Protein Supplementation, Plasma Branched-Chain Amino Acids, and Insulin Resistance in Postmenopausal Women: An Ancillary Study from the Supplemental Protein to Outsmart Osteoporosis Now (SPOON) Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Laboratory Measures
2.3. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Plasma BCAA and Insulin Resistance, Body Composition and BMI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tinker, L.F.; E Sarto, G.; Howard, B.V.; Huang, Y.; Neuhouser, M.L.; Mossavar-Rahmani, Y.; Beasley, J.M.; Margolis, K.L.; Eaton, C.B.; Phillips, L.S.; et al. Biomarker-calibrated dietary energy and protein intake associations with diabetes risk among postmenopausal women from the Women’s Health Initiative. Am. J. Clin. Nutr. 2011, 94, 1600–1606. [Google Scholar] [CrossRef]
- van Nielen, M.; Feskens, E.J.; Mensink, M.; Sluijs, I.; Molina, E.; Amiano, P.; Ardanaz, E.; Balkau, B.; Beulens, J.W.; Boeing, H.; et al. Dietary protein intake and incidence of type 2 diabetes in Europe: The EPIC-InterAct Case-Cohort Study. Diabetes Care 2014, 37, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Nieuwenhuizen, A.; Tome, D.; Soenen, S.; Westerterp, K.R. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr. 2009, 29, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Ericson, U.; Sonestedt, E.; Gullberg, B.; Hellstrand, S.; Hindy, G.; Wirfält, E.; Orho-Melander, M. High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. Br. J. Nutr. 2013, 109, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012, 15, 606–614. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S.; Rolland, V.; Wilson, S.A.; Westerterp, K. Satiety related to 24 h diet-induced thermogenesis during high protein/carbohydrate vs high fat diets measured in a respiration chamber. Eur. J. Clin. Nutr. 1999, 53, 495–502. [Google Scholar] [CrossRef]
- Isanejad, M.; LaCroix, A.Z.; Thomson, C.A.; Tinker, L.; Larson, J.C.; Qi, Q.; Qi, L.; Cooper-DeHoff, R.M.; Phillips, L.S.; Prentice, R.L.; et al. Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative. Br. J. Nutr. 2017, 117, 1523–1530. [Google Scholar] [CrossRef]
- Li, J.; Glenn, A.J.; Yang, Q.; Ding, D.; Zheng, L.; Bao, W.; Beasley, J.; LeBlanc, E.; Lo, K.; Manson, J.E.; et al. Dietary Protein Sources, Mediating Biomarkers, and Incidence of Type 2 Diabetes: Findings from the Women’s Health Initiative and the UK Biobank. Diabetes Care 2022, 45, 1742–1753. [Google Scholar] [CrossRef]
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary Protein Intake and Risk of Type 2 Diabetes in US Men and Women. Am. J. Epidemiol. 2016, 183, 715–728. [Google Scholar] [CrossRef]
- Shang, X.; Scott, D.; Hodge, A.M.; English, D.R.; Giles, G.G.; Ebeling, P.R.; Sanders, K.M. Dietary protein intake and risk of type 2 diabetes: Results from the Melbourne Collaborative Cohort Study and a meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 104, 1352–1365. [Google Scholar] [CrossRef]
