Effects of Pork Protein Ingestion Prior to and Following Performing the Army Combat Fitness Test on Markers of Catabolism, Inflammation, and Recovery †
Abstract
1. Introduction
2. Methods
2.1. Experimental Design
2.2. Participants
2.3. Study Timeline
2.4. Diet Intervention
2.5. Procedures
2.5.1. Demographics
2.5.2. Exercise Intervention and Performance Testing
Vertical Jump Power Test
Army Combat Fitness Test
2.6. Muscle Soreness Assessment
2.7. Cognitive Function Assessment
2.7.1. Trail Making Test (TMT)
2.7.2. Psychomotor Vigilance Task Test (PVTT)
2.7.3. Profile of Mood States (POMS) Inventory
2.8. Blood Collection and Analysis
2.9. Urine Collection and Analysis
2.10. Questionnaires
2.10.1. Readiness to Perform Questionnaire
2.10.2. Diet Satisfaction Questionnaire
2.11. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Performance
3.3. Perceptions of Muscle Soreness
3.4. Cognitive Function Assessment Results
3.4.1. Trail Making Test (TMT)
3.4.2. Psychomotor Vigilance Task Test (PVTT)
3.4.3. Readiness to Perform Questionnaire
3.4.4. Profile of Mood States (POMS) Inventory
3.5. Blood Analysis
3.5.1. Whole Blood Analysis
3.5.2. Renal Function and Electrolytes
3.5.3. Blood Lipid Analysis
3.5.4. Protein and Enzyme Markers
3.5.5. Hormonal Markers of Anabolism and Catabolism
3.5.6. Markers of Inflammation
3.6. Urinary Markers
3.7. Questionnaires
3.7.1. Diet Satisfaction Questionnaire
3.7.2. Self-Reported Side Effects
4. Discussion
4.1. Primary Outcomes
4.1.1. Markers of Performance, Degradation, and Recovery
4.1.2. Markers of Cognition
4.2. Secondary Outcomes
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrando, A.A.; Wolfe, R.R.; Hirsch, K.R.; Church, D.D.; Kviatkovsky, S.A.; Roberts, M.D.; Stout, J.R.; Gonzalez, D.E.; Sowinski, R.J.; Kreider, R.B.; et al. International Society of Sports Nutrition Position Stand: Effects of essential amino acid supplementation on exercise and performance. J. Int. Soc. Sports Nutr. 2023, 20, 2263409. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.E.; McAllister, M.J.; Waldman, H.S.; Ferrando, A.A.; Joyce, J.; Barringer, N.D.; Dawes, J.J.; Kieffer, A.J.; Harvey, T.; Kerksick, C.M.; et al. International society of sports nutrition position stand: Tactical athlete nutrition. J. Int. Soc. Sports Nutr. 2022, 19, 267–315. [Google Scholar] [CrossRef]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R.; Church, D.D.; Ferrando, A.A.; Moughan, P.J. Consideration of the role of protein quality in determining dietary protein recommendations. Front. Nutr. 2024, 11, 1389664. [Google Scholar] [CrossRef]
- Antonio, J.; Evans, C.; Ferrando, A.A.; Stout, J.R.; Antonio, B.; Cinteo, H.; Harty, P.; Arent, S.M.; Candow, D.G.; Forbes, S.C.; et al. Common questions and misconceptions about protein supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2024, 21, 2341903. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.; Scott, C. The MRE—A Lesson in Performance Nutrition; Navy Marine Corps Public Health Center: Portsmouth, VA, USA, 2023. [Google Scholar]
- Meal, Ready-to-Eat (MRE). Available online: https://www.dla.mil/Troop-Support/Subsistence/Operational-rations/MRE/ (accessed on 10 November 2023).
