Effects of Nutritional Supplements on Endurance Performance and Subjective Perception in Athletes Exercising in the Heat: A Systematic Review and Network Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Strategy and Information Sources
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection
2.5. Data Extraction and Processing
2.6. Bias Risk Assessment Statement
2.7. Statistical Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Risk of Bias Assessment
3.3. Network Geometry
3.4. Model Convergence
3.5. Network Meta-Analysis Outcomes
3.5.1. Endurance Performance
3.5.2. Subjective Perception
3.6. Sensitivity Analysis
4. Discussion
- (1)
- Menthol and taurine show positive effects in improving subjective thermal comfort and endurance performance;
- (2)
- Among all interventions, menthol energy gels demonstrated the most robust potential for enhancing subjective perception under heat stress;
- (3)
- In high-temperature environments, the combined use of supplements appeared to be more effective than single-agent interventions.
4.1. Overview of Mechanisms and Research Status of Nutritional Supplements in Heat
4.2. Effects on Endurance Performance
- (1)
- (2)
- Panax ginseng (PG) reduces exercise-induced inflammatory markers (e.g., IL-6) and oxidative stress while maintaining cortisol and DHEA balance, thus delaying fatigue onset and promoting recovery [65].
4.3. Effects on Subjective Perception
- (1)
- Individual differences in sweat sodium concentration;
- (2)
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stone, B.L.; Ashley, J.D.; Skinner, R.M.; Polanco, J.P.; Walters, M.T.; Schilling, B.K.; Kellawan, J.M. Effects of a Short-Term Heat Acclimation Protocol in Elite Amateur Boxers. J. Strength Cond. Res. 2022, 36, 1966–1971. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.R.; Barton, C.; Morrissey, D.; Maffulli, N.; Hemmings, S. Pre-cooling for endurance exercise performance in the heat: A systematic review. BMC Med. 2012, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- González-Alonso, J.; Crandall, C.G.; Johnson, J.M. The cardiovascular challenge of exercising in the heat. J. Physiol. 2008, 586, 45–53. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Casa, D.J.; Millard-Stafford, M.; Moran, D.S.; Pyne, S.W.; Roberts, W.O. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med. Sci. Sports Exerc. 2007, 39, 556–572. [Google Scholar] [CrossRef]
- Bergeron, M.F. Hydration and thermal strain during tennis in the heat. Br. J. Sports Med. 2014, 48 (Suppl. S1), i12–i17. [Google Scholar] [CrossRef] [PubMed]
- Galloway, S.D.; Maughan, R.J. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med. Sci. Sports Exerc. 1997, 29, 1240–1249. [Google Scholar] [CrossRef]
- Yanaoka, T.; Iwahashi, M.; Hasegawa, H. Effects of mixed-method cooling between exercise bouts on thermoregulation and cycling time-trial performance in the heat. J. Therm. Biol. 2022, 109, 103329. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Xu, G.; Li, S.; Wang, Y.; Fu, M.; Liu, G.; Ji, C.; Zhang, T.; Liu, S.; et al. Clinical efficacy of vibration stimulation therapy to relieve acute exercise fatigue. Technol. Health Care 2023, 31, 235–246. [Google Scholar] [CrossRef]
