Comparison of Preconception Diet Scores Across Studies: The PrePARED Consortium
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Harmonization Process
2.3. Diet Recommendations
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, M.M.; Abe, S.K.; Kanda, M.; Narita, S.; Rahman, M.S.; Bilano, V.; Ota, E.; Gilmour, S.; Shibuya, K. Maternal body mass index and risk of birth and maternal health outcomes in low- and middle-income countries: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 758–770. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Voerman, E.; Amiano, P.; Barros, H.; Beilin, L.J.; Bergström, A.; Charles, M.A.; Chatzi, L.; Chevrier, C.; Chrousos, G.P.; et al. Impact of maternal body mass index and gestational weight gain on pregnancy complications: An individual participant data meta-analysis of European, North American and Australian cohorts. BJOG 2019, 126, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, U.; Nguyen, P.H.; Gonzalez-Casanova, I.; Pham, H.; Hao, W.; Nguyen, H.; Truong, T.V.; Nguyen, S.; Harding, K.B.; Reinhart, G.A.; et al. Neither Preconceptional Weekly Multiple Micronutrient nor Iron-Folic Acid Supplements Affect Birth Size and Gestational Age Compared with a Folic Acid Supplement Alone in Rural Vietnamese Women: A Randomized Controlled Trial. J. Nutr. 2016, 146, 1445s–1452s. [Google Scholar] [CrossRef]
- Gunabalasingam, S.; De Almeida Lima Slizys, D.; Quotah, O.; Magee, L.; White, S.L.; Rigutto-Farebrother, J.; Poston, L.; Dalrymple, K.V.; Flynn, A.C. Micronutrient supplementation interventions in preconception and pregnant women at increased risk of developing pre-eclampsia: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2023, 77, 710–730. [Google Scholar] [CrossRef]
- Lim, S.X.; Cox, V.; Rodrigues, N.; Colega, M.T.; Barton, S.J.; Childs, C.E.; Conlon, C.A.; Wall, C.R.; Cutfield, W.S.; Chan, S.Y.; et al. Evaluation of Preconception Dietary Patterns in Women Enrolled in a Multisite Study. Curr. Dev. Nutr. 2022, 6, nzac106. [Google Scholar] [CrossRef]
- Okubo, H.; Nakayama, S.F.; Mito, A.; Arata, N.; Ohya, Y. Adherence to Healthy Prepregnancy Lifestyle and Risk of Adverse Pregnancy Outcomes: A Prospective Cohort Study. BJOG 2024, 132, 375–386. [Google Scholar] [CrossRef]
- Aubert, A.M.; Forhan, A.; de Lauzon-Guillain, B.; Chen, L.W.; Polanska, K.; Hanke, W.; Jankowska, A.; Mensink-Bout, S.M.; Duijts, L.; Suderman, M.; et al. Deriving the Dietary Approaches to Stop Hypertension (DASH) Score in Women from Seven Pregnancy Cohorts from the European ALPHABET Consortium. Nutrients 2019, 11, 2706. [Google Scholar] [CrossRef]
- Chen, L.W.; Aubert, A.M.; Shivappa, N.; Bernard, J.Y.; Mensink-Bout, S.M.; Geraghty, A.A.; Mehegan, J.; Suderman, M.; Polanska, K.; Hanke, W.; et al. Maternal dietary quality, inflammatory potential and childhood adiposity: An individual participant data pooled analysis of seven European cohorts in the ALPHABET consortium. BMC Med. 2021, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.J.; Zulyniak, M.A.; Desai, D.; Shaikh, M.R.; Campbell, N.C.; Lefebvre, D.L.; Gupta, M.; Wilson, J.; Wahi, G.; Atkinson, S.A.; et al. Harmonization of Food-Frequency Questionnaires and Dietary Pattern Analysis in 4 Ethnically Diverse Birth Cohorts. J. Nutr. 2016, 146, 2343–2350. [Google Scholar] [CrossRef]