- Kirby, T.J.; Triplett, N.T.; Haines, T.L.; Skinner, J.W.; Fairbrother, K.R.; McBride, J.M. Effect of leucine supplementation on indices of muscle damage following drop jumps and resistance exercise. Amino Acids 2012, 42, 1987–1996. [Google Scholar] [CrossRef]
- Etheridge, T.; Philp, A.; Watt, P.W. A single protein meal increases recovery of muscle function following an acute eccentric exercise bout. Appl. Physiol. Nutr. Metab. 2008, 33, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Gwin, J.A.; Church, D.D.; Hatch-McChesney, A.; Howard, E.E.; Carrigan, C.T.; Murphy, N.E.; Wilson, M.A.; Margolis, L.M.; Carbone, J.W.; Wolfe, R.R.; et al. Effects of high versus standard essential amino acid intakes on whole-body protein turnover and mixed muscle protein synthesis during energy deficit: A randomized, crossover study. Clin. Nutr. 2021, 40, 767–777. [Google Scholar] [CrossRef]
- Waskiw-Ford, M.; Hannaian, S.; Duncan, J.; Kato, H.; Abou Sawan, S.; Locke, M.; Kumbhare, D.; Moore, D. Leucine-Enriched Essential Amino Acids Improve Recovery from Post-Exercise Muscle Damage Independent of Increases in Integrated Myofibrillar Protein Synthesis in Young Men. Nutrients 2020, 12, 1061. [Google Scholar] [CrossRef]
- Jackman, S.R.; Witard, O.C.; Philp, A.; Wallis, G.A.; Baar, K.; Tipton, K.D. Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans. Front. Physiol. 2017, 8, 390. [Google Scholar] [CrossRef]
- Bailey, H.M.; Mathai, J.K.; Berg, E.P.; Stein, H.H. Pork Products Have Digestible Indispensable Amino Acid Scores (DIAAS) That Are Greater Than 100 When Determined in Pigs, but Processing Does Not Always Increase DIAAS. J. Nutr. 2020, 150, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Connolly, G.; Hudson, J.L.; Bergia, R.E.; Davis, E.M.; Hartman, A.S.; Zhu, W.; Carroll, C.C.; Campbell, W.W. Effects of Consuming Ounce-Equivalent Portions of Animal- vs. Plant-Based Protein Foods, as Defined by the Dietary Guidelines for Americans on Essential Amino Acids Bioavailability in Young and Older Adults: Two Cross-Over Randomized Controlled Trials. Nutrients 2023, 15, 2870. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Church, D.D.; Schutzler, S.E.; Azhar, G.; Kim, I.Y.; Ferrando, A.A.; Wolfe, R.R. Metabolic Evaluation of the Dietary Guidelines’ Ounce Equivalents of Protein Food Sources in Young Adults: A Randomized Controlled Trial. J. Nutr. 2021, 151, 1190–1196. [Google Scholar] [CrossRef]
- Harman, E.A.; Rosenstein, M.T.; Frykman, P.N.; Rosenstein, R.M.; Kraemer, W.J. Estimation of Human Power Output from Vertical Jump. J. Strength Cond. Res. 1991, 5, 116–120. [Google Scholar]
- Comyns, T.M.; Murphy, J.; O’Leary, D. Reliability, Usefulness, and Validity of Field-Based Vertical Jump Measuring Devices. J. Strength Cond. Res. 2023, 37, 1594–1599. [Google Scholar] [CrossRef] [PubMed]
- U.S. Army. Army Combat Fitness Test; U.S. Army: Washington, DC, USA, 2023. [Google Scholar]
- Levers, K.; Dalton, R.; Galvan, E.; Goodenough, C.; O’Connor, A.; Simbo, S.; Barringer, N.; Mertens-Talcott, S.U.; Rasmussen, C.; Greenwood, M.; et al. Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males. J. Int. Soc. Sports Nutr. 2015, 12, 41. [Google Scholar] [CrossRef]
- Xing, D.; Yoo, C.; Gonzalez, D.; Jenkins, V.; Nottingham, K.; Dickerson, B.; Leonard, M.; Ko, J.; Faries, M.; Kephart, W.; et al. Effects of Acute Ashwagandha Ingestion on Cognitive Function. Int. J. Env. Res. Public. Health 2022, 19, 1852. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.P.; Earnest, C.P.; Koozehchian, M.; Galvan, E.; Dalton, R.; Walker, D.; Rasmussen, C.; Murano, P.S.; Greenwood, M.; Kreider, R.B. Effects of acute ingestion of a pre-workout dietary supplement with and without p-synephrine on resting energy expenditure, cognitive function and exercise performance. J. Int. Soc. Sports Nutr. 2017, 14, 3. [Google Scholar] [CrossRef]