- Tabuchi, S.; Horie, S.; Kawanami, S.; Inoue, D.; Morizane, S.; Inoue, J.; Nagano, C.; Sakurai, M.; Serizawa, R.; Hamada, K. Efficacy of ice slurry and carbohydrate-electrolyte solutions for firefighters. J. Occup. Health 2021, 63, e12263. [Google Scholar] [CrossRef]
- Forbes, S.C.; Candow, D.G.; Neto, J.H.F.; Kennedy, M.D.; Forbes, J.L.; Machado, M.; Bustillo, E.; Gomez-Lopez, J.; Zapata, A.; Antonio, J. Creatine supplementation and endurance performance: Surges and sprints to win the race. J. Int. Soc. Sports Nutr. 2023, 20, 2204071. [Google Scholar] [CrossRef]
- Ferreira, G.A.; Felippe, L.C.; Silva, R.L.S.; Bertuzzi, R.; De Oliveira, F.R.; Pires, F.O.; Lima-Silva, A.E. Effect of pre-exercise carbohydrate availability on fat oxidation and energy expenditure after a high-intensity exercise. Braz. J. Med. Biol. Res. 2018, 51, e6964. [Google Scholar] [CrossRef] [PubMed]
- Spradley, B.D.; Crowley, K.R.; Tai, C.Y.; Kendall, K.L.; Fukuda, D.H.; Esposito, E.N.; Moon, S.E.; Moon, J.R. Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutr. Metab. 2012, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Maté-Muñoz, J.L.; Cuenca, E.; García-Fernández, P.; Mata-Ordoñez, F.; Lozano-Estevan, M.C.; Veiga-Herreros, P.; da Silva, S.F.; Garnacho-Castaño, M.V. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J. Int. Soc. Sports Nutr. 2018, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- John, K.; Kathuria, S.; Peel, J.; Page, J.; Aitkenhead, R.; Felstead, A.; Heffernan, S.M.; Jeffries, O.; Tallent, J.; Waldron, M. Caffeine ingestion compromises thermoregulation and does not improve cycling time to exhaustion in the heat amongst males. Eur. J. Appl. Physiol. 2024, 124, 2489–2502. [Google Scholar] [CrossRef]
- Smith, K.; Muggeridge, D.J.; Easton, C.; Ross, M.D. An acute dose of inorganic dietary nitrate does not improve high-intensity, intermittent exercise performance in temperate or hot and humid conditions. Eur. J. Appl. Physiol. 2019, 119, 723–733. [Google Scholar] [CrossRef]
- Gualano, A.B.; Bozza, T.; Lopes De Campos, P.; Roschel, H.; Dos Santos Costa, A.; Luiz Marquezi, M.; Benatti, F.; Herbert Lancha Junior, A. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. J. Sports Med. Phys. Fit. 2011, 51, 82–88. [Google Scholar]
- Peel, J.S.; McNarry, M.A.; Heffernan, S.M.; Nevola, V.R.; Kilduff, L.P.; Coates, K.; Dudley, E.; Waldron, M. The effect of 8-day oral taurine supplementation on thermoregulation during low-intensity exercise at fixed heat production in hot conditions of incremental humidity. Eur. J. Appl. Physiol. 2024, 124, 2561–2576. [Google Scholar] [CrossRef]
- Peel, J.S.; McNarry, M.A.; Heffernan, S.M.; Nevola, V.R.; Kilduff, L.P.; Waldron, M. The Effect of Dietary Supplements on Endurance Exercise Performance and Core Temperature in Hot Environments: A Meta-analysis and Meta-regression. Sports Med. 2021, 51, 2351–2371. [Google Scholar] [CrossRef]
- Mbuagbaw, L.; Rochwerg, B.; Jaeschke, R.; Heels-Andsell, D.; Alhazzani, W.; Thabane, L.; Guyatt, G.H. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst. Rev. 2017, 6, 79. [Google Scholar] [CrossRef]
- Tugwell, P.; Tovey, D. PRISMA 2020. J. Clin. Epidemiol. 2021, 134, A5–A6. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Developing NICE guidelines: The Manual (PMG20). 2021. Available online: https://www.nice.org.uk/process/pmg20 (accessed on 19 June 2025).
