The Cost-Effectiveness of Increased Yogurt Intake in Type 2 Diabetes in Japan
Abstract
1. Introduction
2. Materials and Methods
2.1. Modeling Framework
2.2. Scenarios
2.3. Input Parameters
2.4. Sensitivity Analysis
3. Results
3.1. Projected Incidence, Mortality, and NHE on Baseline Scenario
3.2. Health Gains by Increased Yogurt Intake
3.3. Saved NHE by Increased Yogurt Intake
3.4. Sensitivity Analyses
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T2D | Type 2 Diabetes |
NHE | National Healthcare Expenditures |
HbA1c | Hemoglobin A1c |
USD | US Dollars |
FDA | Food and Drug Administration |
SV | Servings |
JPY | Japanese Yen |
CKD | Chronic Kidney Disease |
NPS | Nutritional Profiling System |
References
- [Health Japan 21 (Third Term)] Kenkou Nihon 21. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/kenkounippon21_00006.html (accessed on 28 March 2025). (In Japanese)
- Overview of the Dietary Reference Intakes for Japanese (2020). Available online: https://www.mhlw.go.jp/content/10900000/000862500.pdf (accessed on 28 March 2025).
- Nomura, S.; Murakami, M.; Rauniyar, S.K.; Kondo, N.; Tabuchi, T.; Sakamoto, H.; Tokuda, Y.; Patel, N.; de Pablo, J.N.; Dieleman, J.L.; et al. Three decades of population health changes in Japan, 1990–2021: A subnational analysis for the Global Burden of Disease Study 2021. Lancet Public Health 2025, 10, e321–e332. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Rayner, A.W.; Gregg, E.W.; Sheffer, K.E.; Carrillo-Larco, R.M.; Bennett, J.E.; Shaw, J.E.; Paciorek, C.J.; Singleton, R.K.; Pires, A.B.; et al. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef]
- Pardhan, S. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- National Health and Nutrition Survey. Available online: https://www.nibiohn.go.jp/eiken/kenkounippon21/en/eiyouchousa/ (accessed on 28 March 2025).
- Saaddine, J.B.; Honeycutt, A.A.; Narayan, K.M.; Zhang, X.; Klein, R.; Boyle, J.P. Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005–2050. Arch. Ophthalmol. 2008, 126, 1740–1747. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, H.; Araki, S.I.; Kawai, K.; Yamazaki, K.; Tomonaga, O.; Shirabe, S.I.; Maegawa, H. Declining trends of diabetic nephropathy, retinopathy and neuropathy with improving diabetes care indicators in Japanese patients with type 2 and type 1 diabetes (JDDM 46). BMJ Open Diabetes Res. Care 2018, 6, e000521. [Google Scholar] [CrossRef]
- Kawasaki, R.; Tanaka, S.; Tanaka, S.; Yamamoto, T.; Sone, H.; Ohashi, Y.; Akanuma, Y.; Yamada, N.; Yamashita, H. Incidence and progression of diabetic retinopathy in Japanese adults with type 2 diabetes: 8 year follow-up study of the Japan Diabetes Complications Study (JDCS). Diabetologia 2011, 54, 2288–2294. [Google Scholar] [CrossRef]
- Sone, H.; Tanaka, S.; Tanaka, S.; Suzuki, S.; Seino, H.; Hanyu, O.; Sato, A.; Toyonaga, T.; Okita, K.; Ishibashi, S.; et al. Leisure-time physical activity is a significant predictor of stroke and total mortality in Japanese patients with type 2 diabetes: Analysis from the Japan Diabetes Complications Study (JDCS). Diabetologia 2013, 56, 1021–1030. [Google Scholar] [CrossRef]
- Xue, M.; Xu, W.; Ou, Y.N.; Cao, X.P.; Tan, M.S.; Tan, L.; Yu, J.T. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 2019, 55, 100944. [Google Scholar] [CrossRef]
- Sasazuki, S.; Charvat, H.; Hara, A.; Wakai, K.; Nagata, C.; Nakamura, K.; Tsuji, I.; Sugawara, Y.; Tamakoshi, A.; Matsuo, K.; et al. Diabetes mellitus and cancer risk: Pooled analysis of eight cohort studies in Japan. Cancer Sci. 2013, 104, 1499–1507. [Google Scholar] [CrossRef]
- The Japanese Society for Dialysis Therapy. 2023 Annual Dialysis Data Report, JSDT Renal Data Registry; The Japanese Society for Dialysis Therapy: Tokyo, Japan, 2023. [Google Scholar]
- Survey on Medical Benefits. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00450389&tstat=000001044924&cycle=0&tclass1=000001044945&tclass2=000001156339&tclass3val=0 (accessed on 28 March 2025).
- Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2020, 162, 108072. [Google Scholar] [CrossRef]
- Araki, E.; Goto, A.; Kondo, T.; Noda, M.; Noto, H.; Origasa, H.; Osawa, H.; Taguchi, A.; Tanizawa, Y.; Tobe, K.; et al. Japanese Clinical Practice Guideline for Diabetes 2019. J. Diabetes Investig. 2020, 11, 1020–1076. [Google Scholar] [CrossRef] [PubMed]
- Sakane, N. Diabetes prevention in the real world: Insights from the JDPP and J-DOIT1. J. Gen. Fam. Med. 2017, 18, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Hayashino, Y.; Suzuki, H.; Yamazaki, K.; Goto, A.; Izumi, K.; Noda, M. A cluster randomized trial on the effect of a multifaceted intervention improved the technical quality of diabetes care by primary care physicians: The Japan Diabetes Outcome Intervention Trial-2 (J-DOIT2). Diabet. Med. 2016, 33, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Ueki, K.; Sasako, T.; Okazaki, Y.; Kato, M.; Okahata, S.; Katsuyama, H.; Haraguchi, M.; Morita, A.; Ohashi, K.; Hara, K.; et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): An open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 951–964. [Google Scholar] [CrossRef]
- Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 19 March 2025).
- Cámara, M.; Giner, R.M.; González-Fandos, E.; López-García, E.; Mañes, J.; Portillo, M.P.; Rafecas, M.; Domínguez, L.; Martínez, J.A. Food-Based Dietary Guidelines around the World: A Comparative Analysis to Update AESAN Scientific Committee Dietary Recommendations. Nutrients 2021, 13, 3131. [Google Scholar] [CrossRef]
- Japanese Food Guide Spinning Top. Available online: https://www.maff.go.jp/j/balance_guide/b_use/pdf/eng_reiari.pdf (accessed on 19 March 2025).
- Yoshiike, N.; Hayashi, F.; Takemi, Y.; Mizoguchi, K.; Seino, F. A New Food Guide in Japan: The Japanese Food Guide Spinning Top. Nutr. Rev. 2007, 65, 149–154. [Google Scholar] [CrossRef]
- [Targets of Health Japan 21] Kenkou Nihon 21 Mokuhyouchi Ichiran. Available online: https://www.mhlw.go.jp/www1/topics/kenko21_11/t2a.html (accessed on 31 March 2025). (In Japanese)
- [Recommendations for Extending Healthy Life Expectancy Based on Cross-Disease Evidence] shikkan oudanteki evidence ni Motoduku Kenkou Jumyou Enshin no Tameno Teigen. Available online: https://www.ncc.go.jp/jp/icc/cohort/040/010/6NC_20210820.pdf (accessed on 19 March 2025). (In Japanese)
- Shojaei-Zarghani, S.; Fattahi, M.R.; Kazemi, A.; Najafi, N.; Safarpour, A.R. A cross-sectional study on the association between major dietary pattern and impaired fasting glucose. Front. Nutr. 2025, 12, 1521571. [Google Scholar] [CrossRef]
- Chen, M.; Sun, Q.; Giovannucci, E.; Mozaffarian, D.; Manson, J.E.; Willett, W.C.; Hu, F.B. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 2014, 12, 215. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Dairy products and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Am. J. Clin. Nutr. 2013, 98, 1066–1083. [Google Scholar] [CrossRef]