- Zulyniak, M.A.; de Souza, R.J.; Shaikh, M.; Desai, D.; Lefebvre, D.L.; Gupta, M.; Wilson, J.; Wahi, G.; Subbarao, P.; Becker, A.B.; et al. Does the impact of a plant-based diet during pregnancy on birth weight differ by ethnicity? A dietary pattern analysis from a prospective Canadian birth cohort alliance. BMJ Open 2017, 7, e017753. [Google Scholar] [CrossRef]
- Stern, J.; Salih Joelsson, L.; Tyden, T.; Berglund, A.; Ekstrand, M.; Hegaard, H.; Aarts, C.; Rosenblad, A.; Larsson, M.; Kristiansson, P. Is pregnancy planning associated with background characteristics and pregnancy-planning behavior? Acta Obstet. Gynecol. Scand. 2016, 95, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Robbins, C.L.; Zapata, L.B.; D’Angelo, D.; Brewer, L.I.; Pazol, K. Pregnancy Intention: Associations with Maternal Behaviors and Experiences During and After Pregnancy. J. Womens Health (Larchmt) 2021, 30, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Killeen, S.L.; Donnellan, N.; O’Reilly, S.L.; Hanson, M.A.; Rosser, M.L.; Medina, V.P.; Jacob, C.M.; Divakar, H.; Hod, M.; Poon, L.C.; et al. Using FIGO Nutrition Checklist counselling in pregnancy: A review to support healthcare professionals. Int. J. Gynaecol. Obstet. 2023, 160 (Suppl. S1), 10–21. [Google Scholar] [CrossRef]
- Harville, E.W.; Mishra, G.D.; Yeung, E.; Mumford, S.L.; Schisterman, E.F.; Jukic, A.M.; Hatch, E.E.; Mikkelsen, E.M.; Jiang, H.; Ehrenthal, D.B.; et al. The Preconception Period analysis of Risks and Exposures Influencing health and Development (PrePARED) consortium. Paediatr. Perinat. Epidemiol. 2019, 33, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Bazzano, L.A.; Betha, K.; Charlton, B.M.; Chavarro, J.E.; Cordero, C.; Gunderson, E.P.; Haggerty, C.L.; Hart, J.E.; Jukic, A.M.; et al. Large-scale data harmonization across prospective studies: The Preconception Period Analysis of Risks and Exposures Influencing health and Development (PrePARED) consortium. Am. J. Epidemiol. 2023, 192, 2033–2049. [Google Scholar] [CrossRef]
- Dobson, A.J.; Hockey, R.; Brown, W.J.; Byles, J.E.; Loxton, D.J.; McLaughlin, D.; Tooth, L.R.; Mishra, G.D. Cohort Profile Update: Australian Longitudinal Study on Women’s Health. Int. J. Epidemiol. 2015, 44, 1547,1547a–1547f. [Google Scholar] [CrossRef]
- Collins, C.E.; Young, A.F.; Hodge, A. Diet quality is associated with higher nutrient intake and self-rated health in mid-aged women. J. Am. Coll. Nutr. 2008, 27, 146–157. [Google Scholar] [CrossRef]
- Berenson, G.S. Bogalusa Heart Study: A long-term community study of a rural biracial (Black/White) population. Am. J. Med. Sci. 2001, 322, 293–300. [Google Scholar] [CrossRef]
- Rockett, H.R.; Breitenbach, M.; Frazier, A.L.; Witschi, J.; Wolf, A.M.; Field, A.E.; Colditz, G.A. Validation of a youth/adolescent food frequency questionnaire. Prev. Med. 1997, 26, 808–816. [Google Scholar] [CrossRef]
- Rockett, H.R.; Wolf, A.M.; Colditz, G.A. Development and reproducibility of a food frequency questionnaire to assess diets of older children and adolescents. J. Am. Diet. Assoc. 1995, 95, 336–340. [Google Scholar] [CrossRef]
- Potts, K.S.; Wallace, M.E.; Gustat, J.; Ley, S.H.; Qi, L.; Bazzano, L.A. Diet Quality and Sleep Characteristics in Midlife: The Bogalusa Heart Study. Nutrients 2023, 15, 2078. [Google Scholar] [CrossRef] [PubMed]
- Friedman, G.D.; Cutter, G.R.; Donahue, R.P.; Hughes, G.H.; Hulley, S.B.; Jacobs, D.R.; Jr Liu, K.; Savage, P.J. CARDIA: Study design, recruitment, and some characteristics of the examined subjects. J. Clin. Epidemiol. 1988, 41, 1105–1116. [Google Scholar] [CrossRef]