- Gu, X.; Drouin-Chartier, J.-P.; Sacks, F.M.; Hu, F.B.; Rosner, B.; Willett, W.C. Red meat intake and risk of type 2 diabetes in a prospective cohort study of United States females and males. Am. J. Clin. Nutr. 2023, 118, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Neinast, M.; Murashige, D.; Arany, Z. Branched Chain Amino Acids. Annu. Rev. Physiol. 2019, 81, 139–164. [Google Scholar] [CrossRef]
- Batch, B.C.; Shah, S.H.; Newgard, C.B.; Turer, C.B.; Haynes, C.; Bain, J.R.; Muehlbauer, M.; Patel, M.J.; Stevens, R.D.; Appel, L.J.; et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism 2013, 62, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Huffman, K.M.; Shah, S.H.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.; Slentz, C.A.; Tanner, C.J.; Kuchibhatla, M.; Houmard, J.A.; Newgard, C.B.; et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009, 32, 1678–1683. [Google Scholar] [CrossRef]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, M.; Liu, Y.; Sun, X.; Wang, B.; Zhao, Y.; Liu, D.; Liu, X.; Zhang, D.; Liu, F.; et al. Association of menopause and type 2 diabetes mellitus. Menopause 2019, 26, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Varalakshmi, D.; Rekha, K.; Mohammed, R. Type 2 Diabetes Mellitus Prevalence and Associated Risk Factors in Postmenopausal Women. Cureus 2024, 16, e60247. [Google Scholar] [CrossRef]
- Xing, Z.; Kirby, R.S.; Alman, A.C. Association of age at menopause with type 2 diabetes mellitus in postmenopausal women in the United States: National Health and Nutrition Examination Survey 2011–2018. Prz Menopauzalny 2022, 21, 229–235. [Google Scholar] [CrossRef]
- Kerstetter, J.E.; Bihuniak, J.D.; Brindisi, J.; Sullivan, R.R.; Mangano, K.M.; Larocque, S.; Kotler, B.M.; Simpson, C.A.; Cusano, A.M.; Gaffney-Stomberg, E.; et al. The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults. J. Clin. Endocrinol. Metab. 2015, 100, 2214–2222. [Google Scholar] [CrossRef]
- Stojkovic, V.; Simpson, C.A.; Sullivan, R.R.; Cusano, A.M.; Kerstetter, J.E.; Kenny, A.M.; Insogna, K.L.; Bihuniak, J.D. The Effect of Dietary Glycemic Properties on Markers of Inflammation, Insulin Resistance, and Body Composition in Postmenopausal American Women: An Ancillary Study from a Multicenter Protein Supplementation Trial. Nutrients 2017, 9, 484. [Google Scholar] [CrossRef]
- Ling, Z.-N.; Jiang, Y.-F.; Ru, J.-N.; Lu, J.-H.; Ding, B.; Wu, J. Amino acid metabolism in health and disease. Signal Transduct. Target. Ther. 2023, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Gannon, N.P.; Schnuck, J.K.; Vaughan, R.A. BCAA Metabolism and Insulin Sensitivity—Dysregulated by Metabolic Status? Mol. Nutr. Food Res. 2018, 62, e1700756. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef]
- Yoon, M.S. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients 2016, 8, 405. [Google Scholar] [CrossRef] [PubMed]
- Hamaya, R.; Mora, S.; Lawler, P.R.; Cook, N.R.; Ridker, P.M.; Buring, J.E.; Lee, I.-M.; Manson, J.E.; Tobias, D.K. Association of Plasma Branched-Chain Amino Acid with Biomarkers of Inflammation and Lipid Metabolism in Women. Circ. Genom. Precis. Med. 2021, 14, e003330. [Google Scholar] [CrossRef]
