Quasipaa spinosa-Derived Parvalbumin Attenuates Exercise-Induced Fatigue via Calcium Homeostasis and Oxidative Stress Modulation in Exhaustively Trained Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Quasipaa spinosa Crude Extract and Placebo
2.2. Protein Composition Analysis
2.3. Purification and Characterization of QsPV
2.4. Animal Experimental Design
2.5. Experimental Protocol for Isometric Muscle Force Measurement
2.5.1. System Preparation
2.5.2. Muscle Mounting & Stabilization
2.5.3. Parameter Optimization
2.5.4. Optimal Resting Length Determination
2.5.5. Contractile Property Assessment
2.5.6. Tetanic Contraction Analysis
2.5.7. Data Documentation
2.5.8. Relative Muscle Force Calculation
2.6. Sample Collection and Processing
2.7. Skeletal Muscle Calcium Content Determination
2.8. Enzyme Linked Immunosorbent Assay (ELISA)
2.9. Histopathological Examination and Histological Scoring
2.10. Statistical Analysis
3. Results
3.1. QS Crude Extract Enhances Exercise Performance in Mice
3.2. Proteomic Profiling Identifies Parvalbumin as the Dominant Protein in QSce
3.3. QS-Derived Parvalbumin Alleviated Intense Exercise-Induced Fatigue and Oxidative Stress Response
3.4. QsPV Supplementation Reduces Renal Impairment in Mice
3.5. QsPV Restores Calcium Homeostasis in Skeletal Muscle
3.6. QsPV Suppresses Muscle Atrophy-Related Gene Expression
3.7. QsPV Improves Tetanic Muscle Contractile Function
3.8. QsPV Enhances Contractile Kinetics of Fatigued Muscle
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
BUN | blood urea nitrogen |
CK | creatine kinase |
cTn I | cardiac troponin I |
ELISA | enzyme-linked immunosorbent assay |
GSH-PX | glutathione peroxidase |
LDH | blood lactate |
MDA | malondialdehyde |
QS | Quasipaa spinosa |
QSce | QS-derived crude extract |
QsPV | QS-derived parvalbumin |
WT | wild-type |
SOD | superoxide dismutase |
References
- Behrens, M.; Gube, M.; Chaabene, H.; Prieske, O.; Zenon, A.; Broscheid, K.C.; Schega, L.; Husmann, F.; Weippert, M. Fatigue and Human Performance: An Updated Framework. Sports Med. 2023, 53, 7–31. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Tanaka, M.; Nozaki, S.; Mizuma, H.; Ataka, S.; Tahara, T.; Sugino, T.; Shirai, T.; Kajimoto, Y.; Kuratsune, H.; et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition 2008, 24, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Versey, N.G.; Halson, S.L.; Dawson, B.T. Water immersion recovery for athletes: Effect on exercise performance and practical recommendations. Sports Med. 2013, 43, 1101–1130. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, Z.; Shi, Z.; Qiu, Y. An investigation into how the timing of nutritional supplements affects the recovery from post-exercise fatigue: A systematic review and meta-analysis. Front. Nutr. 2025, 12, 1567438. [Google Scholar] [CrossRef]
- Bestwick-Stevenson, T.; Toone, R.; Neupert, E.; Edwards, K.; Kluzek, S. Assessment of Fatigue and Recovery in Sport: Narrative Review. Int. J. Sports Med. 2022, 43, 1151–1162. [Google Scholar] [CrossRef]