- McDonald, A.; Van Horn, L.; Slattery, M.; Hilner, J.; Bragg, C.; Caan, B.; Jacobs, D.; Jr Liu, K.; Hubert, H.; Gernhofer, N.; et al. The CARDIA dietary history: Development, implementation, and evaluation. J. Am. Diet. Assoc. 1991, 91, 1104–1112. [Google Scholar] [CrossRef]
- Weisman, C.S.; Hillemeier, M.M.; Chase, G.A.; Dyer, A.M.; Baker, S.A.; Feinberg, M.; Symons Downs, D.; Parrott, R.L.; Cecil, H.K.; Botti, J.J.; et al. Preconceptional health: Risks of adverse pregnancy outcomes by reproductive life stage in the Central Pennsylvania Women’s Health Study (CePAWHS). Womens Health Issues 2006, 16, 216–224. [Google Scholar] [CrossRef]
- Bernstein, L.; Allen, M.; Anton-Culver, H.; Deapen, D.; Horn-Ross, P.L.; Peel, D.; Pinder, R.; Reynolds, P.; Sullivan-Halley, J.; West, D.; et al. High breast cancer incidence rates among California teachers: Results from the California Teachers Study (United States). Cancer Causes Control 2002, 13, 625–635. [Google Scholar] [CrossRef]
- Horn-Ross, P.L.; Lee, V.S.; Collins, C.N.; Stewart, S.L.; Canchola, A.J.; Lee, M.M.; Reynolds, P.; Clarke, C.A.; Bernstein, L.; Stram, D.O. Dietary assessment in the California Teachers Study: Reproducibility and validity. Cancer Causes Control 2008, 19, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Sorlie, P.D.; Aviles-Santa, L.M.; Wassertheil-Smoller, S.; Kaplan, R.C.; Daviglus, M.L.; Giachello, A.L.; Schneiderman, N.; Raij, L.; Talavera, G.; Allison, M.; et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann. Epidemiol. 2010, 20, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Lavange, L.M.; Kalsbeek, W.D.; Sorlie, P.D.; Aviles-Santa, L.M.; Kaplan, R.C.; Barnhart, J.; Liu, K.; Giachello, A.; Lee, D.J.; Ryan, J.; et al. Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. Ann. Epidemiol. 2010, 20, 642–649. [Google Scholar] [CrossRef]
- Siega-Riz, A.M.; Sotres-Alvarez, D.; Ayala, G.X.; Ginsberg, M.; Himes, J.H.; Liu, K.; Loria, C.M.; Mossavar-Rahmani, Y.; Rock, C.L.; Rodriguez, B.; et al. Food-group and nutrient-density intakes by Hispanic and Latino backgrounds in the Hispanic Community Health Study/Study of Latinos. Am. J. Clin. Nutr. 2014, 99, 1487–1498. [Google Scholar] [CrossRef]
- Wise, L.A.; Rothman, K.J.; Mikkelsen, E.M.; Stanford, J.B.; Wesselink, A.K.; McKinnon, C.; Gruschow, S.M.; Horgan, C.E.; Wiley, A.S.; Hahn, K.A.; et al. Design and Conduct of an Internet-Based Preconception Cohort Study in North America: Pregnancy Study Online. Paediatr. Perinat. Epidemiol. 2015, 29, 360–371. [Google Scholar] [CrossRef]
- What is MyPlate? Available online: https://www.myplate.gov/eat-healthy/what-is-myplate (accessed on 10 June 2025).
- Hanson, M.A.; Bardsley, A.; De-Regil, L.M.; Moore, S.E.; Oken, E.; Poston, L.; Ma, R.C.; McAuliffe, F.M.; Maleta, K.; Purandare, C.N.; et al. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: “Think Nutrition First”. Int. J. Gynaecol. Obstet. 2015, 131 (Suppl. S4), S213–S253. [Google Scholar] [CrossRef] [PubMed]
- Killeen, S.L.; Callaghan, S.L.; Jacob, C.M.; Hanson, M.A.; McAuliffe, F.M. Examining the use of the FIGO Nutrition Checklist in routine antenatal practice: Multistakeholder feedback to implementation. Int. J. Gynaecol. Obstet. 2020, 151 (Suppl. S1), 51–56. [Google Scholar] [CrossRef]
- Tsoi, K.Y.; Chan, R.S.M.; Li, L.S.; McAuliffe, F.M.; Hanson, M.A.; Tam, W.H.; Ma, R.C.W. Evaluation of dietary pattern in early pregnancy using the FIGO Nutrition Checklist compared to a food frequency questionnaire. Int. J. Gynaecol. Obstet. 2020, 151 (Suppl. S1), 37–44. [Google Scholar] [CrossRef]