- Naulleau, C.; Jeker, D.; Pancrate, T.; Claveau, P.; Deshayes, T.A.; Burke, L.M.; Goulet, E.D.B. Effect of Pre-Exercise Caffeine Intake on Endurance Performance and Core Temperature Regulation During Exercise in the Heat: A Systematic Review with Meta-Analysis. Sports Med. 2022, 52, 2431–2445. [Google Scholar] [CrossRef] [PubMed]
- Senefeld, J.W.; Wiggins, C.C.; Regimbal, R.J.; Dominelli, P.B.; Baker, S.E.; Joyner, M.J. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med. Sci. Sports Exerc. 2020, 52, 2250–2261. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Salanti, G.; Ades, A.E.; Ioannidis, J.P. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: An overview and tutorial. J. Clin. Epidemiol. 2011, 64, 163–171. [Google Scholar] [CrossRef]
- Seitidis, G.; Tsokani, S.; Christogiannis, C.; Kontouli, K.M.; Fyraridis, A.; Nikolakopoulos, S.; Veroniki, A.A.; Mavridis, D. Graphical tools for visualizing the results of network meta-analysis of multicomponent interventions. Res. Synth. Methods 2023, 14, 382–395. [Google Scholar] [CrossRef]
- Shim, S.R.; Kim, S.J.; Lee, J.; Rücker, G. Network meta-analysis: Application and practice using R software. Epidemiol. Health 2019, 41, e2019013. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Georgiades, E.; James, N.; Minnion, R.H.; Mitchell, M.; Kingsmore, D.; Hadjicharlambous, M.; Pitsiladis, Y.P. The effects of creatine supplementation on cardiovascular, metabolic, and thermoregulatory responses during exercise in the heat in endurance-trained humans. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 443–460. [Google Scholar] [CrossRef]
- Wright, G.A.; Grandjean, P.W.; Pascoe, D.D. The effects of creatine loading on thermoregulation and intermittent sprint exercise performance in a hot humid environment. J. Strength Cond. Res. 2007, 21, 655–660. [Google Scholar] [CrossRef]
- Hadjicharalambous, M.; Kilduff, L.P.; Pitsiladis, Y.P. Brain serotonin and dopamine modulators, perceptual responses and endurance performance during exercise in the heat following creatine supplementation. J. Int. Soc. Sports Nutr. 2008, 5, 14. [Google Scholar] [CrossRef]
- Volek, J.S.; Mazzetti, S.A.; Farquhar, W.B.; Barnes, B.R.; Gómez, A.L.; Kraemer, W.J. Physiological responses to short-term exercise in the heat after creatine loading. Med. Sci. Sports Exerc. 2001, 33, 1101–1108. [Google Scholar] [CrossRef]
- Tumilty, L.; Davison, G.; Beckmann, M.; Thatcher, R. Oral tyrosine supplementation improves exercise capacity in the heat. Eur. J. Appl. Physiol. 2011, 111, 2941–2950. [Google Scholar] [CrossRef]
- Tumilty, L.; Davison, G.; Beckmann, M.; Thatcher, R. Failure of oral tyrosine supplementation to improve exercise performance in the heat. Med. Sci. Sports Exerc. 2014, 46, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.; Enever, S.; Page, A.; Stockwell, J.; Maughan, R.J. Tyrosine supplementation does not influence the capacity to perform prolonged exercise in a warm environment. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Tran Trong, T.; Riera, F.; Rinaldi, K.; Briki, W.; Hue, O. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment. PLoS ONE 2015, 10, e0123815. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Thoseby, B.; Sculley, D.V.; Callister, R.; Taylor, L.; Dascombe, B.J. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion. Scand. J. Med. Sci. Sports 2016, 26, 1209–1216. [Google Scholar] [CrossRef]
- Vogel, R.M.; Ross, M.L.; Swann, C.; Rothwell, J.E.; Stevens, C.J. Athlete perceptions of flavored, menthol-enhanced energy gels ingested prior to endurance exercise in the heat. J. Int. Soc. Sports Nutr. 2022, 19, 580–592. [Google Scholar] [CrossRef]
