Red Blood Cell Omega-6 Fatty Acids and Biomarkers of Inflammation in the Framingham Offspring Study
Highlights
- Red blood cell linoleic acid and arachidonic acid are inversely correlated with six inflammatory biomarkers.
- The acids have three of these biomarkers in common: interleukin-6, intercellular adhesion molecule 1, and monocyte chemoattractant protein 1.
- Major omega-6 polyunsaturated fatty acids are more likely to be anti-inflammatory than pro-inflammatory.
- Our findings support dietary guidelines that prioritize linoleic acid-rich oils; present efforts to reduce intake are ill-advised.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Red Blood Cell Linoleic Acid and Arachidonic Acid
2.3. Inflammatory Biomarkers
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. The Correlations Between Linoleic Acid, Arachidonic Acid, and Inflammatory Biomarkers
3.3. Tests of Non-Linearity and Interaction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RBC | Red blood cell |
PUFA | Polyunsaturated fatty acid(s) |
LA | Linoleic acid |
AA | Arachidonic acid |
O3I | Omega-3 index (RBC eicosapentaenoic acid + docosahexaenoic acid) |
FA | Fatty acid |
CRP | C-reactive protein |
ICAM-1 | Intercellular adhesion molecule-1 |
Lp-PLA2 | Lipoprotein-associated phospholipase-A2 |
MCP-1 | Monocyte chemoattractant protein-1 |
TNFR2 | Tumor necrosis factor receptor-2 |
References
- FAO. Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation; FAO: Rome, Italy, 2010; Volume 91, pp. 1–180. [Google Scholar]
- Kris-Etherton, P.M.; Yu, S. Individual fatty acid effects on plasma lipids and lipoproteins: Human studies. Am. J. Clin. Nutr. 1997, 65, 1628S–1644S. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- van Rooijen, M.A.; Plat, J.; Blom, W.A.M.; Zock, P.L.; Mensink, R.P. Dietary stearic acid and palmitic acid do not differently affect ABCA1-mediated cholesterol efflux capacity in healthy men and postmenopausal women: A randomized controlled trial. Clin. Nutr. Edinb. Scotl. 2021, 40, 804–811. [Google Scholar] [CrossRef]
- Lai, H.T.M.; de Oliveira Otto, M.C.; Lee, Y.; Wu, J.H.Y.; Song, X.; King, I.B.; Psaty, B.M.; Lemaitre, R.N.; McKnight, B.; Siscovick, D.S.; et al. Serial Plasma Phospholipid Fatty Acids in the De Novo Lipogenesis Pathway and Total Mortality, Cause-Specific Mortality, and Cardiovascular Diseases in the Cardiovascular Health Study. J. Am. Heart Assoc. 2019, 8, e012881. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, S.; Li, J.; Gong, R.; Jia, Z.; Liu, J.; Jin, Z.; Yang, J.; Liu, Y. Association of serum oleic acid level with depression in American adults: A cross-sectional study. BMC Psychiatry 2023, 23, 845. [Google Scholar] [CrossRef] [PubMed]
- Steffen, B.T.; Duprez, D.; Szklo, M.; Guan, W.; Tsai, M.Y. Circulating oleic acid levels are related to greater risks of cardiovascular events and all-cause mortality: The Multi-Ethnic Study of Atherosclerosis. J. Clin. Lipidol. 2018, 12, 1404–1412. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef]
- Goff, Z.D.; Nissen, S.E. N-3 polyunsaturated fatty acids for cardiovascular risk. Curr. Opin. Cardiol. 2022, 37, 356–363. [Google Scholar] [CrossRef]
- Laukkanen, J.A.; Bernasconi, A.A.; Lavie, C.J. Bringing the Potential Benefits of Omega-3 to a Higher Level. Mayo Clin. Proc. 2024, 99, 520–523. [Google Scholar] [CrossRef]
- Dinu, M.; Sofi, F.; Lotti, S.; Colombini, B.; Mattioli, A.V.; Catapano, A.L.; Casula, M.; Baragetti, A.; Wong, N.D.; Steg, P.G.; et al. Effects of omega-3 fatty acids on coronary revascularization and cardiovascular events: A meta-analysis. Eur. J. Prev. Cardiol. 2024, 31, 1863–1875. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. Omega-6 vegetable oils as a driver of coronary heart disease: The oxidized linoleic acid hypothesis. Open Heart 2018, 5, e000898. [Google Scholar] [CrossRef] [PubMed]