- Tong, X.; Dong, J.Y.; Wu, Z.W.; Li, W.; Qin, L.Q. Dairy consumption and risk of type 2 diabetes mellitus: A meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2011, 65, 1027–1031. [Google Scholar] [CrossRef]
- Gao, D.; Ning, N.; Wang, C.; Wang, Y.; Li, Q.; Meng, Z.; Liu, Y.; Li, Q. Dairy products consumption and risk of type 2 diabetes: Systematic review and dose-response meta-analysis. PLoS ONE 2013, 8, e73965. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Xu, Q.; Jiang, R.; Han, T.; Sun, C.; Na, L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2017, 9, 982. [Google Scholar] [CrossRef] [PubMed]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, D.; Kuranuki, S.; Sunto, A.; Matsumoto, N.; Nakamura, T. Daily Yogurt Consumption Improves Glucose Metabolism and Insulin Sensitivity in Young Nondiabetic Japanese Subjects with Type-2 Diabetes Risk Alleles. Nutrients 2018, 10, 1834. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Sayon-Orea, C.; Ruiz-Canela, M.; de la Fuente, C.; Gea, A.; Bes-Rastrollo, M. Yogurt consumption, weight change and risk of overweight/obesity: The SUN cohort study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1189–1196. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J. Dairy consumption is associated with a lower incidence of the metabolic syndrome in middle-aged and older Korean adults: The Korean Genome and Epidemiology Study (KoGES). Br. J. Nutr. 2017, 117, 148–160. [Google Scholar] [CrossRef]
- Buendia, J.R.; Li, Y.; Hu, F.B.; Cabral, H.J.; Bradlee, M.L.; Quatromoni, P.A.; Singer, M.R.; Curhan, G.C.; Moore, L.L. Long-term yogurt consumption and risk of incident hypertension in adults. J. Hypertens. 2018, 36, 1671–1679. [Google Scholar] [CrossRef]
- Wang, H.; Fox, C.S.; Troy, L.M.; McKeown, N.M.; Jacques, P.F. Longitudinal association of dairy consumption with the changes in blood pressure and the risk of incident hypertension: The Framingham Heart Study. Br. J. Nutr. 2015, 114, 1887–1899. [Google Scholar] [CrossRef]
- Pereira, M.A.; Jacobs, D.R., Jr.; Van Horn, L.; Slattery, M.L.; Kartashov, A.I.; Ludwig, D.S. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: The CARDIA Study. JAMA 2002, 287, 2081–2089. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, Y.; Liu, J.; Huang, Z.; Yang, X.; Qin, P.; Chen, C.; Luo, X.; Li, Y.; Wu, Y.; et al. Consumption of Dairy Products and the Risk of Overweight or Obesity, Hypertension, and Type 2 Diabetes Mellitus: A Dose-Response Meta-Analysis and Systematic Review of Cohort Studies. Adv. Nutr. 2022, 13, 2165–2179. [Google Scholar] [CrossRef]
- FDA Announces Qualified Health Claim for Yogurt and Reduced Risk of Type 2 Diabetes. Available online: https://www.fda.gov/food/hfp-constituent-updates/fda-announces-qualified-health-claim-yogurt-and-reduced-risk-type-2-diabetes?os=shmmfp&ref=app (accessed on 19 March 2025).
