Effects of Creatine and β-Alanine Co-Supplementation on Exercise Performance and Body Composition: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Risk of Bias Assessment
2.6. Synthesis of Results
3. Results
3.1. Study Characteristics
3.2. Results of Quality Assessment
3.3. Outcomes Measured
3.3.1. Strength and Power Performance
Maximal Strength
Anaerobic Power and High-Intensity Performance
3.3.2. Endurance and Aerobic Performance
Aerobic Power (VO2max/VO2peak)
Submaximal Endurance and Fatigue Thresholds
Time-to-Exhaustion and Thresholds
3.3.3. Body Composition Outcomes
Lean Body Mass Gains
Fat Mass, Body Fat Percentage, and Body Mass
4. Discussion
4.1. Anaerobic Performance
4.2. Aerobic Performance
4.3. Body Composition
4.4. Dosing Strategies and Interindividual Variability
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RCT | Randomized controlled trials |
ATP | Adenosine triphosphate |
VT | Ventilatory threshold |
LT | Lactate threshold |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PROSPERO | International Prospective Register of Systematic Reviews |
1RM | One-repetition maximum |
TTE | Time to exhaustion |
PWCFT | physical working capacity at the fatigue threshold |
DEXA | dual-energy X-ray absorptiometry |
H+ | Hydrogen ions |
HIIT | High-intensity interval training |
LBM | Lean body mass |
References
- Doherty, M.; Smith, P.M.; Davison, R.R.; Hughes, M.G. Caffeine is ergogenic after supplementation of oral creatine monohydrate. Med. Sci. Sports Exerc. 2002, 34, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Emerson, N.S.; Stout, J.R. β-alanine supplementation. Curr. Sports Med. Rep. 2012, 11, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Edwards, S.; Smeuninx, B.; McKendry, J.; Nishimura, Y.; Perkins, M.; Philp, A.; Joanisse, S.; Breen, L. Immobilization leads to alterations in intracellular phosphagen and creatine transporter content in human skeletal muscle. Am. J. Physiol.-Cell Physiol. 2020, 319, C34–C44. [Google Scholar] [CrossRef] [PubMed]
- Farshidfar, F.; Pinder, M.A.; Myrie, S.B. Creatine supplementation and skeletal muscle metabolism for building muscle mass—Review of the potential mechanisms of action. Curr. Protein Pept. Sci. 2017, 18, 1273–1287. [Google Scholar] [CrossRef] [PubMed]
- Pashayee-Khamene, F.; Heidari, Z.; Asbaghi, O.; Ashtary-Larky, D.; Goudarzi, K.; Forbes, S.C.; Candow, D.G.; Bagheri, R.; Ghanavati, M.; Dutheil, F. Creatine supplementation protocols with or without training interventions on body composition: A GRADE-assessed systematic review and dose-response meta-analysis. J. Int. Soc. Sports Nutr. 2024, 21, 2380058. [Google Scholar] [CrossRef]
- Matthews, J.J.; Artioli, G.G.; Turner, M.D.; Sale, C. The physiological roles of carnosine and β-alanine in exercising human skeletal muscle. Med. Sci. Sports Exerc. 2019, 51, 2098–2108. [Google Scholar] [CrossRef]
- Culbertson, J.Y.; Kreider, R.B.; Greenwood, M.; Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: A review of the current literature. Nutrients 2010, 2, 75–98. [Google Scholar] [CrossRef]
- Derave, W.; Everaert, I.; Beeckman, S.; Baguet, A. Muscle carnosine metabolism and β-alanine supplementation in relation to exercise and training. Sports Med. 2010, 40, 247–263. [Google Scholar] [CrossRef]
- Kresta, J.Y.; Oliver, J.M.; Jagim, A.R.; Fluckey, J.; Riechman, S.; Kelly, K.; Meininger, C.; Mertens-Talcott, S.U.; Rasmussen, C.; Kreider, R.B. Effects of 28 days of beta-alanine and creatine supplementation on muscle carnosine, body composition and exercise performance in recreationally active females. J. Int. Soc. Sports Nutr. 2014, 11, 55. [Google Scholar] [CrossRef]