- McDougall, B.; Kavanagh, K.; Stephenson, J.; Poston, L.; Flynn, A.C.; White, S.L. Health behaviours in 131,182 UK women planning pregnancy. BMC Pregnancy Childbirth 2021, 21, 530. [Google Scholar] [CrossRef]
- Righton, O.; Flynn, A.; Alwan, N.A.; Schoenaker, D. Preconception health in adolescence and adulthood across generations in the UK: Findings from three British birth cohort studies. PLoS ONE 2024, 19, e0299061. [Google Scholar] [CrossRef] [PubMed]
- Gresham, E.; Collins, C.E.; Mishra, G.D.; Byles, J.E.; Hure, A.J. Diet quality before or during pregnancy and the relationship with pregnancy and birth outcomes: The Australian Longitudinal Study on Women’s Health. Public. Health Nutr. 2016, 19, 2975–2983. [Google Scholar] [CrossRef] [PubMed]
- Hure, A.; Young, A.; Smith, R.; Collins, C. Diet and pregnancy status in Australian women. Public. Health Nutr. 2009, 12, 853–861. [Google Scholar] [CrossRef]
- Kominiarek, M.A.; Cordero, C.; Stuebe, A.M.; Simon, M.; Evenson, K.R.; Perreira, K.M.; Gallo, L.C.; Castañeda, S.F.; Potter, J.E.; Wu, D.; et al. Pre-pregnancy Health Behaviors and Gestational Weight Gain Among Hispanic/Latino Women: Hispanic Community Health Study/Study of Latinos. Matern. Child. Health J. 2021, 25, 2002–2013. [Google Scholar] [CrossRef]
- Hahn, K.A.; Wesselink, A.K.; Wise, L.A.; Mikkelsen, E.M.; Cueto, H.T.; Tucker, K.L.; Vinceti, M.; Rothman, K.J.; Sorensen, H.T.; Hatch, E.E. Iron Consumption Is Not Consistently Associated with Fecundability among North American and Danish Pregnancy Planners. J. Nutr. 2019, 149, 1585–1595. [Google Scholar] [CrossRef]
- Wise, L.A.; Wesselink, A.K.; Mikkelsen, E.M.; Cueto, H.; Hahn, K.A.; Rothman, K.J.; Tucker, K.L.; Sorensen, H.T.; Hatch, E.E. Dairy intake and fecundability in 2 preconception cohort studies. Am. J. Clin. Nutr. 2017, 105, 100–110. [Google Scholar] [CrossRef]
- Willis, S.K.; Wise, L.A.; Wesselink, A.K.; Rothman, K.J.; Mikkelsen, E.M.; Tucker, K.L.; Trolle, E.; Hatch, E.E. Glycemic load, dietary fiber, and added sugar and fecundability in 2 preconception cohorts. Am. J. Clin. Nutr. 2020, 112, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Willis, S.K.; Hatch, E.E.; Laursen, A.S.; Wesselink, A.K.; Mikkelsen, E.M.; Tucker, K.L.; Rothman, K.J.; Mumford, S.L.; Wise, L.A. Dietary patterns and fecundability in 2 prospective preconception cohorts. Am. J. Clin. Nutr. 2022, 116, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Cueto, H.T.; Jacobsen, B.H.; Laursen, A.S.D.; Riis, A.H.; Hatch, E.E.; Wise, L.A.; Trolle, E.; Sørensen, H.T.; Rothman, K.J.; Wesselink, A.K.; et al. Dietary folate intake and fecundability in two preconception cohorts. Hum. Reprod. 2022, 37, 828–837. [Google Scholar] [CrossRef]
- Wise, L.A.; Wesselink, A.K.; Tucker, K.L.; Saklani, S.; Mikkelsen, E.M.; Cueto, H.; Riis, A.H.; Trolle, E.; McKinnon, C.J.; Hahn, K.A.; et al. Dietary Fat Intake and Fecundability in 2 Preconception Cohort Studies. Am. J. Epidemiol. 2018, 187, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Weisman, C.S.; Misra, D.P.; Hillemeier, M.M.; Downs, D.S.; Chuang, C.H.; Camacho, F.T.; Dyer, A.M. Preconception predictors of birth outcomes: Prospective findings from the central Pennsylvania women’s health study. Matern. Child. Health J. 2011, 15, 829–835. [Google Scholar] [CrossRef]
- Bennett, W.L.; Liu, S.H.; Yeh, H.C.; Nicholson, W.K.; Gunderson, E.P.; Lewis, C.E.; Clark, J.M. Changes in weight and health behaviors after pregnancies complicated by gestational diabetes mellitus: The CARDIA study. Obesity 2013, 21, 1269–1275. [Google Scholar] [CrossRef]