- Hamouti, N.; Fernández-Elías, V.E.; Ortega, J.F.; Mora-Rodriguez, R. Ingestion of sodium plus water improves cardiovascular function and performance during dehydrating cycling in the heat. Scand J. Med. Sci. Sports 2014, 24, 507–518. [Google Scholar] [CrossRef]
- Sims, S.T.; Rehrer, N.J.; Bell, M.L.; Cotter, J.D. Preexercise sodium loading aids fluid balance and endurance for women exercising in the heat. J. Appl. Physiol. 2007, 103, 534–541. [Google Scholar] [CrossRef]
- Sims, S.T.; van Vliet, L.; Cotter, J.D.; Rehrer, N.J. Sodium loading aids fluid balance and reduces physiological strain of trained men exercising in the heat. Med. Sci. Sports Exerc. 2007, 39, 123–130. [Google Scholar] [CrossRef]
- Yu, P.; Fan, Y.; Wu, H. Effects of Caffeine-Taurine Co-Ingestion on Endurance Cycling Performance in High Temperature and Humidity Environments. Sports Health 2024, 16, 711–721. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Ping, F.W.; Keong, C.C. Effects of acute supplementation of caffeine and Panax ginseng on endurance running performance in a hot and humid environment. J. Hum. Ergol. 2011, 40, 63–72. [Google Scholar]
- Ping, F.W.; Keong, C.C.; Bandyopadhyay, A. Effects of acute supplementation of Panax ginseng on endurance running in a hot & humid environment. Indian. J. Med. Res. 2011, 133, 96–102. [Google Scholar]
- Watson, P.; Shirreffs, S.M.; Maughan, R.J. The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. Eur. J. Appl. Physiol. 2004, 93, 306–314. [Google Scholar] [CrossRef]
- Mittleman, K.D.; Ricci, M.R.; Bailey, S.P. Branched-chain amino acids prolong exercise during heat stress in men and women. Med. Sci. Sports Exerc. 1998, 30, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Cathcart, A.J.; Murgatroyd, S.R.; McNab, A.; Whyte, L.J.; Easton, C. Combined carbohydrate-protein supplementation improves competitive endurance exercise performance in the heat. Eur. J. Appl. Physiol. 2011, 111, 2051–2061. [Google Scholar] [CrossRef]
- Easton, C.; Turner, S.; Pitsiladis, Y.P. Creatine and glycerol hyperhydration in trained subjects before exercise in the heat. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 70–91. [Google Scholar] [CrossRef] [PubMed]
- Page, L.K.; Jeffries, O.; Waldron, M. Acute taurine supplementation enhances thermoregulation and endurance cycling performance in the heat. Eur. J. Sport. Sci. 2019, 19, 1101–1109. [Google Scholar] [CrossRef]
- Trinity, J.D.; Pahnke, M.D.; Trombold, J.R.; Coyle, E.F. Impact of polyphenol antioxidants on cycling performance and cardiovascular function. Nutrients 2014, 6, 1273–1292. [Google Scholar] [CrossRef]
- Vaher, I.; Timpmann, S.; Aedma, M.; Ööpik, V. Impact of acute sodium citrate ingestion on endurance running performance in a warm environment. Eur. J. Appl. Physiol. 2015, 115, 813–823. [Google Scholar] [CrossRef]
- Fleischmann, C.; Horowitz, M.; Yanovich, R.; Raz, H.; Heled, Y. Asthaxanthin Improves Aerobic Exercise Recovery Without Affecting Heat Tolerance in Humans. Front. Sports Act. Living 2019, 1, 17. [Google Scholar] [CrossRef] [PubMed]
- Kajiki, M.; Katagiri, A.; Matsutake, R.; Lai, Y.F.; Hashimoto, H.; Nishiyasu, T.; Fujii, N. Ingesting carbonated water post-exercise in the heat transiently ameliorates hypotension and enhances mood state. Exp. Physiol. 2024, 109, 1683–1697. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y. Effects of Different Doses of Taurine on the Performance of Repeated Sprints After Exhaustive Exercise in College Students Under High Temperature and High Humidity Conditions. Master’s Thesis, Capital University of Physical Education and Sports, Beijing, China, 2024. [Google Scholar]