- Jung, Y.P.; Earnest, C.P.; Koozehchian, M.; Cho, M.; Barringer, N.; Walker, D.; Rasmussen, C.; Greenwood, M.; Murano, P.S.; Kreider, R.B. Effects of ingesting a pre-workout dietary supplement with and without synephrine for 8 weeks on training adaptations in resistance-trained males. J. Int. Soc. Sports Nutr. 2017, 14, 1. [Google Scholar] [CrossRef]
- Levers, K.; Dalton, R.; Galvan, E.; O’Connor, A.; Goodenough, C.; Simbo, S.; Mertens-Talcott, S.U.; Rasmussen, C.; Greenwood, M.; Riechman, S.; et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J. Int. Soc. Sports Nutr. 2016, 13, 22. [Google Scholar] [CrossRef]
- Grubic, T.J.; Sowinski, R.J.; Nevares, B.E.; Jenkins, V.M.; Williamson, S.L.; Reyes, A.G.; Rasmussen, C.; Greenwood, M.; Murano, P.S.; Earnest, C.P.; et al. Comparison of ingesting a food bar containing whey protein and isomalto-oligosaccharides to carbohydrate on performance and recovery from an acute bout of resistance-exercise and sprint conditioning: An open label, randomized, counterbalanced, crossover pilot study. J. Int. Soc. Sports Nutr. 2019, 16, 34. [Google Scholar] [CrossRef]
- Collins, P.B.; Earnest, C.P.; Dalton, R.L.; Sowinski, R.J.; Grubic, T.J.; Favot, C.J.; Coletta, A.M.; Rasmussen, C.; Greenwood, M.; Kreider, R.B. Short-Term Effects of a Ready-to-Drink Pre-Workout Beverage on Exercise Performance and Recovery. Nutrients 2017, 9, 823. [Google Scholar] [CrossRef] [PubMed]
- Perneger, T.V. What’s wrong with Bonferroni adjustments. BMJ 1998, 316, 1236–1238. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Page, P. Beyond statistical significance: Clinical interpretation of rehabilitation research literature. Int. J. Sports Phys. Ther. 2014, 9, 726. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988; pp. 75–108. [Google Scholar]
- Kang, H. The prevention and handling of the missing data. Korean J Anesth. 2013, 64, 402–406. [Google Scholar] [CrossRef]
- Quintero, M.; LeBoulluec, A. Missing Data Imputation for Ordinal Data. Int. J. Comput. Appl. 2018, 181, 10–16. [Google Scholar] [CrossRef]
- Earnest, C.P.; Roberts, B.M.; Harnish, C.R.; Kutz, J.L.; Cholewa, J.M.; Johannsen, N.M. Reporting Characteristics in Sports Nutrition. Sports 2018, 6, 139. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Drinkwater, E. Applications of confidence limits and effect sizes in sport research. Open Sports Sci. J. 2008, 1, 3–4. [Google Scholar] [CrossRef]
- Grabowski, B. “P < 0.05” Might Not Mean What You Think: American Statistical Association Clarifies P Values. J. Natl. Cancer Inst. 2016, 108, djw194. [Google Scholar] [CrossRef]
- Sharma, H. Statistical significance or clinical significance? A researcher’s dilemma for appropriate interpretation of research results. Saudi J. Anaesth. 2021, 15, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Cavaillon, J.M. Pro- versus anti-inflammatory cytokines: Myth or reality. Cell Mol. Biol. 2001, 47, 695–702. [Google Scholar] [PubMed]
- Kritikos, S.; Papanikolaou, K.; Draganidis, D.; Poulios, A.; Georgakouli, K.; Tsimeas, P.; Tzatzakis, T.; Batsilas, D.; Batrakoulis, A.; Deli, C.K.; et al. Effect of whey vs. soy protein supplementation on recovery kinetics following speed endurance training in competitive male soccer players: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2021, 18, 23. [Google Scholar] [CrossRef]
- Nieman, D.C.; Zwetsloot, K.A.; Simonson, A.J.; Hoyle, A.T.; Wang, X.; Nelson, H.K.; Lefranc-Millot, C.; Guérin-Deremaux, L. Effects of whey and pea protein supplementation on post-eccentric exercise muscle damage: A randomized trial. Nutrients 2020, 12, 2382. [Google Scholar] [CrossRef]
