Factors Associated with Anthropometry Z-Scores in Exclusively Breastfed Infants Aged 0–6 Months in 10 Cities of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Basic Information Collection
2.3. Anthropometric Measurements
2.4. Statistic
3. Results
3.1. General Characteristics of the Study Population
3.1.1. Demographic Characteristics of the Lactating Mothers
3.1.2. Lifestyle and Health Status of Lactating Mothers
3.1.3. Maternal Perinatal Health Information
3.1.4. Infant General Information
3.2. Maternal Energy and Nutrient Intake During Lactation
3.3. Factors Associated with Infant Anthropometry Z-Scores
3.3.1. Univariate Analysis of Factors Associated with Infant Growth
3.3.2. Multivariate Analysis of Factors Associated with Infant Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
24-HDR | 24-hour dietary recall |
AI | Adequate intake |
AMDR | Acceptable macronutrient distribution ranges |
BM | BMI-for-age Z-scores |
BMI | Body mass index |
CI | Confidence interval |
CNS | Chinese nutrition society |
DRIs | Dietary reference intakes |
EAR | Estimated average requirement |
EER | Estimated energy requirement |
EM | Expectation maximization |
EPDS-10 | 10-item Edinburgh Postnatal Depression Scale |
FDR | False discovery rate |
GI | Gastrointestinal |
GLM | General linear model |
GWG | Gestational weight gain |
HMO | Human milk oligosaccharides |
IBD | Inflammatory bowel disease |
ICC | Intraclass correlation coefficients |
LAZ | Length-for-Age Z-scores |
LF | Lactoferrin |
LGA | Large-for-Gestational-Age |
LMMs | Linear mixed models |
OR | Odds Ratio |
PAL | Physical Activity Level |
PI-NCD | Preventing Noncommunicable Diseases through Improved Nutrition |
PSQI | Pittsburgh Sleep Quality Index |
PUFA | Polyunsaturated Fatty Acids |
RCS | Restricted Cubic Spline |
RNI | Recommended Nutrient Intake |
RR | Relative Risk |
SFA | Saturated Fatty Acids |
SGA | Small-for-Gestational-Age |
SIgA | Secretory Immunoglobulin A |
TFA | Trans Fatty Acids |
TSH | Thyroid-Stimulating Hormone |
UL | Tolerable Upper Intake Level |
UNICEF | United Nations International Children’s Emergency Fund |
WAZ | Weight-for-Age Z-scores |
WHO | World Health Organization |
WLZ | Weight-for-Length Z-scores |
References
- McGowan, C.; Bland, R. The Benefits of Breastfeeding on Child Intelligence, Behavior, and Executive Function: A Review of Recent Evidence. Breastfeed. Med. 2023, 18, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.Y.; Kim, S.Y. Human Breast Milk Composition and Function in Human Health: From Nutritional Components to Microbiome and MicroRNAs. Nutrients 2021, 13, 3094. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef]
- Mangano, K.M.; Noel, S.E.; Sahni, S.; Tucker, K.L. Higher Dairy Intakes Are Associated with Higher Bone Mineral Density among Adults with Sufficient Vitamin D Status: Results from the Boston Puerto Rican Osteoporosis Study. J. Nutr. 2019, 149, 139–148. [Google Scholar] [CrossRef]
- Moubareck, C.A. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Smith, N.P.; Teti, D.M. Associations Between Breastfeeding, Maternal Emotional Availability, and Infant-Mother Attachment: The Role of Coparenting. J. Hum. Lact. 2024, 40, 455–463. [Google Scholar] [CrossRef]
- Modak, A.; Ronghe, V.; Gomase, K.P. The Psychological Benefits of Breastfeeding: Fostering Maternal Well-Being and Child Development. Cureus 2023, 15, e46730. [Google Scholar] [CrossRef]
- Victora, C.G.; Bahl, R.; Barros, A.J.; França, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef]
- Muro-Valdez, J.C.; Meza-Rios, A.; Aguilar-Uscanga, B.R.; Lopez-Roa, R.I.; Medina-Díaz, E.; Franco-Torres, E.M.; Zepeda-Morales, A.S.M. Breastfeeding-Related Health Benefits in Children and Mothers: Vital Organs Perspective. Medicina 2023, 59, 1535. [Google Scholar] [CrossRef]
- Chowdhury, R.; Sinha, B.; Sankar, M.J.; Taneja, S.; Bhandari, N.; Rollins, N.; Bahl, R.; Martines, J. Breastfeeding and maternal health outcomes: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 96–113. [Google Scholar] [CrossRef]
- Exclusive Breastfeeding for Six Months Best for Babies Everywhere; World Health Organization: Geneva, Switzerland, 2011; Available online: https://www.who.int/mediacentre/news/statements/2011/breastfeeding_20110115/en/ (accessed on 28 May 2025).