- Li, H.; Chen, H.; Wang, Y.; Zheng, X.; Zhou, S. Study on the effect and mechanism of creatine supplementation on the athletic ability of football players and safety evaluation. In Proceedings of the 13th National Congress of Sports Science, Tianjin, China, 3 November 2023. [Google Scholar]
- Li, B.; Zhang, Y.; Xiong, Z. The Possibility Mechanism of the Effects of Tyrosine Supplement on Sports Ability. J. Beijing Sports Univ. 2007, 1, 68–70. [Google Scholar] [CrossRef]
- Yu, P.; Fan, Y.; Wang, X.; Wu, H. Effect of Taurine Combined with Creatine on Repeated Sprinting Ability After Exhaustive Exercise Under Hot and Humid Conditions. Sports Health 2025, 19, 19417381251320095. [Google Scholar] [CrossRef] [PubMed]
- Riera, F.; Trong, T.T.; Sinnapah, S.; Hue, O. Physical and perceptual cooling with beverages to increase cycle performance in a tropical climate. PLoS ONE 2014, 9, e103718. [Google Scholar] [CrossRef]
- Flood, T.R.; Waldron, M.; Jeffries, O. Oral L-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion. Eur. J. Appl. Physiol. 2017, 117, 1501–1512. [Google Scholar] [CrossRef]
- Huang, P.; Qu, C.; Shang, H.; Geng, X.; Zhang, J.; Feng, Y.; Zhap, J. Progress in the application and mechanism of menthol in high temperature environmental exercise. Chin. J. Sports Med. 2022, 41, 133–143. [Google Scholar] [CrossRef]
- Zhang, M.; Izumi, I.; Kagamimori, S.; Sokejima, S.; Yamagami, T.; Liu, Z.; Qi, B. Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids 2004, 26, 203–207. [Google Scholar] [CrossRef]
- Tzang, C.C.; Lin, W.C.; Lin, L.H.; Lin, T.Y.; Chang, K.V.; Wu, W.T.; Özçakar, L. Insights into the cardiovascular benefits of taurine: A systematic review and meta-analysis. Nutr. J. 2024, 23, 93. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Caffeine and endurance performance. Sports Med. 1994, 18, 109–125. [Google Scholar] [CrossRef]
- Fei, X.; Hou, X.; Li, S.; Li, Y. Advances in Mechanistic Basis and Application of Acute Exercise Combined with Caffeine Affecting Cognitive Functions. In Proceedings of the 13th National Congress of Sports Science, Tianjin, China, 3 November 2023. [Google Scholar]
- Hou, C.W.; Lee, S.D.; Kao, C.L.; Cheng, I.S.; Lin, Y.N.; Chuang, S.J.; Chen, C.Y.; Ivy, J.L.; Huang, C.Y.; Kuo, C.H. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1. PLoS ONE 2015, 10, e0116387. [Google Scholar] [CrossRef] [PubMed]
- Blomstrand, E. A role for branched-chain amino acids in reducing central fatigue. J. Nutr. 2006, 136, 544s–547s. [Google Scholar] [CrossRef]
- Tang, F.; Zhang, Y. Research Development on Branched—Chain Amino Acid Sup-plement and Exercise Capacity. J. Nanjing Inst. Phys. Educ. (Nat. Sci. Ed.) 2012, 11, 150–152. [Google Scholar] [CrossRef]
- van Loon, L.J.; Murphy, R.; Oosterlaar, A.M.; Cameron-Smith, D.; Hargreaves, M.; Wagenmakers, A.J.; Snow, R. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin. Sci. 2004, 106, 99–106. [Google Scholar] [CrossRef]
- Zhang, Y. An Experimental Study of the Effects of Caffeine Supplementation Intake on Motor and Skill Performance in College Football Players. Master’s Thesis, Mudanjiang Normal University, Mudanjiang, China, 2024. [Google Scholar]