- Hobson, R.M.; Saunders, B.; Ball, G.; Harris, R.; Sale, C. Effects of β-alanine supplementation on exercise performance: A meta-analysis. Amino Acids 2012, 43, 25–37. [Google Scholar] [CrossRef]
- Zoeller, R.; Stout, J.; O’kroy, J.; Torok, D.; Mielke, M. Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids 2007, 33, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.; Ratamess, N.; Kang, J.; Mangine, G.; Faigenbaum, A.; Stout, J. Effect of creatine and ß-alanine supplementation on performance and endocrine responses in strength/power athletes. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 430–446. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Samadi, M.; Askarian, A.; Shirvani, H.; Shamsoddini, A.; Shakibaee, A.; Forbes, S.C.; Kaviani, M. Effects of four weeks of beta-alanine supplementation combined with one week of creatine loading on physical and cognitive performance in military personnel. Int. J. Environ. Res. Public Health 2022, 19, 7992. [Google Scholar] [CrossRef]
- Stout, J.R.; Cramer, J.T.; Mielke, M.; O’Kroy, J.; Torok, D.J.; Zoeller, R.F. Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J. Strength Cond. Res. 2006, 20, 928–931. [Google Scholar] [PubMed]
- Okudan, N.; Belviranli, M.; Pepe, H.; Gökbel, H. The effects of beta alanine plus creatine administration on performance during repeated bouts of supramaximal exercise in sedentary men. J. Sports Med. Phys. Fit. 2015, 55, 1322–1328. [Google Scholar]
- Harris, R.C.; Hill, C.; Wise, J.A. Effect of combined beta-alanine and creatine monohydrate supplementation on exercise performance. Med. Sci. Sports Exerc. 2003, 35, S218. [Google Scholar] [CrossRef]
- Rawson, E.S.; Volek, J.S. Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J. Strength Cond. Res. 2003, 17, 822–831. [Google Scholar]
- Volek, J.S.; Kraemer, W.J.; Bush, J.A.; Boetes, M.; Incledon, T.; Clark, K.L.; Lynch, J.M. Creatine supplementation enhances muscular performance during high-intensity resistance exercise. J. Am. Diet. Assoc. 1997, 97, 765–770. [Google Scholar] [CrossRef]
- Becque, M.D.; Lochmann, J.D.; Melrose, D.R. Effects of oral creatine supplementation on muscular strength and body composition. Med. Sci. Sports Exerc. 2000, 32, 654–658. [Google Scholar] [CrossRef]
- Kendall, K.L.; Smith, A.E.; Graef, J.L.; Fukuda, D.H.; Moon, J.R.; Beck, T.W.; Cramer, J.T.; Stout, J.R. Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men. J. Strength Cond. Res. 2009, 23, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Greenhaff, P.; Bodin, K.; Soderlund, K.; Hultman, E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am. J. Physiol. -Endocrinol. Metab. 1994, 266, E725–E730. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.T.; Stout, J.R.; Culbertson, J.Y.; Egan, A.D. Effects of creatine supplementation and three days of resistance training on muscle strength, power output, and neuromuscular function. J. Strength Cond. Res. 2007, 21, 668–677. [Google Scholar] [PubMed]
- Black, M.I.; Jones, A.M.; Morgan, P.T.; Bailey, S.J.; Fulford, J.; Vanhatalo, A. The effects of β-alanine supplementation on muscle pH and the power-duration relationship during high-intensity exercise. Front. Physiol. 2018, 9, 111. [Google Scholar] [CrossRef]
- Sale, C.; Saunders, B.; Harris, R.C. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids 2010, 39, 321–333. [Google Scholar] [CrossRef]
- McMahon, S.; Jenkins, D. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med. 2002, 32, 761–784. [Google Scholar] [CrossRef]
- Jubrias, S.A.; Crowther, G.J.; Shankland, E.G.; Gronka, R.K.; Conley, K.E. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J. Physiol. 2003, 553, 589–599. [Google Scholar] [CrossRef]