- Heindel, J.J.; Vandenberg, L.N. Developmental origins of health and disease: A paradigm for understanding disease cause and prevention. Curr. Opin. Pediatr. 2015, 27, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Abrego Del Castillo, K.Y.; Dennis, C.L.; Wamithi, S.; Briollais, L.; McGowan, P.O.; Dol, J.; Lye, S.J. Maternal BMI, breastfeeding and perinatal factors that influence early childhood growth trajectories: A scoping review. J. Dev. Orig. Health Dis. 2022, 13, 541–549. [Google Scholar] [CrossRef]
- Tarry-Adkins, J.L.; Ozanne, S.E. Nutrition in early life and age-associated diseases. Ageing Res. Rev. 2017, 39, 96–105. [Google Scholar] [CrossRef]
- Stein, A.D.; Obrutu, O.E.; Behere, R.V.; Yajnik, C.S. Developmental undernutrition, offspring obesity and type 2 diabetes. Diabetologia 2019, 62, 1773–1778. [Google Scholar] [CrossRef] [PubMed]
- Giugliani, E.R.J. Growth in exclusively breastfed infants. J. Pediatr. 2019, 95, 79–84. [Google Scholar] [CrossRef]
- Zong, X.N.; Li, H.; Zhang, Y.Q.; Wu, H.H. Growth performance comparison of exclusively breastfed infants with partially breastfed and formula fed infants. PLoS ONE 2020, 15, e0237067. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Qiao, Y.; Zhao, P.; Li, W.; Katzmarzyk, P.T.; Chaput, J.P.; Fogelholm, M.; Kuriyan, R.; Lambert, E.V.; Maher, C.; et al. Breastfeeding and childhood obesity: A 12-country study. Matern. Child. Nutr. 2020, 16, e12984. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Wang, Z. The relationship between maternal weight gain in pregnancy and newborn weight. Women Birth 2019, 32, 270–275. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Currie, J. The association between pregnancy weight gain and birthweight: A within-family comparison. Lancet 2010, 376, 984–990. [Google Scholar] [CrossRef]
- Mexitalia, M.; Ardian, R.Y.; Pratiwi, R.; Panunggal, B. Correlation of maternal dietary intake with breast milk composition and infant growth. Nutr. Health, 2022; 2601060221129118, ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Tan-Dy, C.R.; Ohlsson, A. Lactase treated feeds to promote growth and feeding tolerance in preterm infants. Cochrane Database Syst. Rev. 2013, 2013, Cd004591. [Google Scholar] [CrossRef]
- Lizzi, M.; Sgrazzutti, L.; Porreca, A.; Di Filippo, P.; Cauzzo, C.; Di Pillo, S.; Chiarelli, F.; Attanasi, M. Longitudinal prospective anthropometric evaluation in Caucasian prepubertal children with lactose intolerance. Front. Pediatr. 2023, 11, 1219195. [Google Scholar] [CrossRef] [PubMed]
- Dupont, C.; Bradatan, E.; Soulaines, P.; Nocerino, R.; Berni-Canani, R. Tolerance and growth in children with cow’s milk allergy fed a thickened extensively hydrolyzed casein-based formula. BMC Pediatr. 2016, 16, 96. [Google Scholar] [CrossRef]
- Cheema, A.S.; Stinson, L.F.; Rea, A.; Lai, C.T.; Payne, M.S.; Murray, K.; Geddes, D.T.; Gridneva, Z. Human Milk Lactose, Insulin, and Glucose Relative to Infant Body Composition during Exclusive Breastfeeding. Nutrients 2021, 13, 3724. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, J.; Ye, Z.; Zeng, X.; Zhao, H.; Liu, Y.; Li, J. Determinants of sleep quality among pregnant women in China: A cross-sectional survey. J. Matern. Fetal Neonatal Med. 2018, 31, 2980–2985. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, W.; Ma, T.J.; Zhang, L.; Hall, B.J.; Ungvari, G.S.; Xiang, Y.T. Prevalence of Poor Sleep Quality in Perinatal and Postnatal Women: A Comprehensive Meta-Analysis of Observational Studies. Front. Psychiatry 2020, 11, 161. [Google Scholar] [CrossRef]
- Cox, J.L.; Holden, J.M.; Sagovsky, R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br. J. Psychiatry 1987, 150, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Institute of Nutrition and Health; Chinese Center for Disease Control and Prevention. Chinese Food Composition Tables Standard Edition, 6th ed.; Peking University Medical Press: Beijing, China, 2019; Volume 1–2.
- Chinese Nutrition Society. Dietary Reference Intakes For China, 2023rd ed.; People’s Medical Publishing House: Beijing, China, 2023; pp. 90–459. [Google Scholar]
- Hipgrave, D.B.; Chang, S.; Li, X.; Wu, Y. Salt and Sodium Intake in China. Jama 2016, 315, 703–705. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Yang, X.; Hemler, E.C.; Fang, Y.; Zhao, L.; Zhang, J.; Yang, Z.; Wang, Z.; He, L.; et al. The dietary transition and its association with cardiometabolic mortality among Chinese adults, 1982-2012: A cross-sectional population-based study. Lancet Diabetes Endocrinol. 2019, 7, 540–548. [Google Scholar] [CrossRef]
- Department of Nutrition for Health and Development; World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- WS/T 423-2022; Growth Standards for Children Under 7 Years Old. National Health Commission of the People’s Republic of China: Beijing, China, 2022.
- T/CNSS 009-2021; Weight Monitoring and Evaluation During Pregnancy Period of Chinese Women. Chinese Nutrition Society: Beijing, China, 2021.