- Cherian, G. Nutrition and metabolism in poultry: Role of lipids in early diet. J. Anim. Sci. Biotechnol. 2015, 6, 28. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Zamora, D.; Leelarthaepin, B.; Majchrzak-Hong, S.F.; Faurot, K.R.; Suchindran, C.M.; Ringel, A.; Davis, J.M.; Hibbeln, J.R. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: Evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 2013, 346, e8707. [Google Scholar] [CrossRef]
- Mercola, J.; D’Adamo, C.R. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. Nutrients 2023, 15, 3129. [Google Scholar] [CrossRef]
- Anonymous. Seed Oils: Are they actually toxic? In Cleveland Clinic Heathessential; Cleveland Clinic: Cleveland, OH, USA, 2023. [Google Scholar]
- Harris, W.S.; Mozaffarian, D.; Rimm, E.B.; Kris-Etherton, P.M.; Rudel, L.L.; Appel, L.J.; Engler, M.M.; Engler, M.B.; Sacks, F.M. Omega-6 Fatty Acids and Risk for Cardiovascular Disease: A Science Advisory from the American Heart Association Nutrition Committee. Circulation 2009, 119, 902–907. [Google Scholar] [CrossRef]
- Johnson, G.H.; Fritsche, K. Effect of dietary linoleic acid on markers of inflammation in healthy persons: A systematic review of randomized controlled trials. J. Acad. Nutr. Diet. 2012, 112, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Marklund, M.; Wu Jason, H.Y.; Imamura, F.; Del Gobbo Liana, C.; Fretts, A.; de Goede, J.; Shi, P.; Tintle, N.; Wennberg, M.; Aslibekyan, S.; et al. Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality. Circulation 2019, 139, 2422–2436. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.Y.; Marklund, M.; Imamura, F.; Tintle, N.; Ardisson Korat, A.V.; de Goede, J.; Zhou, X.; Yang, W.-S.; de Oliveira Otto, M.C.; Kröger, J.; et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: Pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol. 2017, 5, 965–974. [Google Scholar] [CrossRef]
- Harris, W.S.; Westra, J.; Tintle, N.L.; Sala-Vila, A.; Wu, J.H.Y.; Marklund, M. Plasma n6 polyunsaturated fatty acid levels and risk for total and cause-specific mortality: A prospective observational study from the UK Biobank. Am. J. Clin. Nutr. 2024, 120, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Ramakers, J.D.; Mensink, R.P.; Verstege, M.I.; te Velde, A.A.; Plat, J. An arachidonic acid-enriched diet does not result in more colonic inflammation as compared with fish oil- or oleic acid-enriched diets in mice with experimental colitis. Br. J. Nutr. 2008, 100, 347–354. [Google Scholar] [CrossRef]
- Kakutani, S.; Ishikura, Y.; Tateishi, N.; Horikawa, C.; Tokuda, H.; Kontani, M.; Kawashima, H.; Sakakibara, Y.; Kiso, Y.; Shibata, H.; et al. Supplementation of arachidonic acid-enriched oil increases arachidonic acid contents in plasma phospholipids, but does not increase their metabolites and clinical parameters in Japanese healthy elderly individuals: A randomized controlled study. Lipids Health Dis. 2011, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Markworth, J.F.; Mitchell, C.J.; D’Souza, R.F.; Aasen, K.M.M.; Durainayagam, B.R.; Mitchell, S.M.; Chan, A.H.C.; Sinclair, A.J.; Garg, M.; Cameron-Smith, D. Arachidonic acid supplementation modulates blood and skeletal muscle lipid profile with no effect on basal inflammation in resistance exercise trained men. Prostaglandins Leukot. Essent. Fat. Acids 2018, 128, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Fontes, J.D.; Rahman, F.; Lacey, S.; Larson, M.G.; Vasan, R.S.; Benjamin, E.J.; Harris, W.S.; Robins, S.J. Red blood cell fatty acids and biomarkers of inflammation: A cross-sectional study in a community-based cohort. Atherosclerosis 2015, 240, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Feinleib, M.; McNamara, P.M.; Garrison, R.J.; Castelli, W.P. An investigation of coronary heart disease in families. The Framingham offspring study. Am. J. Epidemiol. 1979, 110, 281–290. [Google Scholar] [CrossRef]
- Splansky, G.L.; Corey, D.; Yang, Q.; Atwood, L.D.; Cupples, L.A.; Benjamin, E.J.; D’Agostino, R.B., Sr.; Fox, C.S.; Larson, M.G.; Murabito, J.M.; et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: Design, recruitment, and initial examination. Am. J. Epidemiol. 2007, 165, 1328–1335. [Google Scholar] [CrossRef]
- Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Robbins, J.; Samet, J.M.; et al. The Sleep Heart Health Study: Design, rationale, and methods. Sleep 1997, 20, 1077–1085. [Google Scholar]
- Harris, W.S.; Pottala, J.V.; Vasan, R.S.; Larson, M.G.; Robins, S.J. Changes in erythrocyte membrane trans and marine fatty acids between 1999 and 2006 in older Americans. J. Nutr. 2012, 142, 1297–1303. [Google Scholar] [CrossRef]
- Harris, W.S.; Pottala, J.V.; Sands, S.A.; Jones, P.G. Comparison of the effects of fish and fish-oil capsules on the n 3 fatty acid content of blood cells and plasma phospholipids. Am. J. Clin. Nutr. 2007, 86, 1621–1625. [Google Scholar] [CrossRef]
- Fenton, J.I.; Gurzell, E.A.; Davidson, E.A.; Harris, W.S. Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukot. Essent. Fat. Acids 2016, 112, 12–23. [Google Scholar] [CrossRef]
- Schnabel, R.; Larson, M.G.; Dupuis, J.; Lunetta, K.L.; Lipinska, I.; Meigs, J.B.; Yin, X.; Rong, J.; Vita, J.A.; Newton-Cheh, C.; et al. Relations of inflammatory biomarkers and common genetic variants with arterial stiffness and wave reflection. Hypertension 2008, 51, 1651–1657. [Google Scholar] [CrossRef]
- Graille, M.; Wild, P.; Sauvain, J.J.; Hemmendinger, M.; Guseva Canu, I.; Hopf, N.B. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta-analysis. Toxicol. Lett. 2020, 328, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Basu, S. Bioactive eicosanoids: Role of prostaglandin F2α and F2-isoprostanes in inflammation and oxidative stress related pathology. Mol. Cells 2010, 30, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Shine, B.; de Beer, F.C.; Pepys, M.B. Solid phase radioimmunoassays for human C-reactive protein. Clin. Chim. Acta 1981, 117, 13–23. [Google Scholar] [CrossRef]
- Marnell, L.; Mold, C.; Du Clos, T.W. C-reactive protein: Ligands, receptors and role in inflammation. Clin. Immunol. 2005, 117, 104–111. [Google Scholar] [CrossRef]
- McElvaney, O.J.; Curley, G.F.; Rose-John, S.; McElvaney, N.G. Interleukin-6: Obstacles to targeting a complex cytokine in critical illness. Lancet Respir. Med. 2021, 9, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Nishimoto, N.; Terao, K.; Mima, T.; Nakahara, H.; Takagi, N.; Kakehi, T. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 2008, 112, 3959–3964. [Google Scholar] [CrossRef]
- Witkowska, A.M. Soluble ICAM-1: A marker of vascular inflammation and lifestyle. Cytokine 2005, 31, 127–134. [Google Scholar] [CrossRef]
- Rothlein, R.; Mainolfi, E.A.; Czajkowski, M.; Marlin, S.D. A form of circulating ICAM-1 in human serum. J. Immunol. 1991, 147, 3788–3793. [Google Scholar] [CrossRef]
- Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 2020, 108, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Hua, S. Targeting sites of inflammation: Intercellular adhesion molecule-1 as a target for novel inflammatory therapies. Front. Pharmacol. 2013, 4, 127. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Wolfert, R.L.; Koenig, W. Relationship of lipoprotein-associated phospholipase A₂ mass and activity with incident vascular events among primary prevention patients allocated to placebo or to statin therapy: An analysis from the JUPITER trial. Clin. Chem. 2012, 58, 877–886. [Google Scholar] [CrossRef]
- De Stefano, A.; Mannucci, L.; Massoud, R.; Bernardini, S.; Cortese, C. Performance characteristics of lipoprotein-associated phospholipase A2 activity assay on the Dimension Vista analyser and preliminary study of a healthy Italian population. Biochem. Med. 2017, 27, 030701. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Stafforini, D.M. Modulation of oxidative stress, inflammation, and atherosclerosis by lipoprotein-associated phospholipase A2. J. Lipid Res. 2012, 53, 1767–1782. [Google Scholar] [CrossRef]
- De Stefano, A.; Mannucci, L.; Tamburi, F.; Cardillo, C.; Schinzari, F.; Rovella, V.; Nisticò, S.; Bennardo, L.; Di Daniele, N.; Tesauro, M. Lp-PLA2, a new biomarker of vascular disorders in metabolic diseases. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419827154. [Google Scholar] [CrossRef] [PubMed]