- Jacob, K.J.; Chevalier, S.; Lamarche, M.; Morais, J.A. Leucine Supplementation Does Not Alter Insulin Sensitivity in Prefrail and Frail Older Women following a Resistance Training Protocol. J. Nutr. 2019, 149, 959–967. [Google Scholar] [CrossRef]
- Giglio, B.M.; Schincaglia, R.M.; da Silva, A.S.; Fazani, I.C.S.; Monteiro, P.A.; Mota, J.F.; Cunha, J.P.; Pichard, C.; Pimentel, G.D. Whey Protein Supplementation Compared to Collagen Increases Blood Nesfatin Concentrations and Decreases Android Fat in Overweight Women: A Randomized Double-Blind Study. Nutrients 2019, 11, 2051. [Google Scholar] [CrossRef]
- Randolph, A.C.; Markofski, M.M.; Rasmussen, B.B.; Volpi, E. Effect of essential amino acid supplementation and aerobic exercise on insulin sensitivity in healthy older adults: A randomized clinical trial. Clin. Nutr. 2020, 39, 1371–1378. [Google Scholar] [CrossRef]
- Kirk, B.; Mooney, K.; Vogrin, S.; Jackson, M.; Duque, G.; Khaiyat, O.; Amirabdollahian, F. Leucine-enriched whey protein supplementation, resistance-based exercise, and cardiometabolic health in older adults: A randomized controlled trial. J. Cachexia Sarcopenia Muscle 2021, 12, 2022–2033. [Google Scholar] [CrossRef]
- Memelink, R.G.; Pasman, W.J.; Bongers, A.; Tump, A.; van Ginkel, A.; Tromp, W.; Wopereis, S.; Verlaan, S.; Bosch, J.d.V.-V.D.; Weijs, P.J.M. Effect of an Enriched Protein Drink on Muscle Mass and Glycemic Control during Combined Lifestyle Intervention in Older Adults with Obesity and Type 2 Diabetes: A Double-Blind RCT. Nutrients 2020, 13, 64. [Google Scholar] [CrossRef]
- Heianza, Y.; Arase, Y.; Kodama, S.; Hsieh, S.D.; Tsuji, H.; Saito, K.; Shimano, H.; Hara, S.; Sone, H. Effect of postmenopausal status and age at menopause on type 2 diabetes and prediabetes in Japanese individuals: Toranomon Hospital Health Management Center Study 17 (TOPICS 17). Diabetes Care 2013, 36, 4007–4014. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, K.M.; Linenberg, I.; Hall, W.L.; Kadé, K.; Franks, P.W.; Davies, R.; Wolf, J.; Hadjigeorgiou, G.; Asnicar, F.; Segata, N.; et al. Menopause is associated with postprandial metabolism, metabolic health and lifestyle: The ZOE PREDICT study. EBioMedicine 2022, 85, 104303. [Google Scholar] [CrossRef] [PubMed]
- Stefanska, A.; Bergmann, K.; Sypniewska, G. Metabolic Syndrome and Menopause: Pathophysiology, Clinical and Diagnostic Significance. Adv. Clin. Chem. 2015, 72, 1–75. [Google Scholar] [PubMed]
- Leeners, B.; Geary, N.; Tobler, P.N.; Asarian, L. Ovarian hormones and obesity. Hum. Reprod. Update 2017, 23, 300–321. [Google Scholar] [CrossRef]
- Diabetes and Women. 2024. Available online: https://www.cdc.gov/diabetes/risk-factors/diabetes-and-women-1.html (accessed on 11 April 2025).
- Lin, K.-H.; Liou, T.-L.; Hsiao, L.-C.; Hwu, C.-M. Clinical and biochemical indicators of homeostasis model assessment-estimated insulin resistance in postmenopausal women. J. Chin. Med. Assoc. 2011, 74, 442–447. [Google Scholar] [CrossRef]
CHO n = 46 | PRO n = 38 | p-Value | |
---|---|---|---|
Age, years, mean (SD) | 69.3 (6.0) | 68.9 (5.8) | 0.8 |