- Fang, Y.; Lian, Y.; Yang, Z.; Duan, Y.; He, Y. Associations between Feeding Patterns and Infant Health in China: A Propensity Score Matching Approach. Nutrients 2021, 13, 4518. [Google Scholar] [CrossRef]
- Jang, W.; Kim, H.; Lee, B.E.; Chang, N. Maternal fruit and vegetable or vitamin C consumption during pregnancy is associated with fetal growth and infant growth up to 6 months: Results from the Korean Mothers and Children’s Environmental Health (MOCEH) cohort study. Nutr. J. 2018, 17, 105. [Google Scholar] [CrossRef]
- Okubo, H.; Nakayama, S.F. Periconceptional maternal diet quality influences blood heavy metal concentrations and their effect on low birth weight: The Japan Environment and Children’s Study. Environ. Int. 2023, 173, 107808. [Google Scholar] [CrossRef]
- Apostolopoulou, A.; Tranidou, A.; Chroni, V.; Tsakiridis, I.; Magriplis, E.; Dagklis, T.; Chourdakis, M. Association of Maternal Diet with Infant Birthweight in Women with Gestational Diabetes Mellitus. Nutrients 2023, 15, 4545. [Google Scholar] [CrossRef]
- Argenta, L.; Dos Santos, N.H.A.; Saunders, C.; da Costa, J.D.; da Cunha, L.V.S.; Fedeszen, P.M.K.; Padilha, P.C. Association between dietary patterns and infant birth weight in brazilian pregnancy women with gestational diabetes: A cross-sectional study. Rev. Bras. Ginecol. Obstet. 2024, 46, e-rbgo68. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.R.; Myers, C.A.; Phelan, S.; Newton, R.L., Jr.; Yang, S.; Redman, L.M. Influence of Food Security Status and Diet Quality on Maternal Gestational Weight Gain. J. Midwifery Womens Health 2024, 69, 394–402. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Shan, L.; Cheng, S.; Xia, Y.; Zhao, Y.; Zhang, H.; Zhao, Z. Dietary intake patterns during pregnancy and excessive gestational weight gain: A systematic review and meta-analysis. Food Funct. 2023, 14, 5910–5920. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Feng, Q.; Chen, C.; Chen, S.; Guo, Y.; Su, D.; Chen, H.; Sun, H.; Dong, H.; Zeng, G. Healthier diet associated with reduced risk of excessive gestational weight gain: A Chinese prospective cohort study. Matern. Child. Nutr. 2023, 19, e13397. [Google Scholar] [CrossRef]
- Wang, J. Monitoring Report on Nutrition and Health Status of Chinese Residents No. 10: Nutrition and Health Status of Pregnant Women and Lactating Mothers in China from 2010 to 2013; Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention: Beijing, China, 2020.
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.; Boyle, J.A.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; Rode, L.; et al. Association of Gestational Weight Gain With Maternal and Infant Outcomes: A Systematic Review and Meta-analysis. Jama 2017, 317, 2207–2225. [Google Scholar] [CrossRef]
- Bennett, C.J.; Walker, R.E.; Blumfield, M.L.; Ma, J.; Wang, F.; Wan, Y.; Gwini, S.M.; Truby, H. Attenuation of maternal weight gain impacts infant birthweight: Systematic review and meta-analysis. J. Dev. Orig. Health Dis. 2019, 10, 387–405. [Google Scholar] [CrossRef]
- Mogensen, C.S.; Zingenberg, H.; Svare, J.; Astrup, A.; Magkos, F.; Geiker, N.R.W. Gestational weight gain in women with pre-pregnancy overweight or obesity and anthropometry of infants at birth. Front. Pediatr. 2023, 11, 1142920. [Google Scholar] [CrossRef]
- Perumal, N.; Wang, D.; Darling, A.M.; Liu, E.; Wang, M.; Ahmed, T.; Christian, P.; Dewey, K.G.; Kac, G.; Kennedy, S.H.; et al. Suboptimal gestational weight gain and neonatal outcomes in low and middle income countries: Individual participant data meta-analysis. Bmj 2023, 382, e072249. [Google Scholar] [CrossRef]
- Dunn, R.K.; Uhing, M.; Goday, P.S. Catch-down growth in infants born large for gestational age. Nutr. Clin. Pract. 2021, 36, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, V.; Cutfield, W.; Derraik, J.; Zengxiang, P.; Ngo, S.; Sheppard, A.; Craigie, S.; Ahlsson, F. LGA infants display early catch down growth in length and weight without epigenetic changes. Int. J. Pediatr. Endocrinol. 2015, 2015, P106. [Google Scholar] [CrossRef]