- Ma, X.; Chen, H.; Cao, L.; Zhao, S.; Zhao, C.; Yin, S.; Hu, H. Mechanisms of Physical Fatigue and its Applications in Nutritional Interventions. J. Agric. Food Chem. 2021, 69, 6755–6768. [Google Scholar] [CrossRef]
- Chen, Y.J.; Baskaran, R.; Shibu, M.A.; Lin, W.T. Anti-Fatigue and Exercise Performance Improvement Effect of Glossogyne tenuifolia Extract in Mice. Nutrients 2022, 14, 1011. [Google Scholar] [CrossRef]
- Ostojic, S.M. Exercise-induced mitochondrial dysfunction: A myth or reality? Clin. Sci. 2016, 130, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ning, B.; Wang, T. The mechanism and prevention of mitochondrial injury after exercise. J. Physiol. Biochem. 2021, 77, 215–225. [Google Scholar] [CrossRef]
- Montes, J.; Goodwin, A.M.; McDermott, M.P.; Uher, D.; Hernandez, F.M.; Coutts, K.; Cocchi, J.; Hauschildt, M.; Cornett, K.M.; Rao, A.K.; et al. Diminished muscle oxygen uptake and fatigue in spinal muscular atrophy. Ann. Clin. Transl. Neurol. 2021, 8, 1086–1095. [Google Scholar] [CrossRef]
- da Silva, W.; Machado, A.S.; Souza, M.A.; Mello-Carpes, P.B.; Carpes, F.P. Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage. Physiol. Behav. 2018, 194, 77–82. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Liu, T.; Ke, C.; Huang, J.; Fu, Y.; Lin, Z.; Chen, F.; Wu, X.; Chen, Q. Pyrroloquinoline quinone protects against exercise-induced fatigue and oxidative damage via improving mitochondrial function in mice. FASEB J. 2021, 35, e21394. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, X.; Zhang, B.; Yang, W.; Li, D.; Dong, Y.; Yin, Y.; Chen, Q. Protective effects of tea polyphenols on exhaustive exercise-induced fatigue, inflammation and tissue damage. Food. Nutr. Res. 2017, 61, 1333390. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Jagim, A.R.; Potter, G.D.M.; Garner, D.; Galpin, A.J. Rhodiola rosea as an adaptogen to enhance exercise performance: A review of the literature. Br. J. Nutr. 2024, 131, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Tsao, J.P.; Bernard, J.R.; Tu, T.H.; Hsu, H.C.; Chang, C.C.; Liao, S.F.; Cheng, I.S. Garlic supplementation attenuates cycling exercise-induced oxidative inflammation but fails to improve time trial performance in healthy adults. J. Int. Soc. Sports Nutr. 2023, 20, 2206809. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Hu, W.; Wei, Z.; Wei, X.; Yuan, H.; Yao, H.; Dunxue, C. Transcriptome characterization and SSR discovery in the giant spiny frog Quasipaa spinosa. Gene 2022, 842, 146793. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jiang, Z.; Ming, Y.; Jian, J.; Jiang, S.; Zhang, D.; Zhang, J.; Zheng, S.; Fang, X.; Yang, Y.; et al. A chromosomal level genome sequence for Quasipaa spinosa (Dicroglossidae) reveals chromosomal evolution and population diversity. Mol. Ecol. Resour. 2022, 22, 1545–1558. [Google Scholar] [CrossRef]
- Cui, J.; Xia, P.; Zhang, L.; Hu, Y.; Xie, Q.; Xiang, H. A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity. Food Chem. 2020, 333, 127527. [Google Scholar] [CrossRef]
- Deng, N.; Wang, X.; Su, D.; Lin, L.; Li, Y.; Su, J.; Zhang, L.; Wu, D.; Li, J. Analysis and evaluation of seasonal variations in muscle nutrient composition of the spiny-breasted frog (Rana pipiens). Sci. Technol. Food Ind. 2023, 39, 201–209. [Google Scholar] [CrossRef]