- Jeffries, O.; Goldsmith, M.; Waldron, M. L-Menthol mouth rinse or ice slurry ingestion during the latter stages of exercise in the heat provide a novel stimulus to enhance performance despite elevation in mean body temperature. Eur. J. Appl. Physiol. 2018, 118, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Best, R.; Crosby, S.; Berger, N.; McDonald, K. The Effect of Isolated and Combined Application of Menthol and Carbohydrate Mouth Rinses on 40 km Time Trial Performance, Physiological and Perceptual Measures in the Heat. Nutrients 2021, 13, 4309. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Stanley, M.; Parkhouse, N.; Cook, K.; Smith, M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur. J. Sport Sci. 2013, 13, 392–399. [Google Scholar] [CrossRef]
- Jung, H.L.; Kwak, H.E.; Kim, S.S.; Kim, Y.C.; Lee, C.D.; Byurn, H.K.; Kang, H.Y. Effects of Panax ginseng supplementation on muscle damage and inflammation after uphill treadmill running in humans. Am. J. Chin. Med. 2011, 39, 441–450. [Google Scholar] [CrossRef]
- Cheng, L. Effects of Nutritional Supplementation Combined with Hybrid Cooling on Post-Exercise Executive Function in College Football Players in a Hot Thermal Radiation Environment. Master’s Thesis, Guangxi Normal University, Guilin, China, 2024. [Google Scholar]
- Mora-Rodriguez, R.; Hamouti, N. Salt and fluid loading: Effects on blood volume and exercise performance. Med. Sport Sci. 2012, 59, 113–119. [Google Scholar] [CrossRef]
- Qing, G. Effects of common nutritional supplements on exercise capacity. In Proceedings of the 14th Asian Nutrition Congress, Chengdu, China, 14–17 September 2023. [Google Scholar]
- Preen, D.; Dawson, B.; Goodman, C.; Lawrence, S.; Beilby, J.; Ching, S. Effect of creatine loading on long-term sprint exercise performance and metabolism. Med. Sci. Sports Exerc. 2001, 33, 814–821. [Google Scholar] [CrossRef]
- Weiss, B.A.; Powers, M.E. Creatine supplementation does not impair the thermoregulatory response during a bout of exercise in the heat. J. Sports Med. Phys. Fit. 2006, 46, 555–563. [Google Scholar]
Study Information | Sample Size | Age | Gender (% male) | Special | Supplement Type, Dose | Time | Temperature, Relative Humidity | Outcome | Performance Testing | Result |
---|---|---|---|---|---|---|---|---|---|---|
(Author;Year; Country/Region) | Exp: n = XX; Ctrl: n = XX | XX.X ± X.X years | XX.X% | [special] (e.g., 1500 m, competitive walking) | [supplement] (e.g., tyrosine, creatine) | every 15 min during exercise | 30 °C; RH, 50% | EE, SP | 30 min cycle at 55% VO2max | |
Kilduff et al. 2004 UK [29] | Exp: n = 11; Ctrl: n = 10 | 27 ± 4 years | 100.00% | endurance training| | Creatine (20 g/day Cr + 140 g/day glucose polymer) | 7 days before test | 30.3 °C | EE, SP | Constant-load exercise to exhaustion at 63% VO2max | Time to exhaustion ↔, RPE ↓ |
Wright et al. 2007 USA [30] | Exp: n = 10; Ctrl: n = 10 | 25.7 ± 4.9 years | 100.00% | cycling | Creatine (20 g·d−1 Cr + 140 g·d−1 glucose polymer) | once/day before session | 35 °C; RH 60% | EE, SP | Cycling to exhaustion at 63 ± 5% VO2max | Time to exhaustion ↔, Peak power ↑, Mean power ↑ RPE ↓, thermal comfort ↑ |
Hadjicharalambous et al. 2008 UK [31] | Exp: n = 11; Ctrl: n = 10 | 27 ± 4 years | 100.00% | running | Creatine (20 g·d−1 Cr + 140 g·d−1 glucose polymer) | once/day before session | 30.3 °C; RH 70% | EE, SP | Running to exhaustion at 63 ± 5% VO2max | Time to exhaustion ↔, Peak power ↑, Mean power ↑ RPE ↓, thermal comfort ↑ |
Volek et al. 2001 USA [32] | Exp: n = 10; Ctrl: n = 10 | 23.0 ± 1.0 years | 100.00% | cycling | Creatine (0.3 g·kg−1 body weight) | every 2–3 h, divided into 5 doses | 37 °C; RH 80% | EE, SP | 30 min cycling at 60–70% VO2peak + 3 × 10 s sprints | Sprint performance ↑ |