- Li, M.; Sheykhlouvand, M. Effects of Combined Versus Single Supplementation of Creatine, Beta-Alanine, and L-Citrulline During Short Sprint Interval Training on Basketball Players’ Performance: A Double-Blind Randomized Placebo-Controlled Trial. Int. J. Sports Physiol. Perform. 2025, 20, 559–567. [Google Scholar] [CrossRef]
- Latella, C.; Teo, W.-P.; Spathis, J.; van den Hoek, D. Long-term strength adaptation: A 15-year analysis of powerlifting athletes. J. Strength Cond. Res. 2020, 34, 2412–2418. [Google Scholar] [CrossRef]
- Fernández-Landa, J.; Santibañez-Gutierrez, A.; Todorovic, N.; Stajer, V.; Ostojic, S.M. Effects of creatine monohydrate on endurance performance in a trained population: A systematic review and meta-analysis. Sports Med. 2023, 53, 1017–1027. [Google Scholar] [CrossRef]
- Gras, D.; Lanhers, C.; Bagheri, R.; Ugbolue, U.C.; Coudeyre, E.; Pereira, B.; Zak, M.; Bouillon-Minois, J.-B.; Dutheil, F. Creatine supplementation and VO2max: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 4855–4866. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Wilson, G.J.; Zourdos, M.C.; Smith, A.E.; Stout, J.R. Beta-alanine supplementation improves aerobic and anaerobic indices of performance. Strength Cond. J. 2010, 32, 71–78. [Google Scholar] [CrossRef]
- Pinto, C.L.; Botelho, P.B.; Carneiro, J.A.; Mota, J.F. Impact of creatine supplementation in combination with resistance training on lean mass in the elderly. J. Cachexia Sarcopenia Muscle 2016, 7, 413–421. [Google Scholar] [CrossRef]
- Sooneste, H.; Tanimoto, M.; Kakigi, R.; Saga, N.; Katamoto, S. Effects of training volume on strength and hypertrophy in young men. J. Strength Cond. Res. 2013, 27, 8–13. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, J.B.B.; Brigatto, F.; Zaroni, R.; Germano, M.; Souza, D.; Bacurau, R.; Marchetti, P.; Braz, T.; Aoki, M.; Lopes, C. Does beta-alanine supplementation enhance adaptations to resistance training? A randomized, placebo-controlled, double-blind study. Biol. Sport 2023, 40, 217–224. [Google Scholar] [CrossRef]
- Bassinello, D.; de Salles Painelli, V.; Dolan, E.; Lixandrão, M.; Cajueiro, M.; de Capitani, M.; Saunders, B.; Sale, C.; Artioli, G.G.; Gualano, B. Beta-alanine supplementation improves isometric, but not isotonic or isokinetic strength endurance in recreationally strength-trained young men. Amino Acids 2019, 51, 27–37. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Bagheri, R.; Ghanavati, M.; Asbaghi, O.; Wong, A.; Stout, J.R.; Suzuki, K. Effects of beta-alanine supplementation on body composition: A GRADE-assessed systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2022, 19, 196–218. [Google Scholar] [CrossRef]
- Mattos, D.; Santos, C.G.M.; Forbes, S.C.; Candow, D.G.; Rosa, D.; Busnardo, R.G.; Ribeiro, M.D.; Paulucio, D.; Chester, C.; Machado, M. Individual responses to creatine supplementation on muscular power is modulated by gene polymorphisms in military recruits. J. Sci. Sport Exerc. 2023, 5, 70–76. [Google Scholar] [CrossRef]
- Syrotuik, D.G.; Bell, G.J. Acute creatine monohydrate supplementation: A descriptive physiological profile of responders vs. nonresponders. J. Strength Cond. Res. 2004, 18, 610–617. [Google Scholar]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef]
Author (Year) | Country | Study Design | Participants | Intervention & Sample Size | Duration (Week) | Mean Age | Cr + βA Dosage & Administration | Training Type | Tests | Placebo | Impact of Cr + BA Compared to Cr or BA Alone |
---|---|---|---|---|---|---|---|---|---|---|---|