- Ministry of Education, Culture, Sports, Science and Technology. Standard Tables of Food Composition in Japan—2020, 8th ed.; Report of the Subdivision on Resources The Council for Science and Technology; Ministry of Education, Culture, Sports, Science and Technology, Japan: Tokyo, Japan, 2020. [Google Scholar]
- Fujihashi, H.; Sasaki, S. Identification and estimation of the intake of fermented foods and their contribution to energy and nutrients among Japanese adults. Public Health Nutr. 2024, 27, e153. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, M.; Jamshidi, A.R.; Baradaran, H.R.; Mohammadi, Z.; Mashayekhi, A.; Shokraneh, F.; Rezai Hamami, M.; Yazdani Bakhsh, R.; Shabaninejad, H.; Delavari, S.; et al. Estimation and Prediction of Avoidable Health Care Costs of Cardiovascular Diseases and Type 2 Diabetes Through Adequate Dairy Food Consumption: A Systematic Review and Micro Simulation Modeling Study. Arch. Iran Med. 2018, 21, 213–222. [Google Scholar] [PubMed]
- TreeAge Software, Inc. TreeAge Pro Healthcare 2024; TreeAge Software, Inc: Williamstown, MA, USA, 2024. [Google Scholar]
- The Japanese Clinical Nutrition Association. (Ordinary Serving Values Food Composition Tables) Jouyouryou Shokuhin Seibun Hayami Hyou, 3rd ed.; Ishiyaku Publishers, Inc.: Tokyo, Japan, 2006; p. 553. (In Japanese) [Google Scholar]
- Kono, S.; Takimoto, H.; Yokoyama, T.; Okubo, H.; Ojima, T.; Tamakoshi, A. (Development of Methods for Utilizing the National Health and Nutrition Survey in Promoting Health Promotion and Nutrition Policy) Kenkou Zoushin Eiyou Seisaku no Suishin ni Okeru Kokumin Kenkou Eiyou Chousa no Katsuyou Shuhou no Kaihatsu; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2015. (In Japanese) [Google Scholar]
- IMF Data Access to Macroeconomic & Financial Data. Available online: https://data.imf.org/?sk=388dfa60-1d26-4ade-b505-a05a558d9a42 (accessed on 28 March 2025).
- Fukuda, T.; Shiroiwa, T.; Ikeda, S.; Igarashi, A.; Akazawa, M.; Ishida, H.; Noto, S.; Saito, S.; Sakamaki, H.; Shimozuma, K.; et al. Guideline for economic evaluation of healthcare technologies in Japan. J. Natl. Inst. Public Health 2013, 62, 625–640. [Google Scholar]
- Result of the Population Estimates. Available online: https://www.stat.go.jp/english/data/jinsui/2.html (accessed on 28 March 2025).
- Global Burden of Disease Study 2019 (GBD 2019) Results. Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 28 March 2025).
- Rice, B.H.; Cifelli, C.J.; Pikosky, M.A.; Miller, G.D. Dairy components and risk factors for cardiometabolic syndrome: Recent evidence and opportunities for future research. Adv. Nutr. 2011, 2, 396–407. [Google Scholar] [CrossRef]
- Yanni, A.E.; Kartsioti, K.; Karathanos, V.T. The role of yoghurt consumption in the management of type II diabetes. Food Funct. 2020, 11, 10306–10316. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Froy, O. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes. J. Nutr. Biochem. 2013, 24, 1–5. [Google Scholar] [CrossRef]
- Beulens, J.W.; van der A, D.L.; Grobbee, D.E.; Sluijs, I.; Spijkerman, A.M.; van der Schouw, Y.T. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 2010, 33, 1699–1705. [Google Scholar] [CrossRef]
- Abd El-Salam, M.H.; El-Shibiny, S.; Assem, F.M.; El-Sayyad, G.S.; Hasanien, Y.A.; Elfadil, D.; Soliman, T.N. Impact of Fermented Milk On Gut Microbiota And Human Health: A Comprehensive Review. Curr. Microbiol. 2025, 82, 107. [Google Scholar] [CrossRef]