- Gadgil, M.D.; Ingram, K.H.; Appiah, D.; Rudd, J.; Whitaker, K.M.; Bennett, W.L.; Shikany, J.M.; Jacobs, D.R.; Jr Lewis, C.E.; Gunderson, E.P. Prepregnancy Protein Source and BCAA Intake Are Associated with Gestational Diabetes Mellitus in the CARDIA Study. Int. J. Environ. Res. Public Health 2022, 19, 14142. [Google Scholar] [CrossRef]
- Demory-Luce, D.; Morales, M.; Nicklas, T.; Baranowski, T.; Zakeri, I.; Berenson, G. Changes in food group consumption patterns from childhood to young adulthood: The Bogalusa Heart Study. J. Am. Diet. Assoc. 2004, 104, 1684–1691. [Google Scholar] [CrossRef]
- Deshmukh-Taskar, P.; Nicklas, T.A.; Yang, S.J.; Berenson, G.S. Does food group consumption vary by differences in socioeconomic, demographic, and lifestyle factors in young adults? The Bogalusa Heart Study. J. Am. Diet. Assoc. 2007, 107, 223–234. [Google Scholar] [CrossRef]
- Deshmukh-Taskar, P.R.; O’Neil, C.E.; Nicklas, T.A.; Yang, S.J.; Liu, Y.; Gustat, J.; Berenson, G.S. Dietary patterns associated with metabolic syndrome, sociodemographic and lifestyle factors in young adults: The Bogalusa Heart Study. Public. Health Nutr. 2009, 12, 2493–2503. [Google Scholar] [CrossRef]
- Canchola, A.J.; Lacey, J.V.; Jr Bernstein, L.; Horn-Ross, P.L. Dietary patterns and endometrial cancer risk in the California Teachers Study cohort. Cancer Causes Control 2015, 26, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.T.; Lee, V.S.; Canchola, A.J.; Dalvi, T.B.; Clarke, C.A.; Reynolds, P.; Purdie, D.M.; Stram, D.O.; West, D.W.; Ziogas, A.; et al. Dietary patterns and risk of ovarian cancer in the California Teachers Study cohort. Nutr. Cancer 2008, 60, 285–291. [Google Scholar] [CrossRef]
- Link, L.B.; Canchola, A.J.; Bernstein, L.; Clarke, C.A.; Stram, D.O.; Ursin, G.; Horn-Ross, P.L. Dietary patterns and breast cancer risk in the California Teachers Study cohort. Am. J. Clin. Nutr. 2013, 98, 1524–1532. [Google Scholar] [CrossRef]
- Grieger, J.A.; Grzeskowiak, L.E.; Bianco-Miotto, T.; Jankovic-Karasoulos, T.; Moran, L.J.; Wilson, R.L.; Leemaqz, S.Y.; Poston, L.; McCowan, L.; Kenny, L.C.; et al. Pre-pregnancy fast food and fruit intake is associated with time to pregnancy. Hum. Reprod. 2018, 33, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Grzeskowiak, L.E.; Clifton, V.L. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J. Nutr. 2014, 144, 1075–1080. [Google Scholar] [CrossRef]
- Hillesund, E.R.; Bere, E.; Sagedal, L.R.; Vistad, I.; Seiler, H.L.; Torstveit, M.K.; Overby, N.C. Pre-pregnancy and early pregnancy dietary behavior in relation to maternal and newborn health in the Norwegian Fit for Delivery study—A post hoc observational analysis. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Clari, R.; Vigotti, F.N.; Leone, F.; Attini, R.; Cabiddu, G.; Mauro, G.; Castelluccia, N.; Colombi, N.; Capizzi, I.; et al. Vegan-vegetarian diets in pregnancy: Danger or panacea? A systematic narrative review. Bjog 2015, 122, 623–633. [Google Scholar] [CrossRef]
- Omoto, T.; Kyozuka, H.; Murata, T.; Fukuda, T.; Isogami, H.; Okoshi, C.; Yasuda, S.; Yamaguchi, A.; Sato, A.; Ogata, Y.; et al. Relationship between preconception protein intake and gestational diabetes mellitus: The Japan Environment and Children’s Study. Diabetes Metab. Syndr. 2025, 19, 103200. [Google Scholar] [CrossRef]