- Taal, H.R.; Vd Heijden, A.J.; Steegers, E.A.; Hofman, A.; Jaddoe, V.W. Small and large size for gestational age at birth, infant growth, and childhood overweight. Obesity 2013, 21, 1261–1268. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007—2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Zhou, Y.; Li, H.; Cheng, Z.; Zhang, Y.; Zhang, L.; Liu, J.; Liu, J. Association of gestational weight gain rate with infant anaemia in China: A birth cohort study. Br. J. Nutr. 2020, 124, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.K.; Roy, S.C.; Lundberg, R.; Guilbert, T.W.; Auger, A.P.; Blohowiak, S.E.; Coe, C.L.; Kling, P.J. Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. J. Perinatol. 2014, 34, 513–518. [Google Scholar] [CrossRef]
- Liang, D.; Jiang, Z.; Zhang, Y.; Li, N.; Jiang, H.; Ding, G. Maternal BMI During Lactation Is Associated with Major Protein Compositions in Early Mature Milk. Nutrients 2024, 16, 3811. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, A.; Lai, S.; Yuan, Q.; Jia, X.; Wang, P.; Zhang, Y. Longitudinal Changes in the Concentration of Major Human Milk Proteins in the First Six Months of Lactation and Their Effects on Infant Growth. Nutrients 2021, 13, 1476. [Google Scholar] [CrossRef]
- Carr, L.E.; Virmani, M.D.; Rosa, F.; Munblit, D.; Matazel, K.S.; Elolimy, A.A.; Yeruva, L. Role of Human Milk Bioactives on Infants’ Gut and Immune Health. Front. Immunol. 2021, 12, 604080. [Google Scholar] [CrossRef]
- Perrella, S.; Gridneva, Z.; Lai, C.T.; Stinson, L.; George, A.; Bilston-John, S.; Geddes, D. Human milk composition promotes optimal infant growth, development and health. Semin. Perinatol. 2021, 45, 151380. [Google Scholar] [CrossRef]
- Ong, M.L.; Cherkerzian, S.; Bell, K.A.; Berger, P.K.; Furst, A.; Sejane, K.; Bode, L.; Belfort, M.B. Human Milk Oligosaccharides, Growth, and Body Composition in Very Preterm Infants. Nutrients 2024, 16, 1200. [Google Scholar] [CrossRef]
- Brockway, M.M.; Daniel, A.I.; Reyes, S.M.; Granger, M.; McDermid, J.M.; Chan, D.; Refvik, R.; Sidhu, K.K.; Musse, S.; Patel, P.P.; et al. Human Milk Macronutrients and Child Growth and Body Composition in the First Two Years: A Systematic Review. Adv. Nutr. 2024, 15, 100149. [Google Scholar] [CrossRef] [PubMed]
- Brockway, M.M.; Daniel, A.I.; Reyes, S.M.; Gauglitz, J.M.; Granger, M.; McDermid, J.M.; Chan, D.; Refvik, R.; Sidhu, K.K.; Musse, S.; et al. Human Milk Bioactive Components and Child Growth and Body Composition in the First 2 Years: A Systematic Review. Adv. Nutr. 2024, 15, 100127. [Google Scholar] [CrossRef] [PubMed]
- Aldairy, A.; Ataya, J.; Haymoun, D.; Kashlan, R.S.; Kouran, J.; Amouna, N.; Adwan, D.; Alhalabi, M. Motherhood unveiled: Examining the dynamic relationship between sleep quality and breastfeeding confidence in postpartum primiparous women in Syria: A cross-sectional study. BMC Public Health 2025, 25, 1521. [Google Scholar] [CrossRef]
- Aerts, C.; Janaqi, S.; Cochen de Cock, V. More sleep, more milk. J. Clin. Sleep. Med. 2023, 19, 1563–1565. [Google Scholar] [CrossRef]
- Carrega, J.; Lee, S.Y.; Clark, P.; Cranford, J.; Lloyd, S. Impact of the Quality of Postpartum Sleep and its Health Determinants on Human Milk Volume. MCN Am. J. Matern. Child. Nurs. 2020, 45, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Ouedraogo, M.O.; Benova, L.; Smekens, T.; Sinke, G.G.; Hailu, A.; Wanyonyi, H.B.; Tolani, M.; Zumbe, C.; Abejirinde, I.O. Prevalence of and factors associated with lactational mastitis in eastern and southern Africa: An exploratory analysis of community-based household surveys. Int. Breastfeed. J. 2022, 17, 24. [Google Scholar] [CrossRef]
- Hughes, K.; Watson, C.J. The Mammary Microenvironment in Mastitis in Humans, Dairy Ruminants, Rabbits and Rodents: A One Health Focus. J. Mammary Gland. Biol. Neoplasia 2018, 23, 27–41. [Google Scholar] [CrossRef]
- Ito, M.; Tanaka, M.; Date, M.; Nagao, S.; Miura, K.; Mizuno, K. Microbiota in human breast milk: Noninfectious mastitis versus without mastitis. Pediatr. Int. 2023, 65, e15677. [Google Scholar] [CrossRef]