- Toshimitsu, T.; Gotou, A.; Sashihara, T.; Hojo, K.; Hachimura, S.; Shioya, N.; Iwama, Y.; Irie, J.; Ichihara, Y. Ingesting probiotic yogurt containing Lactiplantibacillus plantarum OLL2712 improves glycaemic control in adults with prediabetes in a randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 2024, 26, 2239–2247. [Google Scholar] [CrossRef]
- Torres, S.; Fabersani, E.; Marquez, A.; Gauffin-Cano, P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur. J. Nutr. 2019, 58, 27–43. [Google Scholar] [CrossRef]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; et al. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Br. J. Nutr. 2015, 114, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Panahi, S.; Tremblay, A. The Potential Role of Yogurt in Weight Management and Prevention of Type 2 Diabetes. J. Am. Coll. Nutr. 2016, 35, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T. A Food Consumption-Based Diet Quality Score and Its Correlation With Nutrient Intake Adequacy Among Japanese Children. Cureus 2021, 13, e19337. [Google Scholar] [CrossRef]
- Takaizumi, K.; Harada, K.; Shibata, A.; Nakamura, Y. Influence of awareness of the Japanese Food Guide Spinning Top on eating behavior and obesity. Asia Pac. J. Clin. Nutr. 2011, 20, 95–101. [Google Scholar]
- Kurotani, K.; Honjo, K.; Nakaya, T.; Ikeda, A.; Mizoue, T.; Sawada, N.; Tsugane, S. Diet Quality Affects the Association between Census-Based Neighborhood Deprivation and All-Cause Mortality in Japanese Men and Women: The Japan Public Health Center-Based Prospective Study. Nutrients 2019, 11, 2194. [Google Scholar] [CrossRef]
- Kurotani, K.; Akter, S.; Kashino, I.; Goto, A.; Mizoue, T.; Noda, M.; Sasazuki, S.; Sawada, N.; Tsugane, S. Quality of diet and mortality among Japanese men and women: Japan Public Health Center based prospective study. BMJ 2016, 352, i1209. [Google Scholar] [CrossRef]
- [Measures against Kidney Disease and Diabetes] Jinshikkan Tasaku Oyobi Tounyoubyou Taisaku no Torikumi Tsuite. Available online: https://www.mhlw.go.jp/content/10905000/001129314.pdf (accessed on 31 March 2025).
- Dainelli, L.; Xu, T.; Li, M.; Zimmermann, D.; Fang, H.; Wu, Y.; Detzel, P. Cost-effectiveness of milk powder fortified with potassium to decrease blood pressure and prevent cardiovascular events among the adult population in China: A Markov model. BMJ Open 2017, 7, e017136. [Google Scholar] [CrossRef]
- Yoshinari, M.; Ohkuma, T.; Iwase, M.; Kitazono, T. Milk and yogurt consumption and its association with cardiometabolic risk factors in patients with type 2 diabetes: The Fukuoka Diabetes Registry. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103772. [Google Scholar] [CrossRef]
- Fuji Keizai Co., Ltd. Food Service Industry Marketing Data Book 2025; Fuji Keizai Co., Ltd.: Tokyo, Japan, 2024. [Google Scholar]
- Drewnowski, A. Uses of nutrient profiling to address public health needs: From regulation to reformulation. Proc. Nutr. Soc. 2017, 76, 220–229. [Google Scholar] [CrossRef]
- Department of Nutrition for Health and Development World Health Organization. Nutrient Profiling Report of a WHO/IASO Technical Meeting; Department of Nutrition for Health and Development World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- WHO Regional Office for Europe. Use of Nutrient Profile Models for Nutrition and Health Policies: Meeting Report on the Use of Nutrient Models in the WHO Europian Region; WHO Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- Global Access to Nutrition Index 2021 Methodology. Available online: https://accesstonutrition.org/app/uploads/2020/06/Global-Index-2021-Methodology-FINAL.pdf (accessed on 1 April 2025).