- Bullón-Vela, V.; Martínez-Tabar, A.; Etxezarreta-Uranga, M.; Martínez-González, M.; Basterra-Gortari, F.J.; Bes-Rastrollo, M. Pre-Pregnancy Provegetarian Food Pattern and the Risk of Developing Gestational Diabetes Mellitus: The Seguimiento Universidad de Navarra (SUN) Cohort Study. Medicina 2024, 60, 1881. [Google Scholar] [CrossRef]
- Tranidou, A.; Dagklis, T.; Magriplis, E.; Apostolopoulou, A.; Tsakiridis, I.; Chroni, V.; Tsekitsidi, E.; Kalaitzopoulou, I.; Pazaras, N.; Chourdakis, M. Pre-Pregnancy Adherence to Mediterranean Diet and Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study in Greece. Nutrients 2023, 15, 848. [Google Scholar] [CrossRef]
- Wang, H.; Huang, L.; Lin, L.; Chen, X.; Zhong, C.; Li, Q.; Li, N.; Gao, D.; Zhou, X.; Chen, R.; et al. The overall plant-based diet index during pregnancy and risk of gestational diabetes mellitus: A prospective cohort study in China. Br. J. Nutr. 2021, 126, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Mitsunami, M.; Wang, S.; Soria-Contreras, D.C.; Minguez-Alarcon, L.; Ortiz-Panozo, E.; Stuart, J.J.; Souter, I.; Rich-Edwards, J.W.; Chavarro, J.E. Pre-pregnancy plant-based diets and risk of hypertensive disorders of pregnancy. Am. J. Obstet. Gynecol. 2023, 230, 366.e1–366.e19. [Google Scholar]
- Abu-Saad, K.; Kaufman-Shriqui, V.; Freedman, L.S.; Belmaker, I.; Fraser, D. Preconceptional diet quality is associated with birth outcomes among low socioeconomic status minority women in a high-income country. Eur. J. Nutr. 2021, 60, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.; Patterson, A.J.; Brown, W.J.; Ireland, P.; Giles, G. The Anti Cancer Council of Victoria FFQ: Relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust. N. Z. J. Public Health 2000, 24, 576–583. [Google Scholar] [CrossRef]
- Sijtsma, F.P.; Meyer, K.A.; Steffen, L.M.; Van Horn, L.; Shikany, J.M.; Odegaard, A.O.; Gross, M.D.; Kromhout, D.; Jacobs, D.R., Jr. Diet quality and markers of endothelial function: The CARDIA study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 632–638. [Google Scholar] [CrossRef]
- Liu, K.; Slattery, M.; Jacobs, D., Jr.; Cutter, G.; McDonald, A.; Van Horn, L.; Hilner, J.E.; Caan, B.; Bragg, C.; Dyer, A.; et al. A study of the reliability and comparative validity of the cardia dietary history. Ethn. Dis. 1994, 4, 15–27. [Google Scholar] [PubMed]
- Mossavar-Rahmani, Y.; Shaw, P.A.; Wong, W.W.; Sotres-Alvarez, D.; Gellman, M.D.; Van Horn, L.; Stoutenberg, M.; Daviglus, M.L.; Wylie-Rosett, J.; Siega-Riz, A.M.; et al. Applying Recovery Biomarkers to Calibrate Self-Report Measures of Energy and Protein in the Hispanic Community Health Study/Study of Latinos. Am. J. Epidemiol. 2015, 181, 996–1007. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chen, G.C.; Abittan, N.; Xing, J.; Mossavar-Rahmani, Y.; Sotres-Alvarez, D.; Mattei, J.; Daviglus, M.; Isasi, C.R.; Hu, F.B.; et al. Healthy dietary patterns and risk of cardiovascular disease in US Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Am. J. Clin. Nutr. 2022, 116, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Mattei, J.; Sotres-Alvarez, D.; Daviglus, M.L.; Gallo, L.C.; Gellman, M.; Hu, F.B.; Tucker, K.L.; Willett, W.C.; Siega-Riz, A.M.; Van Horn, L.; et al. Diet Quality and Its Association with Cardiometabolic Risk Factors Vary by Hispanic and Latino Ethnic Background in the Hispanic Community Health Study/Study of Latinos. J. Nutr. 2016, 146, 2035–2044. [Google Scholar] [CrossRef]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Julián-Serrano, S.; Koenig, M.R.; Wang, T.R.; Wesselink, A.K.; Hatch, E.; Wise, L.A.; Tucker, K.L. Agreement Between the National Cancer Institute’s diet history questionnaire II and III in a preconception cohort. Am. J. Epidemiol. 