- Perrella, S.L.; Anderton-May, E.L.; McLoughlin, G.; Lai, C.T.; Simmer, K.N.; Geddes, D.T. Human Milk Sodium and Potassium as Markers of Mastitis in Mothers of Preterm Infants. Breastfeed. Med. 2022, 17, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Castro, I.; García-Carral, C.; Furst, A.; Khwajazada, S.; García, J.; Arroyo, R.; Ruiz, L.; Rodríguez, J.M.; Bode, L.; Fernández, L. Interactions between human milk oligosaccharides, microbiota and immune factors in milk of women with and without mastitis. Sci. Rep. 2022, 12, 1367. [Google Scholar] [CrossRef] [PubMed]
- Boix-Amorós, A.; Hernández-Aguilar, M.T.; Artacho, A.; Collado, M.C.; Mira, A. Human milk microbiota in sub-acute lactational mastitis induces inflammation and undergoes changes in composition, diversity and load. Sci. Rep. 2020, 10, 18521. [Google Scholar] [CrossRef]
- Castro-Navarro, I.; Pace, R.M.; Williams, J.E.; Pace, C.D.W.; Kaur, H.; Piaskowski, J.; Aragón, A.; Rodríguez, J.M.; McGuire, M.A.; Fernandez, L.; et al. Immunological composition of human milk before and during subclinical and clinical mastitis. Front. Immunol. 2024, 15, 1532432. [Google Scholar] [CrossRef]
- Semba, R.D. Mastitis and transmission of human immunodeficiency virus through breast milk. Ann. N. Y Acad. Sci. 2000, 918, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Tseng, J.F.; Chen, S.R.; Au, H.K.; Chipojola, R.; Lee, G.T.; Lee, P.H.; Shyu, M.L.; Kuo, S.Y. Effectiveness of an integrated breastfeeding education program to improve self-efficacy and exclusive breastfeeding rate: A single-blind, randomised controlled study. Int. J. Nurs. Stud. 2020, 111, 103770. [Google Scholar] [CrossRef]
- Nabil, N. Breastfeeding Self-Efficacy Score with Lactational Mastitis a Cross Sectional Study in a Family Health Unit, Sharkia Governorate, Egypt. Egypt. Fam. Med. J. 2019, 2, 1–14. [Google Scholar] [CrossRef]
- Grzeskowiak, L.E.; Saha, M.R.; Ingman, W.V.; Nordeng, H.; Ystrom, E.; Amir, L.H. Incidence, antibiotic treatment and outcomes of lactational mastitis: Findings from The Norwegian Mother, Father and Child Cohort Study (MoBa). Paediatr. Perinat. Epidemiol. 2022, 36, 254–263. [Google Scholar] [CrossRef]
- Gianni, M.L.; Bettinelli, M.E.; Manfra, P.; Sorrentino, G.; Bezze, E.; Plevani, L.; Cavallaro, G.; Raffaeli, G.; Crippa, B.L.; Colombo, L.; et al. Breastfeeding Difficulties and Risk for Early Breastfeeding Cessation. Nutrients 2019, 11, 2266. [Google Scholar] [CrossRef]
- Wren-Atilola, H.M.; Solomons, N.W.; Scott, M.E.; Koski, K.G. Infant growth faltering linked to subclinical mastitis, maternal faecal-oral contamination, and breastfeeding. Matern. Child. Nutr. 2019, 15, e12756. [Google Scholar] [CrossRef]
- Samuel, T.M.; De Castro, C.A.; Dubascoux, S.; Affolter, M.; Giuffrida, F.; Billeaud, C.; Picaud, J.C.; Agosti, M.; Al-Jashi, I.; Pereira, A.B.; et al. Subclinical Mastitis in a European Multicenter Cohort: Prevalence, Impact on Human Milk (HM) Composition, and Association with Infant HM Intake and Growth. Nutrients 2019, 12, 105. [Google Scholar] [CrossRef] [PubMed]
- Ronan, V.; Yeasin, R.; Claud, E.C. Childhood Development and the Microbiome-The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology 2021, 160, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Wasuwanich, P.; Choudry, H.; Ingviya, T.; Scheimann, A.O.; AuYeung, K.J.; Karwowski, C.; Billet, S.; Nichols, B.L.; Karnsakul, W. A retrospective study on the association of gastrointestinal symptoms in children with low lactase activity and low activity of other disaccharidases. BMC Gastroenterol. 2020, 20, 331. [Google Scholar] [CrossRef]
- Heine, R.G.; AlRefaee, F.; Bachina, P.; De Leon, J.C.; Geng, L.; Gong, S.; Madrazo, J.A.; Ngamphaiboon, J.; Ong, C.; Rogacion, J.M. Lactose intolerance and gastrointestinal cow’s milk allergy in infants and children-common misconceptions revisited. World Allergy Organ. J. 2017, 10, 41. [Google Scholar] [CrossRef]
- Robbins, K.A.; Wood, R.A.; Keet, C.A. Milk allergy is associated with decreased growth in US children. J. Allergy Clin. Immunol. 2014, 134, 1466–1468. [Google Scholar] [CrossRef]