- Furuta, C.; Jinzu, H.; Cao, L.; Drewnowski, A.; Okabe, Y. Nutrient Profiling of Japanese Dishes: The Development of a Novel Ajinomoto Group Nutrient Profiling System. Front. Nutr. 2022, 9, 912148. [Google Scholar] [CrossRef] [PubMed]
- Tousen, Y.; Takebayashi, J.; Okada, C.; Suzuki, M.; Yasudomi, A.; Yoshita, K.; Ishimi, Y.; Takimoto, H. Development of a Nutrient Profile Model for Dishes in Japan Version 1.0: A New Step towards Addressing Public Health Nutrition Challenges. Nutrients 2024, 16, 3012. [Google Scholar] [CrossRef] [PubMed]
- Takebayashi, J.; Takimoto, H.; Okada, C.; Tousen, Y.; Ishimi, Y. Development of a Nutrient Profiling Model for Processed Foods in Japan. Nutrients 2024, 16, 3026. [Google Scholar] [CrossRef] [PubMed]
- Wakayama, R.; Drewnowski, A.; Horimoto, T.; Saito, Y.; Yu, T.; Suzuki, T.; Takasugi, S. Development and Validation of the Meiji Nutritional Profiling System (Meiji NPS) to Address Dietary Needs of Adults and Older Adults in Japan. Nutrients 2024, 16, 936. [Google Scholar] [CrossRef]
- Wakayama, R.; Drewnowski, A.; Horimoto, T.; Yu, T.; Saito, Y.; Suzuki, T.; Honda, K.; Kanaya, S.; Takasugi, S. Development and Validation of the Meiji Nutritional Profiling System per Serving Size. Nutrients 2024, 16, 2700. [Google Scholar] [CrossRef]
- [Food Price Trends] Shokuhin no Kakaku Doukou. Available online: https://www.maff.go.jp/j/zyukyu/anpo/kouri/ (accessed on 28 March 2025). (In Japanese)
Input Parameters | Data Source |
---|---|
Total population | Population Estimate, 2019 [49] |
Mean yogurt intake (g/day) | National Health and Nutrition Survey in Japan, 2019 [6] |
Prevalence rates of T2D | Global Burden of Disease Study 2019 [50] |
Incidence rates of T2D | Global Burden of Disease Study 2019 [50] |
Mortality rates of T2D | Global Burden of Disease Study 2019 [50] |
All-cause mortality rates | Global Burden of Disease Study 2019 [50] |
Relative risk for T2D associated with yogurt intake | Dose–response meta-analysis of cohort studies [39] |
National healthcare expenditures | Survey on Medical Insurance Benefits, 2019 [14] |
Sex, Age (Years) | Total Population [49] | Yogurt Intake (Mean) [6] | T2D Incidence [50] | T2D Prevalence [50] | T2D Mortality [50] | All-Cause Mortality [50] | Relative Risk for T2D [39] |
---|---|---|---|---|---|---|---|
No. | g/day | per 100,000 | per 100,000 | per 100,000 | per 100,000 | per 50 g | |
Men | |||||||
40–49 | 9,374,000 | 24.5 | 386.9 (289.6–498.6) | 5716.5 (4728.7–6726.4) | 1.1 (1.0–1.3) | 150.6 (147.9–153.4) | 0.93 (0.89–0.97) |
50–59 | 8,161,000 | 31.1 | 520.9 (406.6–658.2) | 10,032.7 (8734.0–11,449.3) | 3.5 (3.2–3.8) | 390.6 (383.1–398.5) | |
60–69 | 7,930,000 | 34.4 | 517.9 (385.1–661.3) | 15,065.7 (13,385.8–16,975.4) | 7.6 (7.0– 8.2) | 996.9 (979.4–1015.4) | |