- Saracino, P.G.; Saylor, H.E.; Hanna, B.R.; Hickner, R.C.; Kim, J.-S.; Ormsbee, M.J. Effects of pre-sleep whey vs. plant-based protein consumption on muscle recovery following damaging morning exercise. Nutrients 2020, 12, 2049. [Google Scholar] [CrossRef]
- Xia, Z.; Cholewa, J.; Dardevet, D.; Huang, T.; Zhao, Y.; Shang, H.; Yang, Y.; Ding, X.; Zhang, C.; Wang, H. Effects of oat protein supplementation on skeletal muscle damage, inflammation and performance recovery following downhill running in untrained collegiate men. Food Funct. 2018, 9, 4720–4729. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.E.; Dickerson, B.L.; Johnson, S.E.; Woodruff, K.E.; Leonard, M.; Yoo, C.; Ko, J.; Xing, D.; Martinez, V.; Kendra, J.; et al. Impact of astaxanthin supplementation on markers of cardiometabolic health and tactical performance among firefighters. J. Int. Soc. Sports Nutr. 2024, 21, 2427751. [Google Scholar] [CrossRef]
- Kargl, C.K.; Gage, C.R.; Forse, J.N.; Koltun, K.J.; Bird, M.B.; Lovalekar, M.; Martin, B.J.; Nindl, B.C. Inflammatory and Oxidant Responses to Arduous Military Training: Associations with Stress, Sleep, and Performance. Med. Sci. Sports Exerc. 2024, 56, 2315–2327. [Google Scholar] [CrossRef]
- Hamarsland, H.; Paulsen, G.; Solberg, P.A.; Slaathaug, O.G.; Raastad, T. Depressed physical performance outlasts hormonal disturbances after military training. Med. Sci. Sports Exerc. 2018, 50, 2076–2084. [Google Scholar] [CrossRef] [PubMed]
- McClung, J.P.; Martini, S.; Murphy, N.E.; Montain, S.J.; Margolis, L.M.; Thrane, I.; Spitz, M.G.; Blatny, J.-M.; Young, A.J.; Gundersen, Y.; et al. Effects of a 7-day military training exercise on inflammatory biomarkers, serum hepcidin, and iron status. Nutr. J. 2013, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Smid, D.J.; Klous, L.; Ballak, S.B.; Catoire, M.; De Hoogh, I.M.; Hoevenaars, F.P.M. Exploring the role of nutritional strategies to influence physiological and cognitive mechanisms in cold weather operations in military personnel. Front. Physiol. 2025, 16, 1539615. [Google Scholar] [CrossRef]
- Garron, T.; Klein, D.J. Male Army ROTC Cadets Fail to Meet Military Dietary Reference Intakes and Exhibit a High Prevalence of Low Energy Availability and Poor Sleep Quality. J. Funct. Morphol. Kinesiol. 2023, 8, 95. [Google Scholar] [CrossRef]
- Perez, L.; You, Z.; Kendrick, J. Association of Plant-Based Protein Intake with Cognitive Function in Adults with CKD. Kidney360 2023, 4, 1554–1561. [Google Scholar] [CrossRef]
- Teo, L.; Crawford, C.; Yehuda, R.; Jaghab, D.; Bingham, J.J.; Gallon, M.D.; O’Connell, M.L.; Chittum, H.K.; Arzola, S.M.; Berry, K. Whole dietary patterns to optimize cognitive function for military mission-readiness: A systematic review and recommendations for the field. Nutr. Rev. 2017, 75, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Wirth, J.; Hillesheim, E.; Brennan, L. Protein intake and its effect on sleep outcomes: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2023, 81, 333–345. [Google Scholar] [CrossRef]
- Zhou, J.; Kim, J.E.; Armstrong, C.L.; Chen, N.; Campbell, W.W. Higher-protein diets improve indexes of sleep in energy-restricted overweight and obese adults: Results from 2 randomized controlled trials. Am. J. Clin. Nutr. 2016, 103, 766–774. [Google Scholar] [CrossRef]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef]
- Li, S.S.; Blanco Mejia, S.; Lytvyn, L.; Stewart, S.E.; Viguiliouk, E.; Ha, V.; de Souza, R.J.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; et al. Effect of Plant Protein on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2017, 6, e006659. [Google Scholar] [CrossRef]
- Ferdowsian, H.R.; Barnard, N.D. Effects of plant-based diets on plasma lipids. Am. J. Cardiol. 2009, 104, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zheng, J.; Yang, B.; Jiang, J.; Fu, Y.; Li, D. Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2015, 4, e002408. [Google Scholar] [CrossRef] [PubMed]