- Heyman, M.B. Lactose intolerance in infants, children, and adolescents. Pediatrics 2006, 118, 1279–1286. [Google Scholar] [CrossRef]
- García-Mantrana, I.; Selma-Royo, M.; González, S.; Parra-Llorca, A.; Martínez-Costa, C.; Collado, M.C. Distinct maternal microbiota clusters are associated with diet during pregnancy: Impact on neonatal microbiota and infant growth during the first 18 months of life. Gut Microbes 2020, 11, 962–978. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Indayati, W.; Basnet, T.B.; Li, F.; Luo, H.; Pan, H.; Wang, Z. Dietary intake in lactating mothers in China 2018: Report of a survey. Nutr. J. 2020, 19, 72. [Google Scholar] [CrossRef]
- Sáez Lleó, C.I.; Soler, C.; Soriano, J.M.; San Onofre, N. CastelLact Project: Exploring the Nutritional Status and Dietary Patterns of Pregnant and Lactating Women-A Comprehensive Evaluation of Dietary Adequacy. Nutrients 2024, 16, 2705. [Google Scholar] [CrossRef]
- Duan, L.; Liu, W.; Zhang, P.; Liu, S.; Liu, X.; Sang, M.; Liu, L.; Lin, H.; Sang, Z. Salt Intake of Lactating Women as Assessed by Modified Food Weighted Records. J. Am. Coll. Nutr. 2018, 37, 614–619. [Google Scholar] [CrossRef]
- Aumeistere, L.; Ciprovica, I.; Zavadska, D.; Bavrins, K.; Borisova, A. Relation Between Human Milk Sodium and Maternal Sodium Intake. Proc. Latv. Acad. Sci. Sect. B Nat. Exact. Appl. Sci. 2020, 74, 232–236. [Google Scholar] [CrossRef]
- Favara, G.; Maugeri, A.; Barchitta, M.; Lanza, E.; Magnano San Lio, R.; Agodi, A. Maternal Lifestyle Factors Affecting Breast Milk Composition and Infant Health: A Systematic Review. Nutrients 2024, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Mojska, H. Human milk metabolome: Impact of gestational age, lactational stage and maternal diet. Rocz. Panstw. Zakl. Hig. 2022, 73, 139–145. [Google Scholar]
- Dror, D.K.; Allen, L.H. Overview of Nutrients in Human Milk. Adv. Nutr. 2018, 9, 278s–294s. [Google Scholar] [CrossRef]
- Selma-Royo, M.; González, S.; Gueimonde, M.; Chang, M.; Fürst, A.; Martínez-Costa, C.; Bode, L.; Collado, M.C. Maternal Diet Is Associated with Human Milk Oligosaccharide Profile. Mol. Nutr. Food Res. 2022, 66, e2200058. [Google Scholar] [CrossRef]
- Ajeeb, T.T.; Gonzalez, E.; Solomons, N.W.; Vossenaar, M.; Koski, K.G. Human milk microbiome: Associations with maternal diet and infant growth. Front. Nutr. 2024, 11, 1341777. [Google Scholar] [CrossRef]
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W., Jr.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The importance of nutrition in pregnancy and lactation: Lifelong consequences. Am. J. Obstet. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Maheshwari, A.; Jain, S.K. Maternal Nutrition and Fetal/Infant Development. Clin. Perinatol. 2022, 49, 313–330. [Google Scholar] [CrossRef]
- Grabowski, A.; Baylin, A.; Ellsworth, L.; Richardson, J.; Kaciroti, N.; Sturza, J.; Miller, A.L.; Gearhardt, A.N.; Lumeng, J.C.; Gregg, B. Maternal Mediterranean Diet During Lactation and Infant Growth. Breastfeed. Med. 2024, 19, 848–856. [Google Scholar] [CrossRef]
- Gonzalez-Nahm, S.; Hoyo, C.; Østbye, T.; Neelon, B.; Allen, C.; Benjamin-Neelon, S.E. Associations of maternal diet with infant adiposity at birth, 6 months and 12 months. BMJ Open 2019, 9, e030186. [Google Scholar] [CrossRef]
- Kim, H.; Kang, S.; Jung, B.M.; Yi, H.; Jung, J.A.; Chang, N. Breast milk fatty acid composition and fatty acid intake of lactating mothers in South Korea. Br. J. Nutr. 2017, 117, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Billeaud, C.; Brines, J.; Belcadi, W.; Castel, B.; Rigourd, V. Nutrition of Pregnant and Lactating Women in the First 1000 Days of Infant. Healthcare 2021, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.T.; Kim, J.; Seo, N.; Lee, A.H.; Kim, Y.K.; Jung, J.A.; Li, D.; To, X.H.M.; Huynh, K.T.N.; Van Le, T.; et al. Comprehensive analysis of fatty acids in human milk of four Asian countries. J. Dairy Sci. 2021, 104, 6496–6507. [Google Scholar] [CrossRef] [PubMed]