BMI, v2, mean (SD) | 25.8 (4.0) | 26.0 (3.6) | 0.8 |
BMI, v9, mean (SD) | 26.0 (4.3) | 26.0 (3.7) | 0.9 |
Δ BMI, mean (SD) | 0.19 (1.6) | 0.01 (0.8) | 0.3 |
Race, n (%) | 0.4 | ||
White | 44 (95.7) | 35 (92.1) | |
Black | 1 (2.2) | 2 (5.3) | |
Asian | 1 (2.2) | 1 (2.6) | |
Ethnicity, n (%) | 0.5 | ||
Not Hispanic | 44 (95.7) | 38 (100) | |
Hispanic | 1 (2.2) | 0 (0) | |
Missing | 1 (2.2) | 0 (0) |
CHO (n = 46) | PRO (n = 38) | |||
---|---|---|---|---|
Baseline | 18 Months | Baseline | 18 Months | |
BCAA, umol/L | 174 ± 40 | 174 ± 54 | 202 ± 73 | 196 ± 49 |
Glucose, mg/dL | 90.2 ± 11.9 | 94.1 ± 14.7 | 91.8 ± 12.2 | 92.7 ± 10.9 |
Insulin, µU/mL | 12.2 ± 5.0 | 11.8 ± 4.8 | 13.3 ± 5.9 | 13.4 ± 4.4 |
HOMA-IR, %IR2 | 1.6 ± 0.6 | 1.5 ± 0.6 | 1.7 ± 0.7 | 1.7 ± 0.6 |
HOMA-IR, %β2 | 132.8 ± 47.9 | 117.1 ± 41.8 | 137.0 ± 53.3 | 133.3 ± 37.5 |
CHO (n = 46) | PRO (n = 38) | |||
---|---|---|---|---|
Baseline | 18 Months | Baseline | 18 Months | |
Glucose, mg/dL | 0.28 (0.06) | 0.23 (0.13) | 0.29 (0.08) | 0.22 (0.18) |
Insulin, µU/mL | 0.26 (0.08) | 0.35 (0.02) b | 0.25 (0.13) | 0.32 (0.05) |
HOMA-IR, %IR2 | 0.27 (0.07) | 0.35 (0.02) b | 0.27 (0.1) | 0.35 (0.03) b |
HOMA-IR, %β2 | 0.02 (0.88) | 0.15 (0.33) | 0.05 (0.79) | 0.03 (0.85) |
Lean Mass | 0.07 (0.63) | −0.22 (0.14) | −0.14 (0.41) | −0.02 (0.89) |
Trunk Lean Mass | −0.04 (0.79) | −0.26 (0.08) | −0.06 (0.71) | 0.17 (0.32) |
BMI | 0.22 (0.15) | 0.23 (0.13) | −0.06 (0.73) | −0.06 (0.73) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bihuniak, J.D.; Byer, A.; Simpson, C.A.; Sullivan, R.R.; Dudzik, J.M.; Insogna, K.L.; Beasley, J.M. Protein Supplementation, Plasma Branched-Chain Amino Acids, and Insulin Resistance in Postmenopausal Women: An Ancillary Study from the Supplemental Protein to Outsmart Osteoporosis Now (SPOON) Trial. Nutrients 2025, 17, 2104. https://doi.org/10.3390/nu17132104
Bihuniak JD, Byer A, Simpson CA, Sullivan RR, Dudzik JM, Insogna KL, Beasley JM. Protein Supplementation, Plasma Branched-Chain Amino Acids, and Insulin Resistance in Postmenopausal Women: An Ancillary Study from the Supplemental Protein to Outsmart Osteoporosis Now (SPOON) Trial. Nutrients. 2025; 17(13):2104. https://doi.org/10.3390/nu17132104
Chicago/Turabian StyleBihuniak, Jessica Dauz, Alessandra Byer, Christine A. Simpson, Rebecca R. Sullivan, Josephine M. Dudzik, Karl L. Insogna, and Jeannette M. Beasley. 2025. "Protein Supplementation, Plasma Branched-Chain Amino Acids, and Insulin Resistance in Postmenopausal Women: An Ancillary Study from the Supplemental Protein to Outsmart Osteoporosis Now (SPOON) Trial" Nutrients 17, no. 13: 2104. https://doi.org/10.3390/nu17132104
APA StyleBihuniak, J. D., Byer, A., Simpson, C. A., Sullivan, R. R., Dudzik, J. M., Insogna, K. L., & Beasley, J. M. (2025). Protein Supplementation, Plasma Branched-Chain Amino Acids, and Insulin Resistance in Postmenopausal Women: An Ancillary Study from the Supplemental Protein to Outsmart Osteoporosis Now (SPOON) Trial. Nutrients, 17(13), 2104. https://doi.org/10.3390/nu17132104