- Cui, J.; Shi, C.; Xia, P.; Ning, K.; Xiang, H.; Xie, Q. Fermented Deer Blood Ameliorates Intense Exercise-Induced Fatigue via Modulating Small Intestine Microbiota and Metabolites in Mice. Nutrients 2021, 13, 1543. [Google Scholar] [CrossRef]
- Cheng, A.J.; Jude, B.; Lanner, J.T. Intramuscular mechanisms of overtraining. Redox. Biol. 2020, 35, 101480. [Google Scholar] [CrossRef]
- Mahdy, M.A.A. Skeletal muscle fibrosis: An overview. Cell. Tissue Res. 2019, 375, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Paller, M.S.; Hoidal, J.R.; Ferris, T.F. Oxygen free radicals in ischemic acute renal failure in the rat. J. Clin. Investig. 1984, 74, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Clements, R.J.; McDonough, J.; Freeman, E.J. Distribution of parvalbumin and calretinin immunoreactive interneurons in motor cortex from multiple sclerosis post-mortem tissue. Exp. Brain Res. 2008, 187, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Muntener, M.; Kaser, L.; Weber, J.; Berchtold, M.W. Increase of skeletal muscle relaxation speed by direct injection of parvalbumin cDNA. Proc. Natl. Acad. Sci. USA 1995, 92, 6504–6508. [Google Scholar] [CrossRef]
- Gerencser, A.A.; Mark, K.A.; Hubbard, A.E.; Divakaruni, A.S.; Mehrabian, Z.; Nicholls, D.G.; Polster, B.M. Real-time visualization of cytoplasmic calpain activation and calcium deregulation in acute glutamate excitotoxicity. J. Neurochem. 2009, 110, 990–1004. [Google Scholar] [CrossRef]
- Gissel, H. The role of Ca2+ in muscle cell damage. Ann. N. Y. Acad. Sci. 2005, 1066, 166–180. [Google Scholar] [CrossRef]
- Zhou, J.; Dhakal, K.; Yi, J. Mitochondrial Ca(2+) uptake in skeletal muscle health and disease. Sci. China Life Sci. 2016, 59, 770–776. [Google Scholar] [CrossRef]
- Dridi, H.; Santulli, G.; Bahlouli, L.; Miotto, M.C.; Weninger, G.; Marks, A.R. Mitochondrial Calcium Overload Plays a Causal Role in Oxidative Stress in the Failing Heart. Biomolecules 2023, 13, 1409. [Google Scholar] [CrossRef]
- Peng, T.I.; Jou, M.J. Oxidative stress caused by mitochondrial calcium overload. Ann. N. Y. Acad. Sci. 2010, 1201, 183–188. [Google Scholar] [CrossRef]
- Huang, J.; Forsberg, N.E. Role of calpain in skeletal-muscle protein degradation. Proc. Natl. Acad. Sci. USA 1998, 95, 12100–12105. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.H.; Ow, J.R.; Yang, N.D.; Taneja, R. Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies. Oxid. Med. Cell Longev. 2016, 2016, 6842568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qi, G.; Wang, K.; Yang, J.; Shen, Y.; Yang, X.; Chen, X.; Yao, X.; Gu, X.; Qi, L.; et al. Oxidative stress: Roles in skeletal muscle atrophy. Biochem. Pharmacol. 2023, 214, 115664. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.Q.; Zhou, N.; Pei, C.X.; Lu, X.; Chen, C.P.; Chen, H.Q. Tetrandrine induces muscle atrophy involving ROS-mediated inhibition of Akt and FoxO3. Mol. Med. 2024, 30, 218. [Google Scholar] [CrossRef]