- Hayes, E.K.; Lechowicz, A.; Petrik, J.J.; Storozhuk, Y.; Paez-Parent, S.; Dai, Q.; Samjoo, I.A.; Mansell, M.; Gruslin, A.; Holloway, A.C.; et al. Adverse fetal and neonatal outcomes associated with a life-long high fat diet: Role of altered development of the placental vasculature. PLoS ONE 2012, 7, e33370. [Google Scholar] [CrossRef]
- Shahabi, B.; Hernández-Martínez, C.; Jardí, C.; Aparicio, E.; Arija, V. Maternal Omega-6/Omega-3 Concentration Ratio During Pregnancy and Infant Neurodevelopment: The ECLIPSES Study. Nutrients 2025, 17, 170. [Google Scholar] [CrossRef]
- Hatem, O.; Kaçar Ö, F.; Kaçar, H.K.; Szentpéteri, J.L.; Marosvölgyi, T.; Szabó, É. Trans isomeric fatty acids in human milk and their role in infant health and development. Front. Nutr. 2024, 11, 1379772. [Google Scholar] [CrossRef]
- Huang, X.; Chang, J.; Feng, W.; Xu, Y.; Xu, T.; Tang, H.; Wang, H.; Pan, X. Development of a New Growth Standard for Breastfed Chinese Infants: What Is the Difference from the WHO Growth Standards? PLoS ONE 2016, 11, e0167816. [Google Scholar] [CrossRef]
Nutrient | Reference Value Type | Age 18–30 Years | Age 30–50 Years |
---|---|---|---|
Energy (kcal) | EER | ≥2100 | |
Protein (g) | RNI | ≥80 | |
Fat (g) | AMDR | 20–30% of energy intake (≈46.7–70 g for 2100 kcal/day) | |
Carbohydrates (g) | EAR | ≥170 | |
Dietary fiber (g) | AI | ≥29 | |
Vitamins | |||
Vitamin A (µg REA) | RNI, UL | 1260–3000 | |
Vitamin D (µg) | RNI, UL | 10–50 | |
Vitamin E (mg) | AI, UL | 17–700 | |
Thiamine (mg) | RNI | ≥1.5 | |
Riboflavin (mg) | RNI | ≥1.7 | |
Niacin (mg) | RNI | ≥16 | |
Folate (µg) | RNI, UL | 550–1000 | |
Vitamin C (mg) | RNI, UL | 150–2000 | |
Macrominerals | |||
Ca (mg) | RNI, UL | 800–2000 | |
P (mg) | RNI, UL | 720–3500 | 710–3500 |
K (mg) | AI | ≥2400 | |
Na (mg) | AI, PI-NCD | 1500–2000 | |
Mg (mg) | RNI | ≥330 | ≥320 |
Trace Elements | |||
Fe (mg) | RNI, UL | 24–42 | |
Zn (mg) | RNI, UL | 13–40 | |
Se (µg) | RNI, UL | 78–400 | |
Cu (mg) | RNI, UL | 1.5–8 | |
Mn (mg) | AI, UL | 4.2–11 |
Pre-Gestational BMI | Classification of GWG | ||
---|---|---|---|
Inadequate | Appropriate | Excessive | |
Underweight (BMI < 18.5 kg/m2) | GWG < 11 kg | 11 kg ≤ GWG ≤ 16 kg | GWG > 16 kg |
Normal (18.5 kg/m2 ≤ BMI < 24.0 kg/m2) | GWG < 8 kg | 8 kg ≤ GWG ≤ 14 kg | GWG > 14 kg |
Overweight (24.0 kg/m2 ≤ BMI < 28.0 kg/m2) | GWG < 7 kg | 7 kg ≤ GWG ≤ 11 kg | GWG > 11 kg |
Obesity (BMI ≥ 28.0 kg/m2) | GWG < 5 kg | 5 kg ≤ GWG ≤ 9 kg | GWG > 9 kg |
Variables | Categories | Frequency (n) | Percentage (%) |
---|---|---|---|
City of residence | Chengdu | 38 | 9.9 |
Guangzhou | 42 | 11.0 | |
Hohhot | 49 | 12.8 | |
Lanzhou | 41 | 10.7 | |
Ningbo | 45 | 11.7 | |
Nanchang | 38 | 9.9 | |
Shenyang | 30 | 7.8 | |
Suzhou | 40 | 10.4 | |
Xvchang | 36 | 9.4 | |
Beijing | 24 | 6.3 | |
Age (years) | <30 | 203 | 53.0 |
≥30 | 180 | 47.0 | |
Monthly household income per capita (CNY) | ≤5000 | 154 | 40.2 |
5000~10,000 | 163 | 42.6 | |
≥10,000 | 66 | 17.2 | |
Educational level | Junior high school or below | 28 | 7.3 |
Vocational or senior high school | 66 | 17.2 | |
Junior college or above | 289 | 75.5 |
Variables | Categories/ Value | Frequency (n)/ Mean ± SD | Percentage (%) |
---|---|---|---|
Height (cm) | — | 161.4 ± 5.2 | — |
Weight (kg) | — | 60.52 ± 8.84 | — |
Current BMI | Underweight | 17 | 4.4 |
Normal | 225 | 58.7 | |
Overweight | 116 | 30.3 | |
Obese | 25 | 6.5 | |
Daily sleep duration (hours) | ≤8 | 319 | 83.3 |
>8 | 64 | 16.7 | |
Sleep quality | Poor | 168 | 43.9 |
Good | 215 | 56.1 | |
Passive smoking during lactation | Yes | 46 | 12.0 |
No | 337 | 88.0 | |
Postpartum depression | Yes | 125 | 32.6 |
No | 258 | 67.4 | |
Adoption of galactagogue methods | Yes | 276 | 72.1 |
No | 107 | 27.9 | |
Mastitis or ductal obstruction during lactation | Yes | 111 | 29.0 |
No | 272 | 71.0 |
Variables | Categories | Frequency (n) | Percentage (%) |
---|---|---|---|
Pre-pregnancy BMI | Underweight | 64 | 16.7 |
Normal | 284 | 74.2 | |
Overweight | 31 | 8.1 | |
Obese | 4 | 1.0 | |
Gravidity | 1 | 195 | 50.9 |