- Colley, K.J.; Wolfert, R.L.; Cobble, M.E. Lipoprotein associated phospholipase A2: Role in atherosclerosis and utility as a biomarker for cardiovascular risk. EPMA J. 2011, 2, 27–38. [Google Scholar] [CrossRef]
- de Lemos, J.A.; Morrow, D.A.; Sabatine, M.S.; Murphy, S.A.; Gibson, C.M.; Antman, E.M.; McCabe, C.H.; Cannon, C.P.; Braunwald, E. Association Between Plasma Levels of Monocyte Chemoattractant Protein-1 and Long-Term Clinical Outcomes in Patients with Acute Coronary Syndromes. Circulation 2003, 107, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Kolattukudy, P.E.; Niu, J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ. Res. 2012, 110, 174–189. [Google Scholar] [CrossRef]
- Kudlacek, S.; Schneider, B.; Woloszczuk, W.; Pietschmann, P.; Willvonseder, R. Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone 2003, 32, 681–686. [Google Scholar] [CrossRef]
- Nahidi, L.; Leach, S.T.; Lemberg, D.A.; Day, A.S. Osteoprotegerin exerts its pro-inflammatory effects through nuclear factor-κB activation. Dig. Dis. Sci. 2013, 58, 3144–3155. [Google Scholar] [CrossRef] [PubMed]
- Saidenberg Kermanac’h, N.; Bessis, N.; Cohen-Solal, M.; De Vernejoul, M.C.; Boissier, M.C. Osteoprotegerin and inflammation. Eur. Cytokine Netw. 2002, 13, 144–153. [Google Scholar]
- Katayama, M.; Handa, M.; Araki, Y.; Ambo, H.; Kawai, Y.; Watanabe, K.; Ikeda, Y. Soluble P-selectin is present in normal circulation and its plasma level is elevated in patients with thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome. Br. J. Haematol. 1993, 84, 702–710. [Google Scholar] [CrossRef]
- Ludwig, R.J.; Schön, M.P.; Boehncke, W.H. P-selectin: A common therapeutic target for cardiovascular disorders, inflammation and tumour metastasis. Expert Opin. Ther. Targets 2007, 11, 1103–1117. [Google Scholar] [CrossRef] [PubMed]
- Gohda, T.; Murakoshi, M.; Shibata, T.; Suzuki, Y.; Takemura, H.; Tsuchiya, K.; Okada, T.; Wakita, M.; Horiuchi, Y.; Tabe, Y.; et al. Circulating TNF receptor levels are associated with estimated glomerular filtration rate even in healthy individuals with normal kidney function. Sci. Rep. 2024, 14, 7245. [Google Scholar] [CrossRef] [PubMed]
- Parodis, I.; Ding, H.; Zickert, A.; Arnaud, L.; Larsson, A.; Svenungsson, E.; Mohan, C.; Gunnarsson, I. Serum soluble tumour necrosis factor receptor-2 (sTNFR2) as a biomarker of kidney tissue damage and long-term renal outcome in lupus nephritis. Scand. J. Rheumatol. 2017, 46, 263–272. [Google Scholar] [CrossRef]
- Marti, C.N.; Khan, H.; Mann, D.L.; Georgiopoulou, V.V.; Bibbins-Domingo, K.; Harris, T.; Koster, A.; Newman, A.; Kritchevsky, S.B.; Kalogeropoulos, A.P.; et al. Soluble tumor necrosis factor receptors and heart failure risk in older adults: Health, Aging, and Body Composition (Health ABC) Study. Circ. Heart Fail. 2014, 7, 5–11. [Google Scholar] [CrossRef]
- Dong, Y.; Fischer, R.; Naudé, P.J.; Maier, O.; Nyakas, C.; Duffey, M.; Van der Zee, E.A.; Dekens, D.; Douwenga, W.; Herrmann, A.; et al. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc. Natl. Acad. Sci. USA 2016, 113, 12304–12309. [Google Scholar] [CrossRef]
- Medler, J.; Kucka, K.; Wajant, H. Tumor Necrosis Factor Receptor 2 (TNFR2): An Emerging Target in Cancer Therapy. Cancers 2022, 14, 2603. [Google Scholar] [CrossRef]
- Pischon, T.; Hankinson, S.E.; Hotamisligil, G.S.; Rifai, N.; Willett, W.C.; Rimm, E.B. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation 2003, 108, 155–160. [Google Scholar] [CrossRef]
- Poudel-Tandukar, K.; Nanri, A.; Matsushita, Y.; Sasaki, S.; Ohta, M.; Sato, M.; Mizoue, T. Dietary intakes of α-linolenic and linoleic acids are inversely associated with serum C-reactive protein levels among Japanese men. Nutr. Res. 2009, 29, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Julia, C.; Touvier, M.; Meunier, N.; Papet, I.; Galan, P.; Hercberg, S.; Kesse-Guyot, E. Intakes of PUFAs were inversely associated with plasma C-reactive protein 12 years later in a middle-aged population with vitamin E intake as an effect modifier. J. Nutr. 2013, 143, 1760–1766. [Google Scholar] [CrossRef] [PubMed]