- Richter, C.K.; Skulas-Ray, A.C.; Champagne, C.M.; Kris-Etherton, P.M. Plant protein and animal proteins: Do they differentially affect cardiovascular disease risk? Adv. Nutr. 2015, 6, 712–728. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Treatment A (Pork Protein Diet) | Treatment B (Plant Protein Diet) | ||||||
---|---|---|---|---|---|---|---|---|
Breakfast | Lunch | Dinner | Total | Breakfast | Lunch | Dinner | Total | |
Calories | 1248 | 1272 | 1252 | 3772 | 1218 | 1283 | 1263 | 3763 |
Total Fat [g] | 66 | 55 | 37 | 159 | 59 | 57 | 39 | 155 |
Saturated Fat [g] | 12 | 18 | 15 | 44 | 12 | 18 | 15 | 45 |
Trans Fat [g] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cholesterol [mg] | 81 | 113 | 108 | 302 | 36 | 5 | 0 | 41 |
Sodium [mg] | 1316 | 2041 | 1921 | 5277 | 1426 | 1823 | 1703 | 4951 |
Potassium [mg] | 730 | 1471 | 1151 | 3352 | 600 | 1450 | 1130 | 3180 |
Total Carbohydrates [g] | 137 | 153 | 200 | 490 | 142 | 161 | 108 | 510 |
Dietary Fiber [g] | 6 | 14 | 32 | 51 | 7 | 16 | 34 | 56 |
Sugars [g] | 43 | 32 | 58 | 132 | 44 | 31 | 57 | 132 |
Protein [g] | 26 | 49 | 51 | 126 | 32 | 47 | 49 | 128 |
Histidine † | 0.4 | 0.5 | 0.7 | 1.5 | 0.2 | 0.3 | 0.5 | 0.9 |
Isoleucine †* | 0.5 | 0.7 | 1.1 | 2.3 | 0.2 | 0.4 | 0.8 | 1.4 |
Leucine †* | 1.0 | 1.3 | 2.0 | 4.3 | 0.5 | 0.7 | 1.5 | 2.6 |
Lysine † | 0.7 | 0.8 | 1.6 | 3.1 | 0.2 | 0.4 | 1.2 | 1.8 |
Methionine † + Cystine | 0.4 | 0.5 | 0.7 | 1.7 | 0.2 | 0.3 | 0.5 | 1.0 |
Phenylalanine † + Tyrosine | 1.1 | 1.5 | 2.1 | 4.7 | 0.6 | 1.9 | 1.5 | 4.0 |
Threonine † | 0.4 | 0.6 | 1.0 | 2.0 | 0.2 | 0.4 | 0.8 | 1.3 |
Tryptophan † | 0.1 | 0.2 | 0.3 | 0.6 | 0.1 | 0.1 | 0.2 | 0.4 |
Valine †* | 0.6 | 0.9 | 1.3 | 2.8 | 0.2 | 0.5 | 1.0 | 1.7 |
Protein Quality Score | 55% | 32% | 57% | 48% | 12% | 16% | 44% | 27% |
Essential Amino Acids (g) | 5.2 | 6.9 | 10.8 | 22.9 | 2.2 | 5.0 | 8.0 | 15.2 |
Protein (g/kg) | 0.34 | 0.66 | 0.68 | 1.69 | 0.42 | 0.63 | 0.66 | 1.71 |
EAA (g/kg) | 0.07 | 0.09 | 0.14 | 0.31 | 0.03 | 0.07 | 0.11 | 0.20 |
Creatine (g) | 0.226 | 0.831 | 0.76 | 1.817 | 0.126 | 0.08 | 0.009 | 0.215 |
Creatine (g/kg) | 0.003 | 0.011 | 0.010 | 0.024 | 0.002 | 0.001 | 0.000 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, D.E.; Hines, K.E.; Sowinski, R.J.; Estes, L.; Johnson, S.E.; Chun, J.; Lee, H.; Leon, S.; Gil, A.; Ko, J.; et al. Effects of Pork Protein Ingestion Prior to and Following Performing the Army Combat Fitness Test on Markers of Catabolism, Inflammation, and Recovery. Nutrients 2025, 17, 1995. https://doi.org/10.3390/nu17121995
Gonzalez DE, Hines KE, Sowinski RJ, Estes L, Johnson SE, Chun J, Lee H, Leon S, Gil A, Ko J, et al. Effects of Pork Protein Ingestion Prior to and Following Performing the Army Combat Fitness Test on Markers of Catabolism, Inflammation, and Recovery. Nutrients. 2025; 17(12):1995. https://doi.org/10.3390/nu17121995
Chicago/Turabian StyleGonzalez, Drew E., Kelly E. Hines, Ryan J. Sowinski, Landry Estes, Sarah E. Johnson, Jisun Chun, Hudson Lee, Sheyla Leon, Adriana Gil, Joungbo Ko, and et al. 2025. "Effects of Pork Protein Ingestion Prior to and Following Performing the Army Combat Fitness Test on Markers of Catabolism, Inflammation, and Recovery" Nutrients 17, no. 12: 1995. https://doi.org/10.3390/nu17121995
APA StyleGonzalez, D. E., Hines, K. E., Sowinski, R. J., Estes, L., Johnson, S. E., Chun, J., Lee, H., Leon, S., Gil, A., Ko, J., Broeckel, J., Barringer, N. D., Rasmussen, C. J., & Kreider, R. B. (2025). Effects of Pork Protein Ingestion Prior to and Following Performing the Army Combat Fitness Test on Markers of Catabolism, Inflammation, and Recovery. Nutrients, 17(12), 1995. https://doi.org/10.3390/nu17121995