2024, 194, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Dodd, K.W.; Kipnis, V.; Thompson, F.E.; Potischman, N.; Schoeller, D.A.; Baer, D.J.; Midthune, D.; Troiano, R.P.; Bowles, H.; et al. Comparison of self-reported dietary intakes from the Automated Self-Administered 24-h recall, 4-d food records, and food-frequency questionnaires against recovery biomarkers. Am. J. Clin. Nutr. 2018, 107, 80–93. [Google Scholar] [CrossRef]
ALSWH (1973–1978) (n = 10,392) | BHS (Women Aged ≤ 45 at Baseline) (n = 533) | CARDIA (n = 2709) | CePAWHS (n = 360) | CTS (n = 25,277) | HCHS/SOL (n = 5655) | PRESTO (n = 11,594) | |
---|---|---|---|---|---|---|---|
Age at baseline (years) | 20.78 ± 1.45 | 9.68 ± 3.12 21.96 ± 3.53 * | 24.91 ± 3.69 | 25.97 ± 4.98 | 36.84 ± 5.57 | 37.42 ± 9.81 | 30.56 ± 4.09 |
Education | |||||||
Less than high school (%) | 596 (5.7) | 40 (7.5) | 0 (0) | 20 (5.6) | 0/15,250 (0) | 1739/5648 (30.8) | 54 (0.5) |
High school (%) | 1010 (9.7) | 165 (31.0) | 757 (27.9) | 105 (29.2) | 2/15,250 (0.01) | 1581/5648 (28.0) | 451 (3.9) |
Associates or some college (%) | 3485 (33.5) | 166 (31.2) | 259 (9.6) | 118 (32.8) | 90/15,250 (0.59) | 809/5648 (14.3) | 2122 (18.3) |
College and more (%) | 5301 (51.0) | 161 (30.3) | 1693 (62.5) | 117 (32.5) | 15,158/15,250 (99.4) | 1519/5648 (26.9) | 8966 (77.3) |
Race/ethnicity | |||||||
Hispanic/Latina (%) | ** | 0 (0.0) | 0 (0) | 11 (3.1) | 1937/25,116 (7.7) | 5655 (100) | 756 (6.5) |
White (%) | 358 (67.3) | 1284 (47.4) | 330 (91.7) | 20965/25,116 (83.5) | 0 (0) | 9729 (83.9) | |
Black or African American (%) | 174 (32.7) | 1425 (52.6) | 11(3.1) | 500/25,116 (2.0) | 0 (0) | 348 (3.0) | |
Asian, American Indian/Alaska Native, Native Hawaiian or Pacific Islander, mixed race, or other (%) | 0 (0) | 0 (0) | 2 (0.8) | 1714/25,116 (4.8) | 0 (0) | 1076 (2.2) | |
Smoking | 5531 (53.2) | 345 (64.7) | 1417 (52.3) | 112 (31.1) | 4997/25,258 (19.8) | 1565/5647 (28) | 2310/11,591 (19.9) |
Alcohol use | 4070 (39.2) | 125/486 (25.7) | 1143/2708 (42.2) | 33 (9.2) | 6744 (26.7) | 260/3969 (7) | 1591/11,592 (13.7) |
BMI (pre-pregnancy or baseline visit) | 23.11 ± 4.57 (n = 10,176) | 24.47 ± 5.63 | 24.5 ± 5.13 (n = 2707) | 28.2 ± 7.52 | 24.12 ± 5.01 (n = 24,889) | 29.91 ± 6.78 | 27.75 ± 7.40 |
ALSWH (1973–1978) (N = 5966) | BHS (N = 54) | CARDIA (N = 1381) | CTS (N = 5387) | HCHS/SOL (N = 556) | PRESTO (N = 4884) | |
---|---|---|---|---|---|---|
Mean ± SD or N(%) | Mean ± SD or N(%) | Mean ± SD or N(%) | Mean ± SD or N(%) | Mean ± SD or N(%) | Mean ± SD or N(%) | |
Age at baseline | 20.7 ± 1.44 | 6.8 ± 1.37 23.4 ± 3.3 | 24.05 ± 3.67 | 31.45 ± 4.47 | 26.56 ± 5.92 | 30.08 ± 3.66 |
Education | ||||||
Less than high school (%) | 217 (3.6) | 2 (3.7) | 0 (0) | 0/2930 (0) | 150 (27.1) | 9 (0.2) |
High school (%) | 494 (8.3) | 12 (22.2) | 400 (29.0) | 0/2930 (0) | 183 (33.1) | 97 (2.0) |
Associates or some college (%) | 1819 (30.5) | 19 (35.2) | 131 (9.7) | 6/2930 (0.2) | 55 (10.0) | 686 (14.2) |
College and more (%) | 3436 (57.6) | 21 (38.9) | 850 (61.6) | 2924/2930 (99.8) | 165 (29.8) | 4052 (83.7) |
Race/ethnicity | ||||||
Hispanic/Latina (%) | ** | 0 (0) | 0 (0) | 508/5360 (9.5) | 556 (100) | 283 (5.8) |
White (%) | 36 (66.7) | 681 (49.31) | 4350/5360 (81.2) | 0 (0) | 4193 (86.6) | |
Black or African American (%) | 18 (33.3) | 700 (50.69) | 54/5360 (1.0) | 0 (0) | 72 (1.5) | |