Tumilty et al. 2011 UK [33] | Exp: n = 8; Ctrl: n = 8 | 32 ± 11 years | 100.00% | team and endurance sports | Tyrosine (150 mg/kg body mass) | 1 h before exercise | 30 °C, RH 60% | EE, SP | Cycling to exhaustion at 68 ± 5% VO2peak | RPE ↔, Thermal sensation ↔ Time to exhaustion ↑ |
Tumilty et al. 2014 UK [34] | Exp: n = 7; Ctrl: n = 7 | 30 ± 6 years | 100.00% | cycling | Tyrosine (151 mg/kg body mass) | Once, 1 h before exercise | 30 °C, RH 60% | EE, SP | 60 min cycling at 57% ± 4% VO2peak followed by a time trial | Time trial performance ↔ RPE ↔, Thermal sensation ↔ |
Watson et al. 2012 UK [35] | Exp: n = 10; Ctrl: n = 10 | 23 ± 3 years | 100.00% | cycling | Tyrosine(150 mg/kg BM) | once/day before session | 30.2 °C; RH 50% | EE, SP | Cycling to exhaustion at 69% ± 3% VO2max | Time to exhaustion ↔RPE ↔, thermal comfort ↔ |
Tran Trong et al. 2015 France [36] | Exp: n = 10; Ctrl: n = 10 | 41 ± 17 years | 100.00% | cycling, running | I-SM(190 mL of beverage with 0.05 mL menthol) | every 15 min during exercise | 27.6 °C; RH 57% | EE, SP | 5 blocks of 4-km cycling and 1.5-km running | Time to exhaustion ↓ RPE ↔, thermal comfort ↓ |
Stevens et al. 2015 Australia [37] | Exp: n = 11; Ctrl: n = 11 | 29 ± 9 years | 100.00% | running | I-SM rinse(Ice slurry: 7.5 g/kg BM; Menthol rinse: 0.01% solution) | Ice slurry: once/day before session; Menthol rinse: every 1 km during exercise | 33 °C; RH 46% | EE, SP | 5-km running time trial | Time to exhaustion ↓ (Menthol rinse)RPE ↔, thermal comfort ↓ (Menthol rinse) |
Vogel et al. 2022 Australia [38] | Exp: n = 27; Ctrl: n = 27 | 34.8 ± 6.7 years | 74.00% | endurance sports | Menthol (0.1%, 0.3%, 0.5%, 0.7%) | once before exercise | 35 °C, RH 65% | EE | 45 min running/racewalking | Cooling sensation ↑, Irritation ↑ |
Hamouti et al. 2012 Spain [39] | Exp: n = 10; Ctrl: n = 10 | 33 ± 6 years | 100.00% | cycle | SW (82–164 mM Na+) | 90 min before exercise | 33 °C, RH 30% | EE, SP | 120 min cycling at 63% VO2max + time trial | Time-trial performance ↑, Heart rate ↓, Stroke volume ↓, RPE ↓ |
Sims et al. 2007 New Zealand [40]) | Exp: n = 13; Ctrl: n = 13 | 26 ± 6 years | 100.00% | cycle | Sodium (164 mmol Na+/L) | 105 min before exercise | 32 °C, RH 50% | EE, SP | Cycling to exhaustion at 70% VO2peak | Time to exhaustion ↑, Core temperature rise ↓, RPE ↓ |
Sims et al. 2007 New Zealand [41] | Exp: n = 8; Ctrl: n = 8 | 36 ± 11 years | 100.00% | running | H-SB (10 mL/kg body mass, 164 mmol/L Na+ (High Na+); 10 mmol/L Na+ (Low Na+)) | Ingested in seven portions across 60 min, beginning 105 min before exercise | 32 °C, RH 50% | EE, SP | Running to exhaustion at 70% VO2max | Time to exhaustion ↑, Perceived exertion ↓ |
Yu et al. 2024 China [42] | Exp: n = 12; Ctrl: n = 12 | 23.75 ± 2.41 years | 100.00% | NP | C + T (5 mg/kg CAF + 50 mg/kg TAU) | once 1 h before exercise | 35 °C, RH 65% | EE, SP | Time to exhaustion cycling at ventilatory threshold | Time to exhaustion ↑, Blood lactate ↓Core temperature ↓ |
Bandyopadhyay et al. 2011 India [43] | Exp: n = 9; Ctrl: n = 9 | 25.4 ± 6.9 years | 100.00% | running | C + PG(5 mg/kg BW caffeine + 200 mg Panax ginseng) | Once, 1 h before exercise | 31 °C; RH 70% | EE, SP | Running to exhaustion at 70% VO2max | Time to exhaustion ↑RPE ↔ |
Ping et al. 2011 Indian [44] | Exp: n = 9; Ctrl: n = 9 | 25.4 ± 6.9 years | 100.00% | running | PG (200 mg) | once/day before session | 31 °C; RH 70% | EE, SP | Running to exhaustion at 70% VO2max | Time to exhaustion ↔ RPE ↔, thermal comfort ↔ |
Watson et al. 2004 UK [45] | Exp: n = 8; Ctrl: n = 8 | 28.5 ± 8.2 years | 100.00% | cycling | BCAA (12 g/L BCAA solution) | every 30 min before exercise, every 15 min during exercise | 30.0 °C; RH 38% | EE, SP | Cycling to exhaustion at 50% VO2peak | Time to exhaustion ↔ |
