–1.434) | — | |
Processed Fat | 1.232 (1.032–1.471) | −0.24 (−0.42–−0.06) | 1.126 (0.932–1.360) | −0.12 (−0.30–0.07) | ||
Western | 1.163 (1.001–1.351) | −0.16 (−0.31–−0.01) | 1.177 (0.995–1.393) | −0.20 (−0.37–−0.04) | ||
High TG | Normal | Balanced | 1.00 (Ref) | — | 1.00 (Ref) | — |
Processed Fat | 0.977 (0.928–1.028) | — | 1.011 (0.969–1.055) | — | ||
Western | 0.985 (0.936–1.036) | — | 0.975 (0.938–1.013) | — | ||
Low | Balanced | 0.992 (0.887–1.108) | — | 1.150 (0.959–1.380) | — | |
Processed Fat | 1.141 (0.978–1.331) | −0.16 (−0.32–−0.01) | 1.143 (0.970–1.346) | −0.13 (−0.29–0.03) | ||
Western | 1.090 (0.957–1.241) | −0.10 (−0.23–0.02) | 1.087 (0.957–1.234) | −0.11 (−0.24–0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.W.; Lee, H.; Choi, H.; Kang, Y. Relative Excess Risk of Metabolic Syndrome Due to Interaction Between Handgrip Strength and Dietary Patterns Among Korean Youth. Nutrients 2025, 17, 2282. https://doi.org/10.3390/nu17142282
Yoon SW, Lee H, Choi H, Kang Y. Relative Excess Risk of Metabolic Syndrome Due to Interaction Between Handgrip Strength and Dietary Patterns Among Korean Youth. Nutrients. 2025; 17(14):2282. https://doi.org/10.3390/nu17142282
Chicago/Turabian StyleYoon, Seong Woong, Hunju Lee, Hyowon Choi, and Yunkoo Kang. 2025. "Relative Excess Risk of Metabolic Syndrome Due to Interaction Between Handgrip Strength and Dietary Patterns Among Korean Youth" Nutrients 17, no. 14: 2282. https://doi.org/10.3390/nu17142282
APA StyleYoon, S. W., Lee, H., Choi, H., & Kang, Y. (2025). Relative Excess Risk of Metabolic Syndrome Due to Interaction Between Handgrip Strength and Dietary Patterns Among Korean Youth. Nutrients, 17(14), 2282. https://doi.org/10.3390/nu17142282