70–79 | 7,333,000 | 40.9 | 317.7 (224.6–418.3) | 18,541.9 (16,590.8–20,761.4) | 17.0 (15.5–18.4) | 2579.2 (2538.1–2622.3) | |
Women | |||||||
40–49 | 9,147,000 | 34.1 | 224.1 (163.3–295.4) | 3310.0 (2697.6–3992.1) | 0.3 (0.3–0.4) | 88.2 (86.6–90.0) | 0.93 (0.89–0.97) |
50–59 | 8,117,000 | 44.7 | 327.5 (244.7–430.3) | 5957.5 (5070.1–7038.2) | 0.9 (0.8–1.0) | 201.1 (197.4–205.1) | |
60–69 | 8,302,000 | 47.3 | 365.9 (262.1–483.7) | 9303.4 (8126.7–10,724.5) | 2.7 (2.5–3.0) | 439.3 (432.3–446.8) | |
70–79 | 8,594,000 | 51.4 | 303.0 (220.4–395.8) | 12,210.5 (10,786.8–13,856.9) | 8.9 (7.5–9.9) | 1205.0 (1187.4–1223.8) |
Sex, Age (Year) | Outpatient (USD) [14] |
---|---|
Men | |
40–49 | 320,339,533 |
50–59 | 599,793,593 |
60–69 | 1,085,266,222 |
70–79 | 1,452,129,242 |
Women | |
40–49 | 149,412,727 |
50–59 | 284,612,996 |
60–69 | 620,583,959 |
70–79 | 985,138,127 |
Sex, Age (Years) | Population in 2019 | T2D Incidence | T2D Death | National Healthcare Expenditures for T2D | ||
---|---|---|---|---|---|---|
No. | No. | % | No. | % | USD | |
Men | ||||||
40–79 | 32,798,000 | 1,288,049 | 3.9 | 3618 | 0.011 | 34,318,611,964 |
40–49 | 9,374,000 | 341,551 | 3.6 | 76 | 0.001 | 3,917,130,410 |
50–59 | 8,161,000 | 389,553 | 4.8 | 345 | 0.004 | 6,781,869,201 |
60–69 | 7,930,000 | 364,215 | 4.6 | 998 | 0.013 | 11,038,970,866 |
70–79 | 7,333,000 | 192,729 | 2.6 | 2199 | 0.030 | 12,580,641,487 |
Women | ||||||
40–79 | 34,160,000 | 935,019 | 2.7 | 1288 | 0.004 | 21,227,670,973 |
40–49 | 9,147,000 | 192,413 | 2.1 | 13 | 0.000 | 1,827,846,469 |
50–59 | 8,117,000 | 243,340 | 3.0 | 54 | 0.001 | 3,281,760,296 |
60–69 | 8,302,000 | 273,451 | 3.3 | 242 | 0.003 | 6,628,310,500 |
70–79 | 8,594,000 | 225,815 | 2.6 | 980 | 0.011 | 9,489,753,708 |
Sex, Age (Years) | T2D Incidence | T2D Death | ||||||
---|---|---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 1 | Scenario 2 | |||||
No. | % | No. | % | No. | % | No. | % | |
Men | ||||||||
40–79 | 214,762 | 16.7 | 85,310 | 6.6 | 57 | 1.6 | 21 | 0.6 |
40–49 | 60,089 | 17.6 | 26,001 | 7.6 | 3 | 4.0 | 1 | 1.7 |
50–59 | 65,104 | 16.7 | 26,075 | 6.7 | 10 | 3.0 | 4 | 1.2 |
60–69 | 59,389 | 16.3 | 22,762 | 6.2 | 21 | 2.1 | 8 | 0.8 |
70–79 | 30,180 | 15.7 | 10,471 | 5.4 | 23 | 1.0 | 8 | 0.4 |
Women | ||||||||
40–79 | 142,104 | 15.2 | 45,799 | 4.9 | 20 | 1.6 | 6 | 0.5 |
40–49 | 31,869 | 16.6 | 12,286 | 6.4 | 0 | 3.7 | 0 | 1.4 |
50–59 | 37,033 | 15.2 | 11,985 | 4.9 | 2 | 2.9 | 1 | 0.9 |
60–69 | 40,672 | 14.9 | 12,472 | 4.6 | 5 | 2.1 | 2 | 0.6 |
70–79 | 32,530 | 14.4 | 9056 | 4.0 | 13 | 1.3 | 4 | 0.4 |
Sex, Age (Years) | Scenario 1 | Scenario 2 | ||
---|---|---|---|---|
USD | % | USD | % | |
Men | ||||
40–79 | 831,229,401 | 2.4 | 326,125,482 | 1.0 |
40–49 | 177,821,247 | 4.5 | 76,994,075 | 2.0 |
50–59 | 235,611,909 | 3.5 | 94,450,264 | 1.4 |