Mittleman et al. 1998 USA [46] | Exp: n = 8; Ctrl: n = 8 | Not Reported | 50.00% | NP | BCAA | NP | 40 °C | EE, SP | Cycling to exhaustion at 40% VO2peak | Time to exhaustion ↑, RPE ↓ |
Cathcart et al. 2011 UK [47] | Exp (CHO): n = 13; Ctrl (CHO-PRO): n = 10 | 32 ± 1 years | 83.3% | mountain bike | CHO, CHO–PRO (76 g/L CHO, 18 g/LPRO + 72 g/LCHO) | once/day | 33 °C; RH, 42% | EE, SP | Cycling to exhaustion at VO2peak | Time to complete race ↓, Muscle soreness ↔ |
Easton et al. 2007 UK [48] | Exp: n = 12; Ctrl: n = 11 | 33 ± 6 years | 100.00% | cycle | CG (11.4 g Cr + 1 g Gly/kg body mass) | Twice daily for 7 days | 30 °C; RH 70% | EE, SP | 40 min cycling at 63% WRmax + 16.1 km time trial | Heart rate ↓, Rectal temperature ↓, RPE ↓ |
Page et al. 2019 UK [49] | Exp: n = 11; Ctrl: n = 11 | 23 ± 2 years | 100.00% | cycle | Taurine (50 mg/kg body mass) | 2 h before exercise | 35 °C, RH 40% | EE, SP | Cycling to exhaustion at ventilatory threshold | Time to exhaustion ↑, Sweat rate ↑, Core temperature ↓, RPE ↓ |
Trinity et al. 2014 USA [50] | Exp: n = 12; Ctrl: n = 12 | 26.8 ± 5.0 years | 100.00% | cycling | PA (1800-ppm polyphenols, PE) | Twice daily for 7 days, last dose 30 min before exercise | 31.5 °C, RH 55% | EE, SP | 10 min time trial following 50 min of moderate intensity cycling | Time trial performance ↔, Time to fatigue ↔ RPE ↔ |
Vaher et al. 2015 Estonia [51] | Exp: n = 16; Ctrl: n = 16 | 25.8 ± 4.4 years | 100.00% | running | SC (500 mg/kg BM) | once/day before session | 32 °C; RH 50% | EE, SP | 5000-m running time trial | Time to exhaustion ↔RPE ↓, thermal comfort ↔ |
Fleischmann et al. 2019 Israel [52] | Exp: n = 12; Ctrl: n = 10 | 23.14 ± 3.5 years | 100.00% | military | Astaxanthin (12 mg/day) | once/day for 30 days | 40 °C, RH 40% | EE | VO2max test and 2 h walk at 40 °C, 40% RH | Blood lactate ↓, End recovery VO2 ↓ |
Kajiki et al. 2024 Japan [53] | Exp: n = 12; Ctrl: n = 12 | 25 ± 5 years | 58.00% | NP | CW (150 mL for males, 100 mL for females) | 20 and 40 min post-exercise | 35 °C, RH 50% | EE, SP | 60 min cycling at 45% peak oxygen uptake | Mean arterial pressure ↑, Cerebral blood flow index ↑Mouth exhilaration ↑, Sleepiness ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, S.; Wang, S.; Wu, Y.; Yang, L.; Luo, Q.; Li, Z.; Yang, S.; Zhao, K.; Liu, C. Effects of Nutritional Supplements on Endurance Performance and Subjective Perception in Athletes Exercising in the Heat: A Systematic Review and Network Meta-Analysis. Nutrients 2025, 17, 2141. https://doi.org/10.3390/nu17132141
Li J, Liu S, Wang S, Wu Y, Yang L, Luo Q, Li Z, Yang S, Zhao K, Liu C. Effects of Nutritional Supplements on Endurance Performance and Subjective Perception in Athletes Exercising in the Heat: A Systematic Review and Network Meta-Analysis. Nutrients. 2025; 17(13):2141. https://doi.org/10.3390/nu17132141
Chicago/Turabian StyleLi, Jiahao, Shuning Liu, Siqi Wang, Yutong Wu, Liu Yang, Qi Luo, Zixiao Li, Shengxin Yang, Kai Zhao, and Chang Liu. 2025. "Effects of Nutritional Supplements on Endurance Performance and Subjective Perception in Athletes Exercising in the Heat: A Systematic Review and Network Meta-Analysis" Nutrients 17, no. 13: 2141. https://doi.org/10.3390/nu17132141
APA StyleLi, J., Liu, S., Wang, S., Wu, Y., Yang, L., Luo, Q., Li, Z., Yang, S., Zhao, K., & Liu, C. (2025). Effects of Nutritional Supplements on Endurance Performance and Subjective Perception in Athletes Exercising in the Heat: A Systematic Review and Network Meta-Analysis. Nutrients, 17(13), 2141. https://doi.org/10.3390/nu17132141