Asian, American Indian/Alaska Native, Native Hawaiian or Pacific Islander, mixed race, or other (%) | 0 (0) | 0 (0) | 448/5360 (8.4) | 0 (0) | 296 (6.1) | |
Age at first pregnancy after baseline | 30.56 ± 4.75 | 26.16 ± 8.17 | 28.20 ± 6.04 (n = 1295) | 35.95 ± 4.76 | 30.2 ± 3.7 | |
Smoking | 3052 (51.2) | 26 (48.2) | 735 (53.2) | 783/5385 (14.5) | 127/555 (22.9) | 806/4842 (16.7) |
Alcohol use | 2448 (41.0) | 4 (7.7) | 589/1380 (42.7) | 1365 (25.3) | 31/400 (7.8) | 624 (12.9) |
BMI (pre-pregnancy) | 24.04 ± 4.7 (n = 5812) | 26.42 ± 6.1 | 25.66 ± 5.87 | 23.27 ± 4.27 | 28.25 ± 6.46 | 26.46 ± 6.30 |
ALSWH | BHS | CARDIA | CTS | HCHS/SOL | PRESTO | CePAWHS † | p-Value | |
---|---|---|---|---|---|---|---|---|
n = 10,391 * (%) | n = 522 (%) § | n = 2706(%) ** | n = 25,277(%) | n = 5655 (%) | n = 11,514 (%) | n = 360 (%) | ||
0 | 7 (0.07) | 11 (2.1) | 0 (0) | 123 (0.49) | 10 (0.18) | 80 (0.69) | 30 (8.3) | <0.0001 * |
1 | 65 (0.63) | 62 (11.9) | 22 (0.81) | 1497 (5.9) | 377 (6.7) | 732 (6.3) | 85 (23.6) | |
2 | 478 (4.6) | 110 (21.0) | 173 (6.39) | 4648 (18.4) | 1142 (20.2) | 2102 (18.1) | 96 (26.7) | |
3 | 1899 (18.3) | 135 (25.8) | 496 (18.3) | 8184 (32.4) | 1702 (30.1) | 3377 (29.1) | 97 (26.9) | |
4 | 3848 (37.0) | 136 (26.0) | 1080 (39.3) | 7648 (30.3) | 1552 (27.4) | 3651 (31.5) | 52 (14.4) | |
5 | 3613 (35.8) | 69 (13.2) | 904 (33.4) | 2849 (11.3) | 745 (13.2) | 1470 (12.7) | 0 (0) | |
6 | 481 (4.6) | 0 (0) | 33 (1.2) | 328 (1.3) | 127 (2.3) | 182 (1.6) | 0 (0) |
ALSWH | BHS | CARDIA | CTS | HCHS | PRESTO | p-Value | |
---|---|---|---|---|---|---|---|
n = 5966 (%) | n = 52 * (%) | n = 1377 (%) | n = 5387 (%) | n = 553 (%) | n = 4844 (%) | ||
0 | 2 (0.03) | 1 (1.9) | 0 (0) | 27 (0.5) | 1 (0.18) | 19 (0.4) | <0.0001 |
1 | 29 (0.49) | 4 (7.7) | 7 (0.51) | 375 (7.0) | 41 (7.4) | 273 (5.6) | |
2 | 233 (3.9) | 16 (30.8) | 81 (5.9) | 1062 (19.7) | 118 (21.2) | 805 (16.6) | |
3 | 1069 (17.9) | 12 (23.1) | 245 (17.8) | 1708 (31.7) | 179 (32.2) | 1424 (29.4) | |
4 | 2202 (36.9) | 12 (23.1) | 542 (39.4) | 1577 (29.3) | 146 (26.3) | 1628 (33.6) | |
5 | 2144 (35.9) | 7 (13.5) | 490 (35.6) | 573 (10.6) | 62 (11.2) | 620 (12.8) | |
6 | 287 (4.8) | 0 (0) | 12 (0.87) | 65 (1.2) | 9 (1.6) | 75 (1.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Sundaresan, J.; Cranny, C.; Pan, K.; Downs, D.S.; Gunderson, E.P.; Mishra, G.; Pauley, A.; Potts, K.S.; Shikany, J.M.; et al. Comparison of Preconception Diet Scores Across Studies: The PrePARED Consortium. Nutrients 2025, 17, 2035. https://doi.org/10.3390/nu17122035
Ji L, Sundaresan J, Cranny C, Pan K, Downs DS, Gunderson EP, Mishra G, Pauley A, Potts KS, Shikany JM, et al. Comparison of Preconception Diet Scores Across Studies: The PrePARED Consortium. Nutrients. 2025; 17(12):2035. https://doi.org/10.3390/nu17122035
Chicago/Turabian StyleJi, Lixuan, Janaki Sundaresan, Cailey Cranny, Ke Pan, Danielle Symons Downs, Erica P. Gunderson, Gita Mishra, Abigail Pauley, Kaitlin S. Potts, James M. Shikany, and et al. 2025. "Comparison of Preconception Diet Scores Across Studies: The PrePARED Consortium" Nutrients 17, no. 12: 2035. https://doi.org/10.3390/nu17122035
APA StyleJi, L., Sundaresan, J., Cranny, C., Pan, K., Downs, D. S., Gunderson, E. P., Mishra, G., Pauley, A., Potts, K. S., Shikany, J. M., Sotres-Alvarez, D., Wise, L. A., & Harville, E. W. (2025). Comparison of Preconception Diet Scores Across Studies: The PrePARED Consortium. Nutrients, 17(12), 2035. https://doi.org/10.3390/nu17122035