- Muka, T.; Kiefte-de Jong, J.C.; Hofman, A.; Dehghan, A.; Rivadeneira, F.; Franco, O.H. Polyunsaturated fatty acids and serum C-reactive protein: The Rotterdam study. Am. J. Epidemiol. 2015, 181, 846–856. [Google Scholar] [CrossRef]
- Ferrucci, L.; Cherubini, A.; Bandinelli, S.; Bartali, B.; Corsi, A.; Lauretani, F.; Martin, A.; Andres-Lacueva, C.; Senin, U.; Guralnik, J.M. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J. Clin. Endocrinol. Metab. 2006, 91, 439–446. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Rousinou, G.; Toutouza, M.; Stefanadis, C. Unsaturated fatty acids are inversely associated and n-6/n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults. Clin. Chim. Acta 2010, 411, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Steffen, B.T.; Steffen, L.M.; Tracy, R.; Siscovick, D.; Jacobs, D.; Liu, K.; He, K.; Hanson, N.Q.; Nettleton, J.A.; Tsai, M.Y. Ethnicity, plasma phospholipid fatty acid composition and inflammatory/endothelial activation biomarkers in the Multi-Ethnic Study of Atherosclerosis (MESA). Eur. J. Clin. Nutr. 2012, 66, 600–605. [Google Scholar] [CrossRef]
- Steffen, B.T.; Steffen, L.M.; Liang, S.; Tracy, R.; Jenny, N.S.; Tsai, M.Y. n-3 and n-6 Fatty acids are independently associated with lipoprotein-associated phospholipase A2 in the Multi-Ethnic Study of Atherosclerosis. Br. J. Nutr. 2013, 110, 1664–1671. [Google Scholar] [CrossRef]
- Yu, X.; Huang, T.; Weng, X.; Shou, T.; Wang, Q.; Zhou, X.; Hu, Q.; Li, D. Plasma n-3 and n-6 fatty acids and inflammatory markers in Chinese vegetarians. Lipids Health Dis. 2014, 13, 151. [Google Scholar] [CrossRef]
- Kubota, Y.; Higashiyama, A.; Imano, H.; Sugiyama, D.; Kawamura, K.; Kadota, A.; Nishimura, K.; Miyamatsu, N.; Miyamoto, Y.; Okamura, T. Serum Polyunsaturated Fatty Acid Composition and Serum High-Sensitivity C-Reactive Protein Levels in Healthy Japanese Residents: The KOBE Study. J. Nutr. Health Aging 2015, 19, 719–728. [Google Scholar] [CrossRef]
- El-Saed, A.; Masaki, K.; Okamura, T.; Evans, R.W.; Nakamura, Y.; Willcox, B.J.; Lee, S.; Maegawa, H.; Seto, T.B.; Choo, J.; et al. The Associations of C-Reactive Protein with Serum Levels of Polyunsaturated Fatty Acids and Trans Fatty Acids Among Middle-Aged Men from Three Populations. J. Nutr. Health Aging 2016, 20, 16–21. [Google Scholar] [CrossRef]
- Harris, C.; Demmelmair, H.; von Berg, A.; Lehmann, I.; Flexeder, C.; Koletzko, B.; Heinrich, J.; Standl, M. Associations between fatty acids and low-grade inflammation in children from the LISAplus birth cohort study. Eur. J. Clin. Nutr. 2017, 71, 1303–1311. [Google Scholar] [CrossRef]
- Virtanen, J.K.; Mursu, J.; Voutilainen, S.; Tuomainen, T.P. The associations of serum n-6 polyunsaturated fatty acids with serum C-reactive protein in men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Eur. J. Clin. Nutr. 2018, 72, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Fragopoulou, E.; Detopoulou, P.; Alepoudea, E.; Nomikos, T.; Kalogeropoulos, N.; Antonopoulou, S. Associations between red blood cells fatty acids, desaturases indices and metabolism of platelet activating factor in healthy volunteers. Prostaglandins Leukot. Essent. Fat. Acids 2021, 164, 102234. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Medoro, A.; Accardi, G.; Calabrò, A.; Carru, C.; Cannavo, A.; Caruso, C.; Candore, G.; Scapagnini, G.; Corbi, G.; et al. Polyunsaturated fatty acid status and markers of oxidative stress and inflammation across the lifespan: A cross-sectional study in a cohort with long-lived individuals. Exp. Gerontol. 2024, 195, 112531. [Google Scholar] [CrossRef] [PubMed]
- Shearer, G.C.; Walker, R.E. An overview of the biologic effects of omega-6 oxylipins in humans. Prostaglandins Leukot. Essent. Fat. Acids 2018, 137, 26–38. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M.; Lee, A.; Yoo, H.J.; Her, J.S.; Jee, S.H.; Lee, J.H. Impact of 8-week linoleic acid intake in soy oil on Lp-PLA2 activity in healthy adults. Nutr. Metab. 2017, 14, 32. [Google Scholar] [CrossRef]