60–69 | 264,395,111 | 2.4 | 101,428,663 | 0.9 |
70–79 | 153,401,134 | 1.2 | 53,252,481 | 0.4 |
Women | ||||
40–79 | 493,253,453 | 2.3 | 155,066,397 | 0.7 |
40–49 | 77,293,678 | 4.2 | 29,807,938 | 1.6 |
50–59 | 107,282,621 | 3.3 | 34,737,231 | 1.1 |
60–69 | 160,539,759 | 2.4 | 49,257,693 | 0.7 |
70–79 | 148,137,396 | 1.6 | 41,263,535 | 0.4 |
(A) | |||
---|---|---|---|
Sex, Parameters | Low | High | Expected Values |
USD | USD | USD | |
Men | 831,229,401 | ||
Relative risk for T2D | 377,096,111 | 1,231,668,464 | |
Incidence rate of T2D | 626,250,543 | 1,058,550,712 | |
Prevalence rate of T2D | 728,377,946 | 954,373,842 | |
Discount rate | 743,686,382 | 933,396,936 | |
All-cause mortality rate | 830,416,028 | 832,003,471 | |
T2D-related mortality rate | 831,215,444 | 831,243,340 | |
Women | 493,253,453 | ||
Relative risk for T2D | 225,217,896 | 725,874,965 | |
Incidence rate of T2D | 360,965,491 | 644,994,899 | |
Prevalence rate of T2D | 424,586,181 | 572,494,735 | |
Discount rate | 441,015,042 | 554,242,622 | |
All-cause mortality rate | 492,986,196 | 493,503,482 | |
T2D-related mortality rate | 493,245,445 | 493,259,065 | |
(B) | |||
Sex, Parameters | Low | High | Expected Values |
USD | USD | USD | |
Men | 326,125,482 | ||
Relative risk for T2D | 143,285,100 | 499,316,015 | |
Incidence rate of T2D | 246,154,824 | 414,928,697 | |
Prevalence rate of T2D | 285,414,302 | 375,123,507 | |
Discount rate | 291,767,506 | 366,224,063 | |
All-cause mortality rate | 325,824,236 | 326,412,104 | |
T2D-related mortality rate | 326,120,299 | 326,130,673 | |
Women | 155,066,397 | ||
Relative risk for T2D | 68,535,377 | 235,935,399 | |
Incidence rate of T2D | 113,541,969 | 202,773,705 | |
Prevalence rate of T2D | 133,173,335 | 180,530,002 | |
Discount rate | 138,639,325 | 174,245,651 | |
All-cause mortality rate | 154,987,963 | 155,139,771 | |
T2D-related mortality rate | 155,064,104 | 155,068,013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakayama, R.; Araki, M.; Nakamura, M.; Ikeda, N. The Cost-Effectiveness of Increased Yogurt Intake in Type 2 Diabetes in Japan. Nutrients 2025, 17, 2278. https://doi.org/10.3390/nu17142278
Wakayama R, Araki M, Nakamura M, Ikeda N. The Cost-Effectiveness of Increased Yogurt Intake in Type 2 Diabetes in Japan. Nutrients. 2025; 17(14):2278. https://doi.org/10.3390/nu17142278
Chicago/Turabian StyleWakayama, Ryota, Michihiro Araki, Mieko Nakamura, and Nayu Ikeda. 2025. "The Cost-Effectiveness of Increased Yogurt Intake in Type 2 Diabetes in Japan" Nutrients 17, no. 14: 2278. https://doi.org/10.3390/nu17142278
APA StyleWakayama, R., Araki, M., Nakamura, M., & Ikeda, N. (2025). The Cost-Effectiveness of Increased Yogurt Intake in Type 2 Diabetes in Japan. Nutrients, 17(14), 2278. https://doi.org/10.3390/nu17142278