Harris et al. (2003) [17] | USA | P, R, PC, DB | 28 Healthy men | βA + Cr: 10 Plac + Cr: 9 Plac + Plac: 9 | 5 | 24–30 yrs | βA: 4 × 800 mg/d for 5 wks Cr: 4 × 5 g/d in 5th wk | None | Isometric endurance at 50% MVC, and PO4max test | ND | Body composition: ND Anaerobic performance: ↑ Aerobic performance: ND |
Hoffman et al. (2006) [12] | USA | P, R, PC, DB | 33 Male strength power athletes | βA + Cr: 11 Cr: 11 Plac: 11 | 10 | NR | Cr: 10.5 g/day; βA: 3.2 g/day | RT | BC (DEXA), 1 RM for squat and bench press, Wingate anaerobic power test and 20 jump power test | Dextrose (10.5 g/day) | Body composition: ↑ Anaerobic performance: ↑ Aerobic performance: ND |
Stout et al. (2006) [15] | USA | P, R, PC, DB | 51 Untrained healthy men | βA + Cr: 14 βA: 12 Cr: 12 Plac: 13 | 4 | 24.5 | Day 1–6: βA: 4 × 1.6 g/d Cr: 4 × 5.25 g/d Day 7–28: βA: 2 × 1.6 g/d Cr: 2 × 5.25 g/d | None | Cycle ergometry test, PWCFT | Dextrose (34 g/dose) | Body composition: ND Anaerobic performance: ND Aerobic performance: ↔ |
Zoeller et al. (2007) [11] | USA | P, R, PC, DB | 55 Untrained healthy men | βA + Cr: 16 βA: 14 Cr: 12 Plac: 13 | 4 | 24.5 | Day 1–6: βA: 4 × 1.6 g/d Cr: 4 × 5.25 g/d Day 7–28: βA: 2 × 1.6 g/d Cr: 2 × 5.25 g/d | None | Graded exercise test to determine VO2peak, VT and LT | Dextrose (34 g/dose) | Body composition: ND Anaerobic performance: ND Aerobic performance: ↔ |
Kresta et al. (2014) [9] | USA | P, R, PC, DB | 32 Recreationally active females | βA + Cr: 9 βA: 8 Cr: 8 Plac: 7 | 4 | 21.5 | βA: 0.1 g/kg/day Cr: 0.3 g/kg/day (1 week), then 0.1 g/kg/day | None | BC (DEXA), Wingate tests to determine PP, MP & FI, Graded exercise test to determine VO2peak, VT and LT | Maltodextrin (0.1 g/kg/day for 4 week) + dextrose (0.3 g/kg/day for 1 week) | Body composition: ↔ Anaerobic performance: ↔ Aerobic performance: ↔ |
Okudan et al. (2015) [16] | Turkey | P, R, PC | 44 Untrained healthy men | βA + Cr: 11 βA: 11 Cr: 11 Plac: 11 | 4 | 20–22 | Day 1–22: βA: 2 × 1.6 g/d Cr: 2 × 5 g/d Day 23–28: βA: 4 × 1.6 g/d Cr: 4 × 5 g/d | None | Wingate Test to determine PP, MP & FI, Graded exercise test to determine VO2peak, VT and LT | Maltodextrin (20 g/day for day 1–22 and 40 g/day for day 23–28) | Body composition: ND Anaerobic performance: ↑ Aerobic performance: ND |
Samadi et al. (2022) [14] | Iran | P, R, PC | 20 Active male military personnel | βA + Cr: 10 βA: 10 | 4 | 21.5 | βA: 6.4 g/day for 28 days; Cr: 0.3 g/kg/day for 7-day loading phase | Military training | RAST, 1RM for bench press and leg press, Vertical Jump Test, and SCET | Equal grams of rice flour | Body composition: ND Anaerobic performance: ↑ Aerobic performance: ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashtary-Larky, D.; Candow, D.G.; Forbes, S.C.; Hajizadeh, L.; Antonio, J.; Suzuki, K. Effects of Creatine and β-Alanine Co-Supplementation on Exercise Performance and Body Composition: A Systematic Review. Nutrients 2025, 17, 2074. https://doi.org/10.3390/nu17132074
Ashtary-Larky D, Candow DG, Forbes SC, Hajizadeh L, Antonio J, Suzuki K. Effects of Creatine and β-Alanine Co-Supplementation on Exercise Performance and Body Composition: A Systematic Review. Nutrients. 2025; 17(13):2074. https://doi.org/10.3390/nu17132074
Chicago/Turabian StyleAshtary-Larky, Damoon, Darren G. Candow, Scott C. Forbes, Leila Hajizadeh, Jose Antonio, and Katsuhiko Suzuki. 2025. "Effects of Creatine and β-Alanine Co-Supplementation on Exercise Performance and Body Composition: A Systematic Review" Nutrients 17, no. 13: 2074. https://doi.org/10.3390/nu17132074
APA StyleAshtary-Larky, D., Candow, D. G., Forbes, S. C., Hajizadeh, L., Antonio, J., & Suzuki, K. (2025). Effects of Creatine and β-Alanine Co-Supplementation on Exercise Performance and Body Composition: A Systematic Review. Nutrients, 17(13), 2074. https://doi.org/10.3390/nu17132074