- Su, H.; Liu, R.; Chang, M.; Huang, J.; Wang, X. Dietary linoleic acid intake and blood inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Food Funct. 2017, 8, 3091–3103. [Google Scholar] [CrossRef]
- Kelley, D.S.; Taylor, P.C.; Nelson, G.J.; Mackey, B.E. Arachidonic acid supplementation enhances synthesis of eicosanoids without suppressing immune functions in young healthy men. Lipids 1998, 33, 125–130. [Google Scholar] [CrossRef]
- Thies, F.; Miles, E.A.; Nebe-von-Caron, G.; Powell, J.R.; Hurst, T.L.; Newsholme, E.A.; Calder, P.C. Influence of dietary supplementation with long-chain n−3 or n−6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids 2001, 36, 1183–1193. [Google Scholar] [CrossRef]
- Ramakers, J.D.; Mensink, R.P.; Schaart, G.; Plat, J. Arachidonic acid but not eicosapentaenoic acid (EPA) and oleic acid activates NF-kappaB and elevates ICAM-1 expression in Caco-2 cells. Lipids 2007, 42, 687–698. [Google Scholar] [CrossRef]
- Casado-Díaz, A.; Santiago-Mora, R.; Dorado, G.; Quesada-Gómez, J.M. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: Potential implication in osteoporosis. Osteoporos. Int. 2013, 24, 1647–1661. [Google Scholar] [CrossRef]
- Li, J.; Guasch-Ferré, M.; Li, Y.; Hu, F.B. Dietary intake and biomarkers of linoleic acid and mortality: Systematic review and meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2020, 112, 150–167. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, J. N-6 Polyunsaturated Fatty Acids and Risk of Cancer: Accumulating Evidence from Prospective Studies. Nutrients 2020, 12, 2523. [Google Scholar] [CrossRef]
- Jayedi, A.; Soltani, S.; Emadi, A.; Ghods, K.; Shab-Bidar, S. Dietary intake, biomarkers and supplementation of fatty acids and risk of coronary events: A systematic review and dose-response meta-analysis of randomized controlled trials and prospective observational studies. Crit. Rev. Food Sci. Nutr. 2024, 64, 12363–12382. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.K.; Guan, W.; Nomura, S.; Weir, N.L.; Tintle, N.; Virtanen, J.K.; Hirakawa, Y.; Qian, F.; Sun, Q.; Rimm, E.; et al. n-6 fatty acid biomarkers and incident atrial fibrillation: An individual participant-level pooled analysis of 11 international prospective studies. Am. J. Clin. Nutr. 2023, 118, 921–929. [Google Scholar] [CrossRef]
- Wu, J.H.; Lemaitre, R.N.; King, I.B.; Song, X.; Psaty, B.M.; Siscovick, D.S.; Mozaffarian, D. Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: The Cardiovascular Health Study. Circulation 2014, 130, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Yu, Z.; Li, H.; Franco, O.H.; Liu, Y.; Lin, X. Distributions of C-Reactive Protein and its Association with Metabolic Syndrome in Middle-Aged and Older Chinese People. J. Am. Coll. Cardiol. 2007, 49, 1798–1805. [Google Scholar] [CrossRef]
- Tadros, T.M.; Massaro, J.M.; Rosito, G.A.; Hoffmann, U.; Vasan, R.S.; Larson, M.G.; Keaney, J.F., Jr.; Lipinska, I.; Meigs, J.B.; Kathiresan, S.; et al. Pericardial fat volume correlates with inflammatory markers: The Framingham Heart Study. Obesity 2010, 18, 1039–1045. [Google Scholar] [CrossRef]
- Roongpisuthipong, W.; Phanachet, P.; Roongpisuthipong, C.; Rajatanavin, N. Essential fatty acid deficiency while a patient receiving fat regimen total parenteral nutrition. BMJ Case Rep. 2012, 2012, bcr0720114475. [Google Scholar] [CrossRef]
- Jumbe, T.; Comstock, S.S.; Hahn, S.L.; Harris, W.S.; Kinabo, J.; Fenton, J.I. Whole Blood Levels of the n-6 Essential Fatty Acid Linoleic Acid Are Inversely Associated with Stunting in 2-to-6 Year Old Tanzanian Children: A Cross-Sectional Study. PLoS ONE 2016, 11, e0154715. [Google Scholar] [CrossRef]
- Raatz, S.K.; Conrad, Z.; Jahns, L.; Belury, M.A.; Picklo, M.J. Modeled replacement of traditional soybean and canola oil with high-oleic varieties increases monounsaturated fatty acid and reduces both saturated fatty acid and polyunsaturated fatty acid intake in the US adult population. Am. J. Clin. Nutr. 2018, 108, 594–602. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Department of Agriculture: Washington, DC, USA; U.S. Department of Health and Human Services: Washington, DC, USA, 2020.