- Bers, D.M. Cardiac sarcoplasmic reticulum calcium leak: Basis and roles in cardiac dysfunction. Annu. Rev. Physiol. 2014, 76, 107–127. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Song, K.; Tu, B.; Lin, L.C.; Sun, H.; Zhou, Y.; Li, R.; Shi, Y.; Yang, J.J.; Zhang, Y.; et al. Crosstalk between oxidative stress and epigenetic marks: New roles and therapeutic implications in cardiac fibrosis. Redox. Biol. 2023, 65, 102820. [Google Scholar] [CrossRef]
- Kong, P.; Christia, P.; Frangogiannis, N.G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 2014, 71, 549–574. [Google Scholar] [CrossRef]
Protein Name | Contents (%) |
---|---|
parvalbumin | 23.075062372 |
creatine kinase M-type | 6.769943806 |
collagen alpha-1(I) chain | 5.526668642 |
beta-enolase isoform X1 | 5.450013635 |
myosin regulatory light chain 2, skeletal muscle isoform-like, partial | 4.867337207 |
fructose-bisphosphate aldolase A | 3.576699575 |
adenylate kinase isoenzyme 1 isoform X2 | 3.149677331 |
triosephosphate isomerase | 3.084792939 |
collagen alpha-2(I) chain | 2.592852484 |
alpha-enolase | 2.324886664 |
Group | SOL | GAS |
---|---|---|
NC | 0.083 ± 0.026 | 0.071 ± 0.005 |
E | 0.162 ± 0.016 ** | 0.224 ± 0.03 ** |
QsPV30 | 0.113 ± 0.022 # | 0.142 ± 0.04 # |
QsPV150 | 0.092 ± 0.006 ## | 0.091 ± 0.014 ## |
Group | Absolute Muscle Force | Relative Muscle Force | ||
---|---|---|---|---|
SOL | GAS | SOL | GAS | |
NC | 241.36 ± 3.68 | 358.47 ± 4.35 | 386.30 ± 2.32 | 458.94 ± 7.46 |
E | 146.05 ± 3.57 ** | 253.99 ± 1.73 ** | 197.32 ± 9.46 ** | 317.60 ± 9.36 ** |
E + QsPV (0.6 mg/mL) 1 | 221.39 ± 7.45 | 301.94 ± 2.31 * | 317.25 ± 4.28 * | 377.16 ± 10.42 * |
Group | SOL | GAS |
---|---|---|
NC | 4099.08 ± 160.91 | 13,628.93 ± 339.04 |
E | 2993.56 ± 179.57 ** | 9981.77 ± 361.39 ** |
E + QsPV (0.6 mg/mL) | 3505.14 ± 164.64 * | 11,444.49 ± 206.16 * |
Group | SOL | GAS |
---|---|---|
NC | 4319.48 ± 260.91 | 17,078.93 ± 632.90 |
E | 2447.76 ± 179.92 ** | 10,481.07 ± 961.92 ** |
E + QsPV (0.6 mg/mL) | 3905.14 ± 164.64 * | 15,034.49 ± 716.62 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, K.; Lu, C.; Zhang, Y.; Chen, Q. Quasipaa spinosa-Derived Parvalbumin Attenuates Exercise-Induced Fatigue via Calcium Homeostasis and Oxidative Stress Modulation in Exhaustively Trained Mice. Nutrients 2025, 17, 2043. https://doi.org/10.3390/nu17122043
Sang K, Lu C, Zhang Y, Chen Q. Quasipaa spinosa-Derived Parvalbumin Attenuates Exercise-Induced Fatigue via Calcium Homeostasis and Oxidative Stress Modulation in Exhaustively Trained Mice. Nutrients. 2025; 17(12):2043. https://doi.org/10.3390/nu17122043
Chicago/Turabian StyleSang, Kai, Congfei Lu, Yangfan Zhang, and Qi Chen. 2025. "Quasipaa spinosa-Derived Parvalbumin Attenuates Exercise-Induced Fatigue via Calcium Homeostasis and Oxidative Stress Modulation in Exhaustively Trained Mice" Nutrients 17, no. 12: 2043. https://doi.org/10.3390/nu17122043
APA StyleSang, K., Lu, C., Zhang, Y., & Chen, Q. (2025). Quasipaa spinosa-Derived Parvalbumin Attenuates Exercise-Induced Fatigue via Calcium Homeostasis and Oxidative Stress Modulation in Exhaustively Trained Mice. Nutrients, 17(12), 2043. https://doi.org/10.3390/nu17122043