≥2 | 188 | 49.1 | |
Parity | 1 | 256 | 66.8 |
≥2 | 128 | 33.2 | |
Mode of delivery | Vaginal delivery | 248 | 64.8 |
Cesarean section | 135 | 35.2 | |
Pre-delivery BMI | Underweight | 0 | 0.0 |
Normal | 71 | 18.5 | |
Overweight | 172 | 44.9 | |
Obese | 140 | 36.6 | |
GWG | Inadequate | 81 | 21.1 |
Appropriate | 160 | 41.8 | |
Excessive | 142 | 37.1 | |
Pregnancy complications | Anemia | 194 | 50.7 |
Hypertension | 21 | 5.5 | |
Hyperglycemia | 67 | 17.5 | |
Edema | 163 | 42.6 |
Variable | Description/Category | Value/Frequency (n) | Percentage (%) |
---|---|---|---|
Age (days) | Median [P25, P75] | 61 [41, 102] | — |
Gestational age (weeks) | Median [P25, P75] | 39 [38, 40] | — |
Length (cm) | Mean ± SD | 59.68 ± 4.71 | — |
Weight (kg) | Mean ± SD | 6.08 ± 1.71 | — |
BMI (kg/m2) | Mean ± SD | 16.83 ± 3.38 | — |
Birth length (cm) | Mean ± SD | 50.34 ± 2.71 | — |
Birth weight (kg) | Mean ± SD | 3.38 ± 0.44 | — |
Daily sleep duration (hours) | Median [P25, P75] | 14.5 [12.5, 16.0] | — |
Sex | Male | 208 | 54.3 |
Female | 175 | 45.7 | |
Daily outdoor activity time | ≥30 min | 212 | 55.4 |
<30 min | 171 | 44.6 | |
Recent GI symptoms | Yes | 154 | 40.2 |
No | 229 | 59.8 |
Nutrient | Intake Median [P25, P75] | Within Recommended n (%) | Below Recommended n (%) | Above Recommended n (%) |
---|---|---|---|---|
Energy (kcal) | 1954.64 [1450.16, 2467.35] | 153 (39.9) | 230 (60.1) | — |
Protein (g) | 69.73 [47.01, 90.43] | 141 (36.8) | 242 (63.2) | — |
Fat (g) | 69.26 [50.38, 92.92] | 100 (26.1) | 34 (8.9) | 249 (65.0) |
Carbohydrate (g) | 242.33 [171.63, 311.89] | 93 (24.3) | 290 (75.7) | — |
Dietary Fiber (g) | 9.34 [6.32, 14.24] | 11 (2.9) | 372 (97.1) | — |
Vitamin A (μg REA) | 376.23 [229.40, 628.32] | 2 (0.5) | 381 (99.5) | 0 |
Vitamin D (μg) | 2.46 [1.05, 4.86] | 33 (8.6) | 347 (90.6) | 3 (0.8) |
Vitamin E (mg) | 25.91 [17.90, 37.02] | 298 (77.8) | 85 (22.2) | 0 |
Thiamin (mg) | 0.89 [0.62, 1.35] | 76 (19.8) | 307 (80.2) | — |
Riboflavin (mg) | 0.83 [0.58, 1.27] | 53 (13.8) | 330 (86.2) | — |
Niacin (mg) | 13.89 [9.01, 19.82] | 151 (39.4) | 232 (60.6) | — |
Folate (μg) | 251.09 [167.50, 402.87] | 43 (11.2) | 332 (86.7) | 8 (2.1) |
Vitamin C (mg) | 66.02 [33.21, 112.83] | 64 (16.7) | 319 (83.3) | 0 |
Ca (mg) | 646.39 [348.50, 1012.99] | 147 (38.4) | 233 (60.8) | 3 (0.8) |
P(mg) | 927.52 [671.50, 1242.10] | 264 (68.9) | 118 (30.8) | 1 (0.3) |
K (mg) | 1817.79 [1240.42, 2475.14] | 106 (27.7) | 277 (72.3) | — |
Na (mg) | 4033.94 [3141.51, 5029.38] | 7 (1.8) | 12 (3.1) | 364 (95.0) |
Mg (mg) | 272.69 [192.68, 366.11] | 133 (34.7) | 250 (65.3) | — |
Fe (mg) | 17.36 [12.54, 24.38] | 79 (20.6) | 285 (74.4) | 19 (5.0) |
Zn (mg) | 9.42 [6.80, 13.20] | 99 (25.8) | 283 (73.9) | 1 (0.3) |
Se (μg) | 42.56 [28.22, 61.73] | 44 (11.5) | 336 (87.7) | 3 (0.8) |
Cu (mg) | 1.49 [1.05, 2.04] | 187 (48.8) | 242 (63.2) | 5 (1.3) |
Mn (mg) | 3.53 [2.56, 5.11] | 43 (11.2) | 332 (86.7) | 8 (2.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Jiang, Z.; Liu, X.; Liang, W.; Jiang, H.; Ding, G.; Zhang, Y.; Li, N. Factors Associated with Anthropometry Z-Scores in Exclusively Breastfed Infants Aged 0–6 Months in 10 Cities of China. Nutrients 2025, 17, 2163. https://doi.org/10.3390/nu17132163
Liang D, Jiang Z, Liu X, Liang W, Jiang H, Ding G, Zhang Y, Li N. Factors Associated with Anthropometry Z-Scores in Exclusively Breastfed Infants Aged 0–6 Months in 10 Cities of China. Nutrients. 2025; 17(13):2163. https://doi.org/10.3390/nu17132163
Chicago/Turabian StyleLiang, Dong, Zeyu Jiang, Xin Liu, Wenxin Liang, Hua Jiang, Gangqiang Ding, Yumei Zhang, and Ning Li. 2025. "Factors Associated with Anthropometry Z-Scores in Exclusively Breastfed Infants Aged 0–6 Months in 10 Cities of China" Nutrients 17, no. 13: 2163. https://doi.org/10.3390/nu17132163
APA StyleLiang, D., Jiang, Z., Liu, X., Liang, W., Jiang, H., Ding, G., Zhang, Y., & Li, N. (2025). Factors Associated with Anthropometry Z-Scores in Exclusively Breastfed Infants Aged 0–6 Months in 10 Cities of China. Nutrients, 17(13), 2163. https://doi.org/10.3390/nu17132163