- Lai, H.T.; de Oliveira Otto, M.C.; Lemaitre, R.N.; McKnight, B.; Song, X.; King, I.B.; Chaves, P.H.; Odden, M.C.; Newman, A.B.; Siscovick, D.S.; et al. Serial circulating omega 3 polyunsaturated fatty acids and healthy ageing among older adults in the Cardiovascular Health Study: Prospective cohort study. BMJ 2018, 363, k4067. [Google Scholar] [CrossRef] [PubMed]
Inflammatory Marker | Units | Role in Inflammation |
---|---|---|
Urinary 8-EPI-Isoprostanes/Creatinine | 0.18–0.40 μg/g creatinine [33] | A stable biomarker of oxidative stress and inflammation formed from non-enzymatic free radical-catalyzed peroxidation of AA [34] |
C-Reactive Protein | ≤3 mg/L [35] | An acute-phase protein produced in the liver; levels rise rapidly and acutely during inflammation [36] |
Interleukin-6 | 1–5 pg/mL [37] | A pleotropic cytokine that exhibits both anti-inflammatory and pro-inflammatory effects [38,39]; an essential component for CRP production via hepatocytes [40]. |
Intercellular Adhesion Molecule 1 | 100–300 ng/mL [41,42] | A cell surface glycoprotein that mediates and facilitates leukocytes to sites of inflammation [43]; levels are upregulated during inflammation [44] |
Lp-PLA2 Activity | 225 nmol/min/mL [45,46] | A pro-inflammatory enzyme from the phospholipase A2 family; a potential marker of vascular inflammation [47,48] |
Lp-PLA2 Concentration | ≤200 ng/mL [49] | |
Monocyte Chemoattractant Protein-1 | 127–274 pg/mL [50] 1 | A protein that is upregulated by pro-inflammatory stimuli; attracts monocytes, neutrophils, and lymphocytes to sites of inflammation [51] |
Osteoprotegerin | 13–84 pg/mL [52] 1 | A pro-inflammatory soluble decoy receptor and a member of the TNF receptor that potentially acts through NF-κB activation [53]; inhibits bone resorption by preventing RANKL from engaging RANK receptors [54] |
P-Selectin | 19–521 ng/mL [55] | A member of the selectin adhesion molecule expressed on activated endothelial cells and platelets; facilitates and mediates leukocytes at inflammation sites [56] |
Tumor Necrosis Factor Receptor 2 | 1951–3430 pg/mL [57,58,59] 1 | A cytokine that exhibits both anti-inflammatory (e.g., neuroprotection) [60] and pro-inflammatory effects (e.g., promotes tumor cell proliferation) [61] |
Characteristics | % or Mean ± SD |
---|---|
Sex (% female) | 54.1 |
Age (years) | 65.9 ± 9.0 |
Race/ethnicity | |
Non-Hispanic White (%) | 89.7 |
NH Black (%) | 3.5 |
NH Asian (%) | 2.3 |
NH Other (%) | 0.7 |
Hispanic (%) | 3.1 |
Current Smoker (%) | 7.3 |
Systolic Blood Pressure (mmHg) | 129 ± 17 |
Body Mass Index (kg/m2) | 28.4 ± 5.5 |
Total Cholesterol (mg/dL) | 186 ± 37 |
HDL Cholesterol (mg/dL) | 57 ± 18 |
Triglycerides (mg/dL) | 117 ± 68 |
Glucose (mg/dL) | 107 ± 24 |
Aspirin Usage (% reporting ≥3 times a week) | 43.6 |
Prevalent Dyslipidemia Medication (%) | 45.1 |
Prevalent Hypertension Medication (%) | 49.7 |
Prevalent Diabetes (%) | 13.6 |
Prevalent Cardiovascular Disease (CVD) (%) | 16.0 |
Hormone Replacement Therapy (%) | 13.4 |
Exposures 1 | |
RBC Linoleic Acid (LA, %) | 11.04 ± 1.71 |
RBC Arachidonic Acid (AA, %) | 16.57 ± 1.60 |
Omega-3 Index (O3I, RBC EPA + DHA, %) | 5.57 ± 1.71 |
Outcomes | |
Isoprostanes/Creatinine (mg/mg) | 11.2 ± 6.2 |
C-Reactive Protein (mg/L) | 3.2 ± 7.3 |
Interleukin-6 (pg/mL) | 2.6 ± 3.0 |
Intercellular Adhesion Molecule 1 (ng/mL) | 294.4 ± 104.4 |
Lp-PLA2 Activity (nmol/min/mL) | 137.4 ± 34.9 |
Lp-PLA2 Mass (ng/mL) | 199.5 ± 49.7 |
Monocyte Chemoattractant Protein-1 (pg/mL) | 381.5 ± 131.3 |
Osteoprotegerin (pmol/L) | 5.0 ± 1.6 |
P-Selectin (ng/mL) | 41.2 ± 13.2 |
Tumor Necrosis Factor Receptor-2 (pg/mL) | 2591.1 ± 1055.1 |
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
Isoprostanes/Creatinine | −0.025 (−0.062, 0.013) | 0.004 (−0.036, 0.044) | −0.048 (−0.102, 0.005) |
CRP | −0.063 (−0.101, −0.026) ** | −0.042 (−0.079, −0.005) * | −0.061 (−0.111, −0.011) * |
Interleukin-6 | −0.105 (−0.141, −0.069) ** | −0.056 (−0.093, −0.019) ** | −0.146 (−0.195, −0.096) ** |
ICAM-1 | −0.035 (−0.073, 0.003) | 0.014 (−0.024, 0.052) | −0.088 (−0.139, −0.037) ** |
LpPLA2 Activity | 0.099 (0.063, 0.135) ** | 0.046 (0.014, 0.078) ** | 0.034 (−0.010, 0.077) |
LpPLA2 Mass | 0.117 (0.080, 0.155) ** | 0.042 (0.004, 0.079) * | 0.027 (−0.025, 0.078) |
MCP-1 | −0.030 (−0.068, 0.007) | −0.020 (−0.060, 0.020) | −0.068 (−0.122, −0.015) * |
Osteoprotegerin | 0.060 (0.026, 0.093) ** | 0.071 (0.035, 0.106) ** | 0.015 (−0.033, 0.063) |
P-selectin | −0.038 (−0.075, −0.000) * | −0.037 (−0.077, 0.003) | −0.067 (−0.121, −0.013) * |
TNFR2 | −0.017 (−0.053, 0.019) | 0.018 (−0.020, 0.056) | −0.028 (−0.080, 0.024) |
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
Isoprostanes/Creatinine | 0.069 (0.032, 0.106) ** | 0.048 (0.010, 0.086) * | −0.037 (−0.093, 0.019) |
CRP | 0.093 (0.056, 0.130) ** | 0.066 (0.031, 0.101) ** | 0.003 (−0.049, 0.055) |
Interleukin-6 | 0.094 (0.058, 0.129) ** | 0.047 (0.012, 0.083) ** | −0.096 (−0.147, −0.044) ** |
ICAM-1 | −0.010 (−0.047, 0.027) | −0.034 (−0.071, 0.002) | −0.137 (−0.190, −0.084) ** |
LpPLA2 Activity | −0.059 (−0.094, −0.023) ** | −0.000 (−0.031, 0.031) | −0.004 (−0.049, 0.041) |
LpPLA2 Mass | −0.044 (−0.081, −0.006) * | 0.023 (−0.013, 0.060) | 0.004 (−0.049, 0.058) |
MCP-1 | 0.002 (−0.035, 0.038) | 0.006 (−0.032, 0.044) | −0.060 (−0.116, −0.004) * |
Osteoprotegerin | −0.029 (−0.062, 0.004) | −0.044 (−0.078, −0.010) * | −0.074 (−0.124, −0.024) ** |
P-selectin | 0.023 (−0.014, 0.060) | 0.053 (0.015, 0.091) ** | −0.017 (−0.073, 0.039) |
TNFR2 | −0.017 (−0.053, 0.019) | 0.018 (−0.020, 0.056) | −0.028 (−0.080, 0.024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, H.T.M.; Ryder, N.A.; Tintle, N.L.; Jackson, K.H.; Kris-Etherton, P.M.; Harris, W.S. Red Blood Cell Omega-6 Fatty Acids and Biomarkers of Inflammation in the Framingham Offspring Study. Nutrients 2025, 17, 2076. https://doi.org/10.3390/nu17132076
Lai HTM, Ryder NA, Tintle NL, Jackson KH, Kris-Etherton PM, Harris WS. Red Blood Cell Omega-6 Fatty Acids and Biomarkers of Inflammation in the Framingham Offspring Study. Nutrients. 2025; 17(13):2076. https://doi.org/10.3390/nu17132076
Chicago/Turabian StyleLai, Heidi T. M., Nathan A. Ryder, Nathan L. Tintle, Kristina H. Jackson, Penny M. Kris-Etherton, and William S. Harris. 2025. "Red Blood Cell Omega-6 Fatty Acids and Biomarkers of Inflammation in the Framingham Offspring Study" Nutrients 17, no. 13: 2076. https://doi.org/10.3390/nu17132076
APA StyleLai, H. T. M., Ryder, N. A., Tintle, N. L., Jackson, K. H., Kris-Etherton, P. M., & Harris, W. S. (2025). Red Blood Cell Omega-6 Fatty Acids and Biomarkers of Inflammation in the Framingham Offspring Study. Nutrients, 17(13), 2076. https://doi.org/10.3390/nu17132076